

NTE7132 **Integrated Circuit** **Horizontal and Vertical Deflection Controller** **for VGA/XGA and Multi-Frequency Monitors**

Description:

The NTE7132 is an integrated circuit in a 20-Lead DIP type package. This device is designed to provide an economical solution in VGA/XGA and multifrequency monitors by incorporating complete horizontal and vertical small signal processing. VGA-dependent mode detection and setting are performed on-chip.

Features:

- VGA Operation Fully Implemented Including Alignment-Free Vertical and E/W Amplitude Pre-Settings
- 4th VGA Mode Easy Applicable (XGA, Super VGA)
- Multifrequency Operation Externally Selectable
- All Adjustments DC-Controllable
- Alignment-Free Oscillators
- Sync Separators for Video or Horizontal and Vertical TTL Sync Levels Regardless of Polarity
- Horizontal Oscillator with P_{LL1} for Sync and P_{LL2} for Flyback
- Constant Vertical and E/W Amplitude in Multi-Frequency Operation
- Internal Supply Voltage Stabilization with Excellent Ripple Rejection to Ensure Stable Geometrical Adjustments

Absolute Maximum Ratings:

Supply Voltage (Pin1), V_P	-0.5 to +16V
Voltage (Pin3, Pin7), V_3 , V_7	-0.5 to +16V
Voltage (Pin8), V_8	-0.5 to +7V
Voltage (Pin5, Pin6, Pin9, Pin10, Pin13, Pin14, Pin18), V_n	-0.5 to +6.5V
Current (Pin2), I_2	$\pm 10\text{mA}$
Current (Pin3), I_3	100mA
Current (Pin7), I_7	20mA
Current (Pin8), I_8	-10mA
Electrostatic Handling for All Pins (Note 1), V_{esd}	$\pm 300\text{V}$
Operating Junction Temperature, T_J	+150°C
Operating Ambient Temperature Range, T_A	0° to +70°C
Storage Temperature Range, T_{stg}	-55° to +150°C
Thermal Resistance, Junction-to-Ambient (In Free Air), R_{thJA}	65K/W

Note 1. Equivalent to discharging a 200pF capacitor through a 0Ω series resistor.

Electrical Characteristics: ($V_P = 12V$, $T_A = +25^\circ C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Supply						
Supply Voltage (Pin1)	V_P		9.2	12.0	16.0	V
Supply Current	I_P		–	40	–	mA
Internal Reference Voltage						
Internal Reference Voltage	V_{ref}		6.0	6.25	6.5	V
Temperature Coefficient	T_C	$T_A = +20^\circ$ to $+100^\circ C$	–	–	± 90	$10^{-6}/K$
Power Supply Ripple Rejection	$PSRR$	$f = 1\text{kHz}$ Sine Wave	60	75	–	dB
		$f = 1\text{MHz}$ Sine Wave	25	35	–	dB
Supply Voltage (Pin1) to Ensure All Internal Reference Voltages	V_P		9.2	–	16.0	V
Composite Sync Input (AC-Coupled, $V_{10} = 5V$)						
Sync Amplitude of Video Input Signal (Pin9)	$V_{i sync}$	Sync on Green, $R_S = 50\Omega$	–	300	–	mV
Top Sync Clamping Level			1.1	1.32	1.5	V
Slicing Level Above Top Sync Level			90	120	150	mV
Allowed Source Resistance for 7% Duty Cycle	R_S	$V_{i sync} > 200\text{mV}$	–	–	1.5	k Ω
Differential Input Resistance	r_9	During Sync	–	80	–	Ω
Charging Current of Coupling Capacitor	I_9	$V_9 > 1.5V$	1.7	2.6	3.4	μA
Vertical Sync Integration Time to Generate Sync Pulse	t_{int}		7	10	13	μs
Horizontal Sync Input (DC-Coupled, TTL-Compatible)						
Sync Input Signal (Peak Value, Pin9)	$V_{u sync}$		1.7	–	–	V
Slicing Level			1.2	1.4	1.6	V
Minimum Pulse Width	t_p		700	–	–	ns
Rise Time and Fall Time	t_p, t_f		10	–	500	ns
Input Current	I_9	$V_9 = 0.8V$	–	–	–200	μA
		$V_9 = 5.5V$	–	–	10	μA
Automatic Horizontal Polarity Switch (H-Sync on Pin9)						
Horizontal Sync Pulse Width Related to t_H (Duty Cycle for Automatic Polarity Correction)	$t_p H/t_H$		–	–	30	%
Delay Time for Changing Sync Polarity	t_p		0.3	–	1.8	ms
Vertical Sync Input (DC-Coupled, TTL-Compatible, V-Sync on Pin10)						
Sync Input Signal (Peak Value, Pin10)	$V_{i sync}$		1.7	–	–	V
Slicing Level			1.2	1.4	1.6	V
Input Current	I_{10}	$0 < V_{10} < 5.5V$	–	–	± 10	μA
Maximum Vertical Sync Pulse Width for Automatic Vertical Polarity Switch	$t_p V$		–	–	300	μs
Horizontal Mode Detector Output (VGA Mode)						
Output Saturation Voltage LOW (For Modes 1, 2, and 3)	V_7	$I_7 = 6\text{mA}$	–	0.275	0.33	V
		Mode 4	–	–	V_P	V
Load Current to Force VGA Mode-Dependent Vertical and Parabola Amplitudes	I_7	Modes 1, 2, and 3	2	–	6	mA
		Mode 4	–	0	–	mA

Electrical Characteristics (Cont'd): ($V_P = 12V$, $T_A = +25^\circ C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
VGA/Multi-Frequency Mode Switch						
Input Voltage LOW to Force Multi-Frequency Mode	V_7		0	—	50	mV
Horizontal Comparator P_{LL1}						
Upper Control Voltage Limitation	V_{17}		—	5.0	—	V
Lower Control Voltage Limitation			—	1.2	—	V
Control Current	I_{17}		—	± 300	—	μA
Horizontal Oscillator						
Center Frequency	f_{OSC}	$R_{18} = 12k\Omega$ (Pin18), $C_{19} = 2.2nF$ (Pin19)	—	31.45	—	kHz
Deviation of Center Frequency	Δf_{OSC}		—	—	± 3.0	%
Temperature Coefficient	T_C		—	—	± 150	$10^{-6}/K$
Relative Holding/Catching Range	φ_H/t_H		± 6.0	± 6.5	± 7.3	%
External Oscillator Resistor	R_{18}		9	—	18	$k\Omega$
Voltage at Reference Current Input (Pin18)	V_{18}	P_{LL1} and P_{LL2} Locked, $V_{refm} = 6.25V$	—	3.125	—	V
Control Voltage	ΔV_{18}		—	± 205	—	mV
Horizontal P_{LL2}						
Upper Clamping Level of Flyback Input	V_2	$I_2 = 6mA$	—	5.5	—	V
Lower Clamping Level of Flyback Input		$I_2 = -1mA$	—	-0.75	—	V
H-Flyback Slicing Level			—	3.0	—	V
Input Current	I_2	H-Scan; $V_8 < 0.9V$	-0.5	—	—	mA
		H-Flyback; $V_8 > 1.8V$	—	—	-0.2	mA
Delay Between Middle of Sync and Middle of H-Flyback Related to t_H	t_d/t_H		—	3.2	—	%
Upper Control Voltage Limitation	V_{20}		—	4.6	—	V
Lower Control Voltage Limitation			—	1.6	—	V
Control Current	I_{20}		—	± 200	—	μA
P_{LL2} Control range Related to t_H	$\Delta t/t_H$		30	—	—	%
Horizontal Output (Open-Collector)						
Output Voltage LOW	V_3	$I_3 = 20mA$	—	—	0.3	V
		$I_3 = 60mA$	—	—	0.8	V
t_H Duty Cycle	t_p/t_H		42	45	48	%
Threshold to Activate Too Low Supply Voltage Protection	V_P	Horizontal Output OFF	—	5.3	—	V
		Horizontal Output ON	—	5.6	—	V
Horizontal Clamping/Blanking Generator Output						
Output Voltage LOW	V_8	H and V Scanning	—	—	0.9	V
Blanking Output Voltage		Internal V Blanking	1.8	2.1	2.4	V
		External H Blanking	1.8	2.1	2.4	V
Clamping Output Voltage		H-Sync on Pin9	3.5	3.9	4.3	V
Internal Sink Current for All Output Levels	I_8	H and V Scanning	2.3	2.9	3.5	mA
Clamping Pulse Start	t_8		With End of H-Sync			
Clamping Pulse Width	t_{clp}		0.8	1.0	1.2	μs
Steepness of Rise and Fall Times	S		—	40	—	ns/V

Electrical Characteristics (Cont'd): ($V_P = 12V$, $T_A = +25^\circ C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Vertical Oscillator ($V_{ref} = 6.25V$)						
Vertical Free-Running Frequency	f_o	$R_{15} = 22k\Omega$, $C_{16} = 0.1\mu F$	40.0	42.0	43.3	Hz
Nominal Vertical Sync Range	f_V	No f_o Adjustment	50	—	110	Hz
Voltage on Pin15	V_{15}	$R_{15} = 22k\Omega$	2.8	3.0	3.2	V
Delay Between Sync Pulse and Start of Vertical Scan in VGA/XGA Mode	t_d	Measured on Pin8, Activated by an External Resistor on Pin7	500	575	650	μs
Delay Between Sync Pulse and Start of Vertical Scan in Multi-Frequency Mode		Measured on Pin8, $V_7 < 50mV$	240	300	360	μs
Control Current for Amplitude Control	I_{12}		—	± 200	—	μA
Capacitor for Amplitude Control	C_{12}		—	—	0.33	μF
Vertical Differential Output						
Differential Output Current Between Pin5 and Pin6 (Peak-to-Peak Value)	I_o	Mode 3, $I_{13} > -135\mu A$, $R_{15} = 22k\Omega$	0.9	1.0	1.1	mA
Maximum Offset Current Error		$I_o = 1mA$	—	—	± 2.5	%
Maximum Linearity Error			—	—	± 1.5	%
Vertical Amplitude Adjustment (In Percent of Output Signal)						
Input Voltage	V_{13}		—	5.0	—	V
Adjustment Current	I_{13}	$I_{o\max}$ (100%)	-110	-120	-135	μA
		$I_{o\min}$ (Typically 58%)	—	0	—	μA
VGA Mode-Dependent Pre-Settings Activated by an External Resistor on Pin7	$\Delta I_o/\Delta t$					
Mode 1		Note 2	116.1	116.8	117.5	%
Mode 2			102.0	102.2	102.5	%
Mode 3			—	100	—	%
Mode 4			—	100	—	%
Multi-Frequency Operation (VGA Operation Disabled)		Note 2, $V_7 < 50mV$	—	100	—	%
E/W Output (Note 2)						
Bottom Output Signal During Mid-Scan (Pin11)	V_{11}	Internally Stabilized	1.05	1.2	1.35	V
Top Output Signal During Flyback			4.1	4.35	4.6	V
Temperature Coefficient of Output Signal	TC		—	—	250	$10^{-6}/K$
E/W Amplitude Adjustment (Parabola)						
Input Voltage (Pin14)	V_{14}		—	5.0	—	V
Adjustment Current	I_{14}	100% Parabola	-110	-120	-135	μA
		Typical 28% Parabola	—	0	—	μA

Note 2. $\Delta I_o/\Delta t$ relative to value of Mode 3.

Note 3. Parabola amplitude tracks with mode-dependent vertical amplitude but not with vertical amplitude adjustment. Tracking can be achieved by a resistor from vertical amplitude potentiometer to Pin14.

Functional Description:

Horizontal Sync Separator and Polarity Correction

An AC-coupled video signal or a DC-coupled TTL sync signal (H only or composite sync) is input on Pin9. Video signals are clamped with top sync on 12.8V, and are sliced at 1.4V. This results in a fixed absolute slicing level of 120mV relative to top sync.

DC-coupled TTL sync signals are also sliced at 1.4V, however with the clamping circuit in current limitation. The polarity of the separated sync is detected by internal integration of the signal, then the polarity is corrected.

The polarity information is fed to the VGA mode detector. The corrected sync is the input signal for the vertical sync integrator and the P_{LL1} stage.

Vertical Sync Separator, Polarity Correction and Vertical Sync Integrator

DC-coupled vertical TTL sync signals may be applied to Pin10. They are sliced at 1.4V. The polarity of the separated sync is detected by internal integration, then polarity is corrected. The polarity information is fed to the VGA mode detector. If Pin10 is not used, it must be connected to GND.

The separated V_i sync signal from Pin10, or the integrated composite sync signal from Pin9 (TTL or video) directly triggers the vertical oscillator.

VGA Mode Detector and Mode Output

The three standard VGA modes and a 4th not fixed mode are decoded by the polarities of the horizontal and the vertical sync input signals. An external resistor (from V_P to Pin7) is necessary to match this function. In all three VGA modes the correct amplitudes are activated. The presence of the 4th mode is indicated by HIGH on Pin7. This signal can be used externally to switch any horizontal or vertical parameters.

VGA Mode Detector Input

For multi-frequency operation the voltage on Pin7 must be externally forced to a level of < 50mV. Vertical amplitude pre-settings for VGA are then inhibited. The delay time between vertical trigger pulse and the start of vertical deflection changes from 575 to 300 μ s (575 μ s is needed for VGA). The vertical amplitude then remains constant in a frequency range from 50 to 110Hz.

Clamping and Blanking Generator

A combined clamping and blanking pulse is available on Pin8. The lower level of 2.1V can be the blanking signal derived from line flyback, or the vertical blanking pulse from the internal vertical oscillator.

Vertical blanking equals the delay between vertical sync and the start of vertical scan. By this, an optimum blanking is achieved for VGA/XGA as well as for multi-frequency operation (selectable via Pin7).

The upper level of 3.9V is the horizontal clamping pulse with internally fixed pulse width of 1 μ s. A mono flop, which is triggered by the trailing edge of the horizontal sync pulse, generates this pulse.

P_{LL1} Phase Detector

The phase detector is a standard one using switched current sources. The middle of the sync is compared with a fixed point of the oscillator sawtooth voltage. The PLL filter is connected to Pin17.

Horizontal Oscillator

This oscillator is a relaxation type oscillator. Its frequency is determined mainly by the capacitor on Pin19.

A frequency range of one octave is achieved by the current on Pin18. The $\varphi 1$ control voltage from Pin17 is fed via a buffer amplifier and an attenuator to the current reference Pin18 to achieve a high DC loop gain. Therefore, changes in frequency will not affect the phase relationship between horizontal sync pulses and line flyback pulses.

Functional Description (Cont'd):

P_{LL2} Phase Detector

This phase detector is similar to the P_{LL1} phase detector. Line flyback signals (Pin2) are compared with a fixed point of the oscillator sawtooth voltage. Delays in the horizontal deflection circuit are compensated by adjusting the phase relationship between horizontal sync and horizontal output pulses.

A certain amount of phase adjustment is possible by injecting a DC current from an external source into the P_{LL2} filter capacitor on Pin20.

Horizontal Driver

This open-collector output stage (Pin3) can directly drive an external driver transistor. The saturation voltage is 300mV at 20mA. To protect the line deflection transistor, the horizontal output stage does not conduct at V_P < 6.4V (Pin1).

Vertical Oscillator and Amplitude Control

This stage is designed for fast stabilization of the vertical amplitude after changes in sync conditions.

The free-running frequency f_o is determined by the values of R_{VOS} and C_{VOS}. The recommended values should be altered marginally only to preserve the excellent linearity and noise performance. The vertical drive currents I₅ and I₆ are in relation to the value of R_{VOS}. Therefore, the oscillator frequency must be determined only by C_{VOS} on Pin16.

$$f_o = \frac{1}{10.8 \times R_{VOS} \times C_{VOS}}$$

To achieve a stabilized amplitude the free-running frequency f_o (without adjustment) must be lower than the lowest occurring sync frequency. The contributions shown in Table 1 can be assumed.

Table 1. Calculation of f_o Total Spread

Contributing Elements	%
Minimum Frequency Offset Between f _o and the Lowest Trigger Frequency	10
Spread of IC	±3
Spread of R (22kΩ)	±1
Spread of C (0.1μF)	±5
Total	19

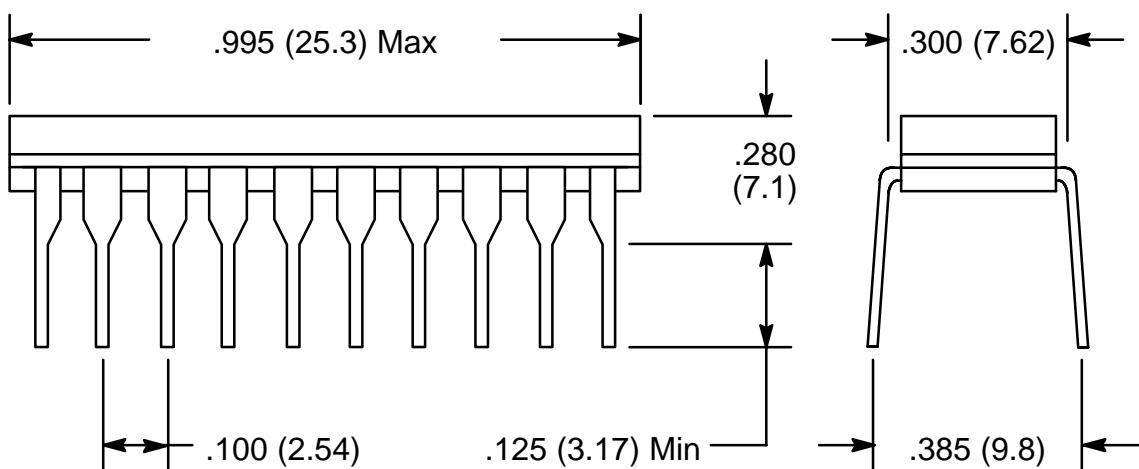
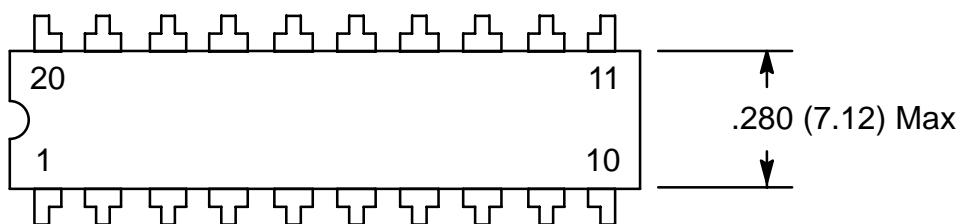


Results for 50 to 110Hz application: $f_o = \frac{50\text{Hz}}{1.19} = 42\text{Hz}$

Table 2. VGA Modes

Mode	Horizontal/Vertical Sync Polarity	Horizontal Frequency (kHz)	Vertical Frequency (Hz)	Number of Active Lines	Output Mode Pin7
1	+/-	31.45	70	350	LOW
2	-/+	31.45	70	400	LOW
3	-/-	31.45	60	480	LOW
4	+/+	Fixed by External Circuitry	-	-	HIGH

Pin Connection Diagram

V_P	1	20	P _{LL2} Phase
Horiz Flyback Input	2	19	Horiz OSC Capacitor
Horiz Output	3	18	Horiz OSC Resistor
GND (0V)	4	17	P _{LL1} Phase
Vert Output 1/Neg-Going Sawtooth	5	16	Vert OSC Capacitor
Vert Output 2/Pos-Going Sawtooth	6	15	Vert OSC Resistor
4th Mode Output/Mode Det Disable In	7	14	E/W Amp Adj Input
Clamping/Blanking Pulse Out	8	13	Vert Amp Adj Input
Horiz Sync/Video In	9	12	Cap for Amp Control
Vert Sync In	10	11	E/W Output

