

LC²MOS Complete, High Speed 12-Bit ADC

AD7572

FEATURES

12-Bit Resolution and Accuracy

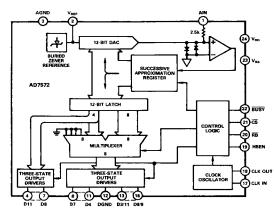
Fast Conversion Time AD7572XX05: 5µs AD7572XX12: 12.5µs

Complete with On-Chip Reference Fast Bus Access Time: 90ns

Fast Bus Access Time: 90ns Low Power: 135mW Small, 0.3", 24-Pin Package

and 28-Terminal Surface Mount Packages

GENERAL DESCRIPTION


The AD7572 is a complete, 12-bit ADC that offers high speed performance combined with low, CMOS power levels. The AD7572 uses an accurate, high speed DAC and comparator in a successive-approximation loop to achieve a fast conversion time. An on-chip, buried Zener diode provides a stable reference voltage to give low drift performance over the full temperature range and the specified accuracy is achieved without any user trims. An on-chip clock circuit is provided, which may be used with a crystal for stand-alone operation, or the clock input may be driven from an external clock source such as a divided-down microprocessor clock. The only other external components required for basic operation of the AD7572 are decoupling capacitors for the supply voltages and reference output.

The AD7572 has a high speed digital interface with three-state data outputs and can operate under the control of standard microprocessor Read (\overline{RD}) and decoded address (\overline{CS}) signals. Interface timing is sufficiently fast to allow the AD7572 to operate with most popular microprocessors, with three-state enable times of only 90ns and bus relinquish times of 75ns.

The AD7572 is fabricated in Analog Devices Linear Compatible CMOS process (LC²MOS), an advanced, all ion-implanted process that combines fast CMOS logic and linear, bipolar circuits on a single chip, thus achieving excellent linear performance while still retaining low CMOS power levels.

The AD7572 is available in both 0.3" wide, 24-pin DIPs and in a 28-terminal plastic leaded chip carrier (PLCC) and leadless ceramic chip carrier (LCCC).

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- Fast, 5μs and 12.5μs conversion times make the AD7572 ideal for a wide range of applications in telecommunications, sonar and radar signal processing or any wideband data acquisition system.
- On-chip buried-Zener reference has temperature coefficient as low as 25ppm/°C, giving low full-scale drift over the operating temperature range.
- Stable DAC and comparator give excellent linearity and low zero error over the full temperature range.
- Fast, easy-to-use digital interface has three-state bus access times of 90ns and bus relinquish times of 75ns, allowing the AD7572 to interface to most popular microprocessors.
- LC²MOS circuitry gives low power drain (135mW) from +5, -15 volt supplies.
- 24-pin 0.3" package offers space saving over parts in 28-pin 0.6" DIP.

Parameter	J, A, S Versions ¹	K, B, T Versions	L Version	C, U Versions	Units	Test Conditions/Comments
ACCURACY						
	12	12	12	12	Bits	
Resolution	±1	±1	± 1/2	± 1/2	LSB max	
Integral Nonlinearity @ +25℃	±1 ±1	±1 ±1	± 1/2	± 3/4	LSB max	
T _{min} to T _{max}			±1/2	±1	LSB max	
Differential Nonlinearity	±1	±1	Ξ,	± 1	LSDillex	
Minimum Resolution for which no			1	12	Bits	
Missing Codes are Guaranteed	12	12	12			
Offset Error @ +25°C	±4	±3	± 3	±3	LSB max	Typical Change over Temp Is ± 1LS
T _{min} to T _{max}	±6	± 5	± 4	±4_	LSB max	
Full Scale (FS) Error ² @ + 25°C	± 15	± 10	± 10	± 10	LSB max	$V_{DD} = 5V; V_{SS} = -15V; FS = 5V$
Full Scale TC ^{3,4}	45	25	25	25	ppm/°C max	Ideal Last Code Transition = FS - 3/2LSBs
ANALOG INPUT		-				
Input Voltage Range	0 to + 5	0 to +5	0 to +5	0 to +5	Volts	For Bipolar Operation See
Input Current	3.5	3.5	3.5	3.5	mA max	Figures 10 & 12
INTERNAL REFERENCE VOLTAGE	2.5					
V _{REF} Output @ +25°C	-5.2/-5.3	- 5.2/ - 5.3	-5.2/-5.3	-5.2/-5.3	V min/V max	$-5.25V \pm 1\%$
V _{REF} Output TC	40	20	20	20	ppm/°C typ	
Output Current Sink Capability	550	550	550	550	μ.A max	External Load Should Not Change
Output Current Sink Capability	550	330				During Conversion
POWER SUPPLY REJECTION		_			1 on .	FS Change, V _{SS} = -15V
V _{DD} Only	± 1/2	± 1/2	± 1/2	± 1/2	LSB typ	$V_{DD} = +4.75V \text{ to } +5.25V$
		l				
V _{SS} Only	± 1/2	± 1/2	± 1/2	± 1/2	LSB typ	FS Change, $V_{DD} = 5V$ $V_{SS} = -14.25V \text{ to } -15.75V$
LOGICINPUTS				 		V _{SS} = 14.25 v to 15.75 v
CS, RD, HBEN, CLK IN		ļ	1	ł		
V _{INI.} , Input Low Voltage	+0.8	+0.8	+0.8	+ 0.8	V max	$V_{DD} = 5V \pm 5\%$
	+ 2.4	+ 2.4	+2.4	+ 2.4	V min	
V _{INH} , Input High Voltage	10	10	10	10	pF max	
C _{IN} , 5 Input Capacitance	10	10		1 ""	F	
CS, RD, HBEN	± 10	± 10	± 10	± 10	μA max	$V_{IN} = 0 \text{ to } V_{DD}$
IIN, Input Current	± 10	= 10	1 - 10		F.1.1	114
CLKIN		± 20	± 20	± 20	μA max	$V_{tN} = 0 \text{ to } V_{DD}$
I _{IN} , Input Current	± 20	± 20	= 20	- 20	pars intex	TIN TO IDD
LOGICOUTPUTS		1	Į.	1		I
D11-D0/8, BUSY, CLK OUT			1	+0.4	V max	I _{SINK} = 1.6mA
Vol., Output Low Voltage	+0.4	+0.4	+0.4		V min	I _{SOURCE} = 200μA
V _{OH} , Output High Voltage	+4.0	+4.0	+4.0	+4.0	V min	ISOURCE - 200µII
D11-D0/8					1 .	
Floating State Leakage Current	± 10	± 10	± 10	± 10	μA max	
Floating State Output Capacitance ⁵	15	15	15	15	pF max	
CONVERSION TIME	ľ		1		1	l
AD7572XX05	l .	l .	1.	1 .	l	f _{CLK} = 2.5MHz. See Under
Synchronous Clock	5	5	5	3	µs max	Control Inputs Synchronization
Asynchronous Clock	4.8/5.2	4.8/5.2	4.8/5.2	4.8/5.2	μs min/max	Control Inputs Sylicinoinzation
AD7572XX12		Į.			ł.	C 11477-
Synchronous Clock	12.5	12.5	12.5	12.5	μs max	$f_{CLK} = 1MHz$
Asynchronous Clock	12/13	12/13	12/13	12/13	με min/με max	
POWER REQUIREMENTS				+5	VNOM	± 5% for Specified Performance
V_{DD}	+5	+5	+5			± 5% for Specified Performance
V _{ss}	- 15	- 15	- 15	- 15	VNOM	$\frac{\pm 5\% \text{ for Specified Performance}}{\overline{\text{CS}} = \overline{\text{RD}} = V_{\text{DD}}, \text{AIN} = 5V}$
I _{DD} ⁶	7	7	7	7	mA max	
I _{SS} ⁶	12	12	12	12	mA max	$\overline{CS} = \overline{RD} = V_{DD}$, AIN = 5V
Power Dissipation	135	135	135	135	m₩ typ	1
	215	215	215	215	mW max	•

NOTES

Temperature range as follows: J, K, L Versions; 0 to + 70°C.

A, B, C Versions; - 25°C to + 85°C.

S, T, U Versions; - 55°C to + 125°C.

Includes internal voltage reference error. Pull-Scale change from $T_A=+25^\circ\text{C}$ to T_{max} or T_{max} . The change from $T_A=+25^\circ\text{C}$ to T_{max} or T_{max} .

Sample tested to ensure compliance.

Power supply current is measured when AD7572 is inactive, i.e., $\overline{CS} = \overline{RD} = \overline{BUSY} = HIGH$.

Specifications subject to change without notice.

TIMING CHARACTERISTICS¹ $(v_{00} = 5V, V_{SS} - 15V)$

Parameter	Limit at +25°C (All Grades)	Limit at T _{min} , T _{max} (J, K, L, A, B, C Grades)	Limit at T _{min} , T _{max} (S, T, U Grades)	Units	Conditions/Comments
t ₁	0	0	0	ns min	CS to RD Setup Time
t ₂	190	230	270	ns max	RD to BUSY Propagation Delay
t ₃ ²	90	110	120	ns max	Data Access Time after \overline{RD} , $C_L = 20pF$
	125	150	170	ns max	Data Access Time after \overline{RD} , $C_L = 100pI$
t ₄	t ₃	t ₃	t ₃	ns min	RD Pulse Width
t ₅	0	0	0	ns min	CS to RD Hold Time
t ₆ ²	70	90	100	ns max	Data Setup Time after BUSY
t ₇ 3	20	20	20	ns min	Bus Relinquish Time
	75	85	90	ns max	•
t ₈	0	0	0	ns min	HBEN to RD Setup Time
t ₉	0	0	0	ns min	HBEN to RD Hold Time
t ₁₀	200	200	200	ns min	Delay Between Successive Read Operations

NOTES

Specifications subject to change without notice.

a. High-Z to V_{OH} (t_3) and V_{OL} to V_{OH} (t_6)

b. High-Z to V_{OL} (t_3) and V_{OH} to V_{OL} (t_6)

Figure 1. Load Circuits for Access Time

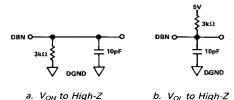


Figure 2. Load Circuits for Output Float Delay

ABSOLUTE MAXIMUM RATINGS*

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$ V_{DD} to DGND $\ \ldots \ \ldots \ \ldots \ -0.3V$ to +7V V_{SS} to DGND +0.3V to -17V AGND to DGND -0.3V, V_{DD} + 0.3VAIN to AGND -15V to +15V Digital Input Voltage to DGND (CLK IN, HBEN, \overline{RD} , \overline{CS}) -0.3V, V_{DD} + 0.3VDigital Output Voltage to DGND (D11-D0/8, CLK OUT, \overline{BUSY}) . . . -0.3V, $V_{DD} + 0.3V$ Operating Temperature Range Commercial (J, K, L Versions) 0 to +70°C Industrial (A, B, C Versions) -25°C to +85°C Extended (S, T, U Versions) -55°C to +125°C Storage Temperature -65°C to +150°C Lead Temperature (Soldering, 10secs) + 300°C Power Dissipation (Any Package) to +75°C 1,000mW Derates above +75°C by 10mW/°C

*Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

¹Timing Specifications are sample tested at +25°C to ensure compliance. All input control signals are specified with

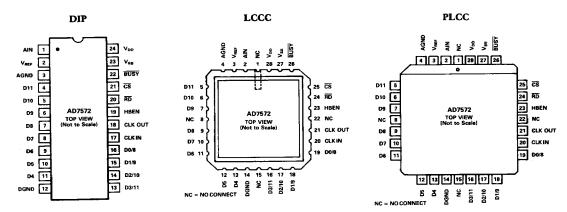
tr = tf = 5ns(10% to 90% of + 5V) and timed from a voltage level of 1.6V.

 $^{^2}t_3$ and t_6 are measured with the load circuits of Figure 1 and defined as the time required for an

output to cross 0.8V or 2.4V. 3t_7 is defined as the time required for the data lines to change 0.5V when loaded with the circuits of Figure 2.

ORDERING GUIDE¹

Model ²	Conversion Time	Temperature Range	Full-Scale TC	Accuracy Grade	Package Option ³
AD7572JN05	5μs	0 to +70°C	45ppm/°C	±1LSB	N-24
AD7572KN05	5μs	0 to +70°C	25ppm/°C	±1LSB	N-24
AD7572LN05	5μs	0 to +70°C	25ppm/°C	±1/2LSB	N-24
AD7572JP05	5μs	0 to +70°C	45ppm/°C	±1LSB	P-28A
AD7572KP05	5μs	0 to +70°C	25ppm/°C	±1LSB	P-28A
AD7572LP05	5μs	0 to +70°C	25ppm/°C	±1/2LSB	P-28A
AD7572AQ05	5μs	−25°C to +85°C	45ppm/°C	±1LSB	Q-24
AD7572BQ05	5μs	−25°C to +85°C	25ppm/°C	±1LSB	Q-24
AD7572CQ05	5μs	−25°C to +85°C	25ppm/°C	±1/2LSB	Q-24
AD7572SQ05	5μs	−55°C to +125°C	45ppm/°C	±1LSB	Q-24
AD7572TQ05	5μs	-55°C to +125°C	25ppm/°C	±1LSB	Q-24
AD7572UQ05	5μs	-55°C to +125°C	25ppm/°C	±1/2LSB	Q-24
AD7572SE05	5μs	−55°C to +125°C	45ppm/°C	±1LSB	E-28A
AD7572TE05	5μs	−55°C to +125°C	25ppm/°C	±1LSB	E-28A
AD7572UE05	5μs	−55°C to +125°C	25ppm/°C	±1/2LSB	E-28A
AD7572JN12	12.5μs	0 to +70°C	45ppm/°C	±1LSB	N-24
AD7572KN12	12.5µs	0 to +70°C	25ppm/°C	±1LSB	N-24
AD7572LN12	12.5µs	0 to +70°C	25ppm/°C	±1/2LSB	N-24
AD7572JP12	12.5µs	0 to +70°C	45ppm/°C	±1LSB	P-28A
AD7572KP12	12.5µs	0 to +70°C	25ppm/°C	±1LSB	P-28A
AD7572LP12	12.5µs	0 to +70°C	25ppm/°C	±1/2LSB	P-28A
AD7572AQ12	12.5μs	−25°C to +85°C	45ppm/°C	±1LSB	Q-24
AD7572BQ12	12.5µs	−25°C to +85°C	25ppm/°C	±1LSB	Q-24
AD7572CQ12	12.5µs	-25°C to +85°C	25ppm/°C	±1/2LSB	Q-24
AD7572SQ12	12.5µs	-55°C to +125°C	45ppm/°C	±1LSB	Q-24
AD7572TQ12	12.5μs	-55°C to +125°C	25ppm/°C	±1LSB	Q-24
AD7572UQ12	12.5µs	−55°C to +125°C	25ppm/°C	±1/2LSB	Q-24
AD7572SE12	12.5µs	−55°C to +125°C	45ppm/°C	±1LSB	E-28A
AD7572TE12	12.5µs	−55°C to +125°C	25ppm/°C	±1LSB	E-28A
AD7572UE12	12.5µs	−55°C to +125°C	25ppm/°C	±1/2LSB	E-28A


NOTES

¹Analog Devices Reserves the right to ship ceramic (D-24A) in lieu cerdip (Q-24) hermetic package.

²To order MIL-STD-883, Class B processed parts, add /883B to part number. Contact your local sales office for military data sheet. For U.S. Standard Military Drawing (SMD) see DESC Drawing #5962-87591.

³D = Ceramic DIP; E = Leadless Ceramic Chip Carrier (LCCC); N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip. For outline information see Package Information ssection.

PIN CONFIGURATIONS

2-302 ANALOG-TO-DIGITAL CONVERTERS

REV. A