

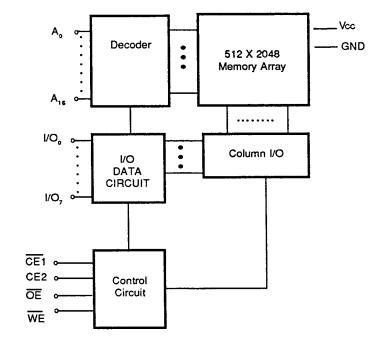
128K X 8 LOW POWER CMOS STATIC RAM

PRELIMINARY OCTOBER 1990

FEATURES

- · Low active power- 75mW (Typical)
- High speed access time-70, 85, 100ns (Max.)
- Low standby power-10μW (Typical) CMOS standby (L-version)
- Output enable and two chip enable inputs for ease in applications
- · Fully static operation-no clock or refresh required
- TTL compatible inputs and outputs
- · 2V data retention for battery backup (L-version)
- Single 5V (±10%) power supply

DESCRIPTION


The ISSI IS62C1024 is a high speed, low power, 131,072- word by 8- bit CMOS static RAM. It is fabricated using ISSI's high performance CMOS double metal technology. This highly reliable process coupled with innovative circuit design techniques, yields higher performance and low power consumption devices.

When $\overline{\text{CE1}}$ is high or CE2 is low (de-select), the device assumes a standby mode at which the power dissipation can be reduced down to 10 μ W (typical) at CMOS input levels.

Easy memory expansion is provided by using two Chip Enable Inputs, CE1 and CE2. The active low Write Enable controls both writing and reading of the memory.

The IS62C1024 is supplied in a 32 pin DIP package.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

NC	1	32	VCC		
A16	2	31	A15		
A14	3	30	CE2		
A12	4	29	WE		
A7	5	28	A13		
A6	6	27	A8		
A5	7 ISSI	26	A9		
A4	8 62C1024	25	A11		
A3	9	24	ŌĒ		
A2	10	23	A10		
A1	11	22	CE1		
A0	12	21	1/07		
1/00	13	20	1/06		
1/01	14	19	1/05		
1/02	15	18	1/04		
GND	16	17	1/03		
DIP					

Integrated Silicon Solution, Inc.

680 Almanor Avenue, Sunnyvale, Californiá 94086 (408) 733-4774 FAX (408) 245-4774

IS 62C1024

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	>
TBIAS	Temperature Under Bias	-55 to +125	ô
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W
lout	DC output Current (low)	20	mA

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to 70°C	5V ±10%
Industrial	-40°C to 85°C	5V ±10%

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics over Operating Range

		Test Conditions		Standard		L-version	
Symbol	Description			MAX.	MIN.	мах.	Units
Vон	Output High Voltage	Vcc = Min., loh = -1.0mA	2.4		2.4		٧
Vol	Output Low Voltage	Vcc = Min., loL = 2.1 mA		0.4		0.4	V
ViH	Input High Voltage		2.2	6.0	2.2	6.0	V
VIL	Input Low Voltage (3)		-0.3	0.8	-0.3	0.8	V
lLI	Input Leakage	GND ≤ Vin ≤ Vcc	-2	2	-2	2	μΑ
lLO	Output Leakage	GND ≤ Vout ≤ Vcc, Output Disabled	-2	2	-2	2	μА
los	Output Short Circuit Current (1)	Vcc = Max., Vout = GND		-100		-100	mA
Icc,	Vcc Operating Supply Current	Vcc = <u>Max.</u> , IOUT = 0mA, f = 0, <u>CE1</u> = ViL, CE2 = Viн		35		35	mA
lcc ₂	Vcc Dynamic Operating Supply Current	Vcc = Max., IOUT = 0 mA, f = fmax., CE1 = Vil., CE2 = Vih		70		70	mA
IsB,	TTL Standby Current (TTL Inputs)	Vcc = Max., Vin = Vih or Vil, CE1≥ Vih CE2 ≥ Vih, or CE2 ≤ Vil, f = 0		3		3	mA
ISB ₂	CMOS Standby Current (CMOS Inputs)	Vcc = Max., $\overline{CE1} \ge Vcc -0.2V$ CE2 $\le 0.2V$ Vin $\ge Vcc -0.2V$, OR Vin $\le 0.2V$, $f = 0$		2		0.1	mA

Capacitance (2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	Ta = 25°C, F =1MHz	8	pF
Соит	Output Capacitance	Vcc = 5.0V	10	pF

Notes:

- 1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- Tested initially and after any design or process changes that may affect these parameters.
- 3. $V_{1L} = -3.0V$ for pulse width less than 30ns.

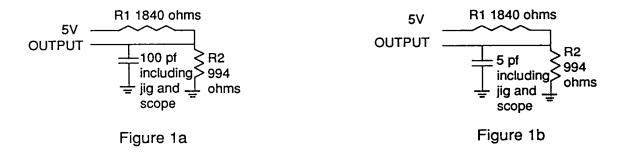
TRUTH TABLE

MODE	WE	CE,	CE ₂	ŌĒ	I/O OPERATION	V _{cc} CURRENT
Not Selected	Х	Н	Х	Х	High Z	isb ₁ , isb ₂
(Power Down)	X	X	L	Х	High Z	ISB ₁ , ISB ₂
Output Disabled	Н	L	Н	Н	High Z	Icc, Icc ₂
Read	Н	L	Н	L	Dout	lcc ₁ ,lcc ₂
Write	L	L	Н	Х	DIN	Icc, Icc ₂

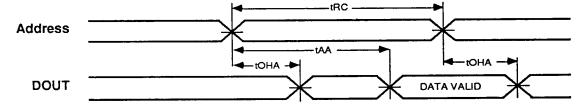
Switching Characteristics Over Operating Range (1)

Parameters	Description		IS62C1024-70 IS62C1024-L70		IS62C1024-85 IS62C1024-L85		IS62C1024-100 IS62C1024-L100	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
READ CYCLE								
tRC	Read Cycle Time	70		85		100		ns
tAA	Address Access Time		70		85		100	ns
tOHA	Output Hold Time	10		10		10		ns
tACE1	CE1 Access Time		70		85	ļ	100	ns
tACE2	CE2 Access Time		70		85		100	ns
tDOE	OE Access Time		35		45	ļ	50	ns_
tLZOE	OE to Low Z Output	5		5		5		ns
tHZOE(2)	OE to High Z Output	0	25	0	30	0	35	ns
tLZCE1	CE1 to Low Z Output	10		10		10		ns
tLZCE2	CE2 to Low Z Output	10	<u> </u>	10	<u> </u>	10	<u> </u>	ns
tHZCE	CE1/CE2 to High Z Output	0	25	0	30	0	35	ns
tPU	CE1 or CE2 to Power Up	0		0		0		ns
tPD	CE1 or CE2 to Power Down		50	<u> </u>	50	<u> </u>	50	ns
WRITE CYCLE (3)				<u> </u>			
tWC	Write Cycle Time	70		85	<u> </u>	100		ns
tSCE1	CE1 to Write End	60		75		90		ns
tSCE2	CE2 to Write End	60	<u> </u>	75		90		ns
tAW	Address Set-up Time to Write End	60		75	<u> </u>	90	<u> </u>	ns
tHA	Address Hold to Write End	0		0	1	0		ns
tSA	Address Set-up Time	0		0		0		ns
tPWE (4)	WE Pulse Width	55		65		75		ns
tSD	Data Set-up to Write End	30		35		40		ns
tHD	Data hold from Write End	0		0	<u> </u>	0	<u> </u>	ns
tHZWE (2)	WE Low to High-Z Outputs	0	25	0	30	0	35	ns
tLZWE	WE High to Low-Z Output	5		5		5	l	ns

Notes:

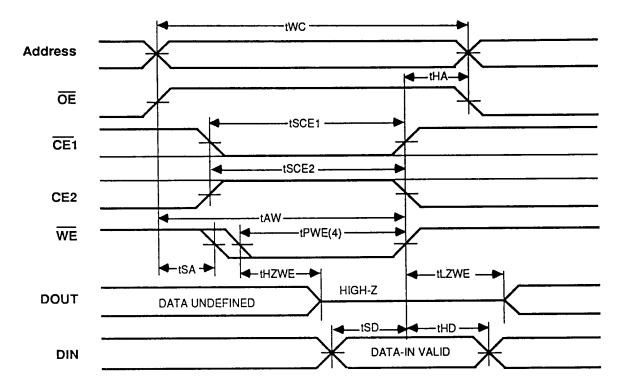

- 1. Test conditions assume signal transition times of 5ns or less, timing reference levels of 1.5V, Input pulse levels of 0.8V to 2.4V and output loading specified in Figure 1a.
- 2. Tested with the load in Figure 1b. Transition is measured \pm 500mV from steady state voltage.
- 3. The internal write time is defined by the overlap of CE1 low, CE2 high and WE low. All signals must be in valid states to initiate a Write, but anyone can go inactive to terminate the Write. The Data input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 4. Tested with OE high.
- 5. WE is high for a Read Cycle.
- 6. The device is continuously selected. \overline{OE} , $\overline{CE1}$ = VIL, $\overline{CE2}$ = VIH.
- 7. Address is valid prior to or coincident with CE1 Low and CE2 High transitions.
- 8. I/O will assume the High-Z state if OE≥VIH.

IS 62C1024

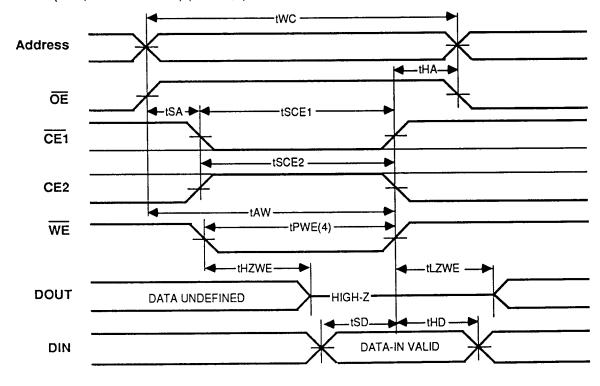

AC TEST CONDITIONS

Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level	0.8V to 2.4V 5ns 1.5V
Timing and Reference Level	

AC TEST LOADS AND WAVEFORMS

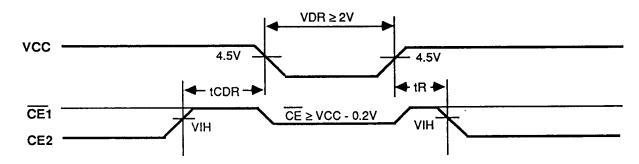


READ CYCLE NO. 1 (Note 5,6)



READ CYCLE NO. 2 (Note 5,7) **Address ◆tOHA** <u>OE</u> tDOE tHZOE 1LZOE CE₁ tACE1/tACE2 CE2 tLZCE1/ tHZCE tLZCE2 DATA VALID **DOUT** -HIGH-Z ICC -tPD -SUPPLY ISB **CURRENT**

WRITE CYCLE NO. 1 (WE controlled) (Note 3,8)


WRITE CYCLE NO. 2 (CE1, CE2 controlled) (Note 3,8)

DATA RETENTION CHARACTERISTICS

Parameter	Description	Test Condition	Min.	Max.	Units
VDR	VCC for retention of data	VCC = 2.0V	2.0		V
ICCDR	Data retention current	CE1≥VCC-0.2V,		50	μА
tCDR	Chip deselect to data retention time	CE2≤0.2V,	0		ns
tR	Operation recovery time	CMOS Inputs	5		ms
IL I	Input leakage current			2	μА

DATA RETENTION WAVEFORM

PIN DESCRIPTIONS

A₀ - A₁₆ Address inputs

These 17 address inputs select one of the 131,072 8-bit words in the RAM.

CE1 Chip Enable 1 Input CE2 Chip Enable 2 Input

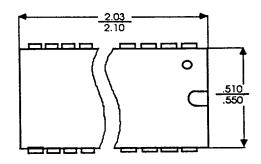
CE1 is active Low and CE2 is active High. The chip enable is active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The I/O pins will be in the high-impedance state when the device is deselected.

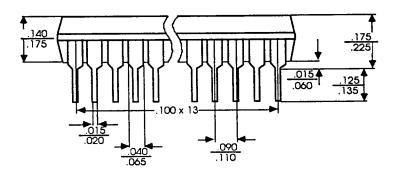
OE Output Enable Input

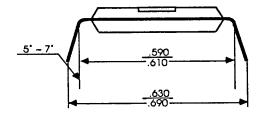
The ouput enable input is active Low. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the I/O pins. The I/O pins will be in the high-impedance state when \overline{OE} is inactive.

WE Write Enable Input

The write enable input is active Low and controls read and write operations. With the chip selected, when \overline{WE} is Low Input data present on the I/O pins will be written into the selected memory location.


1/0 0 - 1/0,


These 8 bidirectional ports are used to read data from or write data into the RAM.


Vcc - Power

GND - Ground

32 Pin 600 MIL PLASTIC DIP Package

SPEED (ns)	ORDER PART NUMBER	PACKAGE	TEMPERATURE RANGE
70	IS62C1024-70W	Plastic DIP - 600 mil	0°C to +70°C 0°C to +70°C
70 Low Power 85	IS62C1024-L70W IS62C1024-85W	Plastic DIP - 600 mil Plastic DIP - 600 mil	0°C to +70°C
		Plastic DIP - 600 mil	0°C to +70°C
100 100 Low Power	IS62C1024-100W IS62C1024-L100W	Plastic DIP - 600 mil Plastic DIP - 600 mil	0°C to +70°C 0°C to +70°C

Integrated Silicon Solution, Inc.
680 Almanor Avenue, Sunnyvale, California 94086 (408) 733-ISSI FAX (408) 245-ISSI