TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T6C13B

COLUMN AND ROW DRIVER FOR A DOT MATRIX LCD

The T6C13B is a 240-channel-output column and row driver for an STN dot matrix LCD.

The T6C13B features a 42-V LCD drive voltage and a 20-MHz maximum operating frequency. The T6C13B is able to drive LCD panels with a duty ratio of up to 1 / 480.

Features

 Display duty application : to 1 / 480 • LCD drive signal : 240

 Data transfer : 8-bit bidirectional

: $27 \text{ MHz} (V_{DD} = 4.5 \text{ to } 5.5 \text{ V})$ Operating frequency

: 14 to 40 V LCD drive voltage : 2.7 to 5.5 V Power supply voltage : −20 to 75°C Operating temperature

LCD drive output resistance: 800 Ω (max) (20 V, 1 / 13 bias)

 Display-off function : When / DSPOF is L, all LCD drive outputs (O1 to O240) remain at the V5 level.

: Cascade connection and auto enable transfer functions are available. Low power consumption

Unit: mm

T6C13B	LEAD	PITCH
100136	IN	OUT
(UAN, 5DS)	0.50	0.086

Please contact Toshiba or an authorized Toshiba dealer for information on package dimensions.

TCP (Tape Carrier Package)

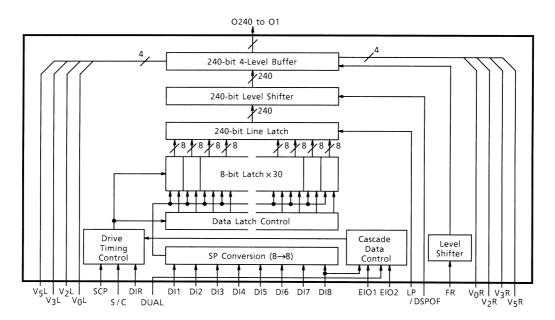
 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or

- to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

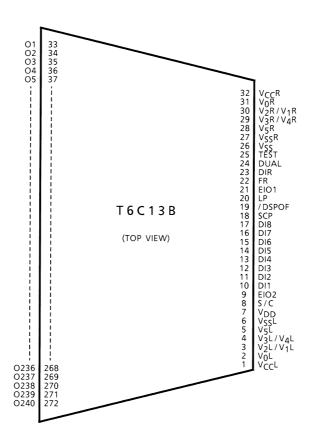
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with the film. Try to design and manufacture products so that there is no chance of users touching the film after assembly, or if they do , that there is no chance of them injuring themselves. When cutting out the film, try to ensure that the film shavings do not cause accidents. After use, treat the leftover film and reel spacers as industrial waste.

Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases this can cause the device to malfunction


This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing circuits, make sure that devices are protected against incident light from external sources. Exposure to light both during regular operation and during inspection must be taken into account.

The products described in this document are subject to the foreign exchange and foreign trade laws.


- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others
- The information contained herein is subject to change without notice.

Block Diagram

Pin Assignment

Note: The above diagram shows the pin configuration of the LSI chip, not that of the tape carrier package.

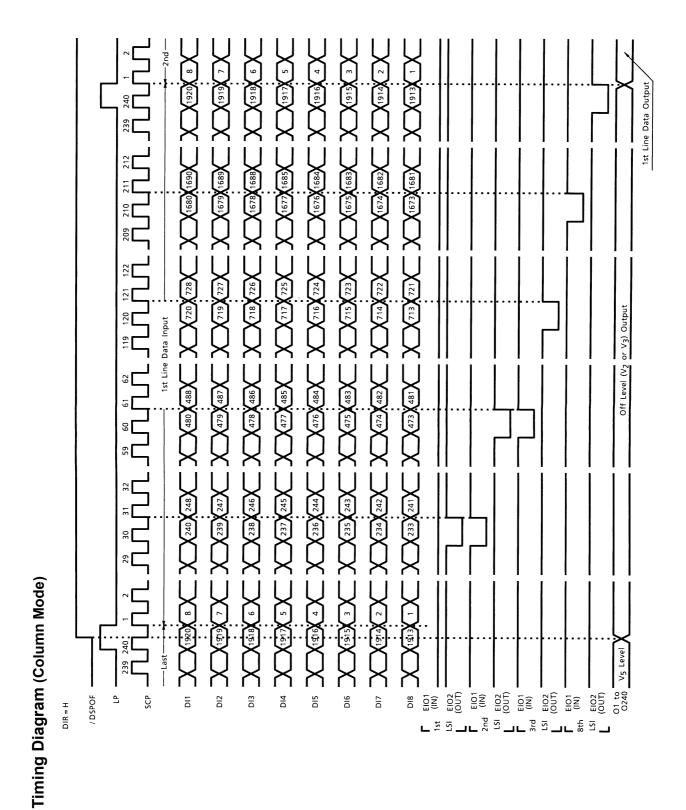
Pin Functions

Pin Name	1/0	Functions	Level
O1 to O240	Output	Output for LCD drive signal	V ₀ to V5
EIO1, EIO2	1/0	Input / output for enable signal DIR selects In or Out. Connect EIO (IN) of 1st LSI to L. For a cascade connection, connect EIO (OUT) to EIO (IN) of next LSI.	
		(Column mode) Input for data signal	
DI1 to DI8	Input	(Row mode) DI1 to DI7: Fix to H or L DI8: 121st enable terminal in dual mode.	
DIR	Input	(Direction) Input for data flow direction select	
/ DSPOF	Input	(Display off) / DSPOF = L : Display-off mode, (O1 to O240) remain at the V ₅ level. / DSPOF = H: Display-on mode, (O1 to O240) are operational.	
DUAL	lnaut	(Column mode) Fix to H or L	
DUAL	Input	(Row mode) Terminal for dual input mode or single input mode select	V _{DD} to V _{SS}
LP	_	(Column mode) Display data is latched on falling edges of LP. When EIO (IN) = L, setting SCP ·LP = H enables the 1st LSI.	
		(Row mode) Input for shift clock pulse	
FR	Input	(Frame) Input for frame signal	
SCP	Input	(Column mode) Input for shift clock pulse	
JOF	iliput	(Row mode) Fix to H or L	
TEST	Input	(Test) Fix to L or open	
S/C	Input	Input for mode select: H = Column mode, L = Row mode	
V_{DD}		Power supply for internal logic (+5.0 V)	
V_{SS}	_	Power supply for internal logic (0 V)	
$V_{SS}L\cdot R$	_	Power supply for LCD drive circuit	
V ₅ L·R	_	Power supply for LCD drive circuit	
V _{3 / 4} L·R	_	Power supply for LCD drive circuit	
V _{2 / 1} L·R	_	Power supply for LCD drive circuit	
V ₀ L·R	_	Power supply for LCD drive circuit	
$V_{CC}L\cdot R$	_	Power supply for LCD drive circuit	

Relation between FR, Data Input and Output Level

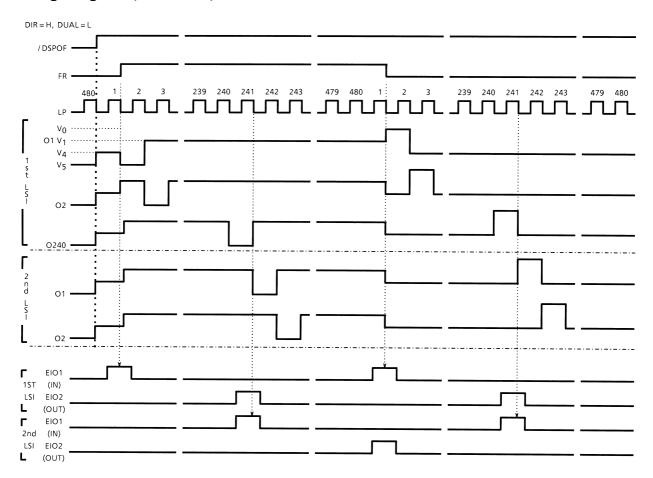
FR	Data Input (DI1 to DI8)	/ DSPOF	Output Level (Column Mode)	Output Level (Row Mode)
L	L	Н	V ₃	V ₄
L	Н	Н	V ₅	V ₀
Н	L	Н	V ₂	V ₁
Н	Н	Н	V ₀	V ₅
_	_	L	V ₅	V ₅

Data Input Format


Column mode

DIR BIT Mode	DIT Mada	Enable Pin				(+4)			Input Da	ta Line a	nd Outpu	t Buffers		
	EIO1	EIO2	(*1)	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8			
н	H IN	IN OUT	L	O240	O239	O238	O237	O236	O235	O234	O233			
		114 001	""		F	O8	07	O6	O5	04	О3	O2	01	
8-BIT -	OUT IN	INI	L	01	O2	О3	04	O5	06	07	O8			
		F	O233	O234	O235	O236	O237	O238	O239	O240				

^{*1:} L: Last Data F: First Data


Row mode

DUM	DID	5 . 5	Data	Data Input Terminals				
DUAL	DIR	Data Flow	EIO1	EIO2	DI8			
L	L	O240 → O1	OUT	IN	1			
L	Н	O1 → O240	IN	OUT	1			
Н	L	O120 → O1 O240 → O121	OUT	IN	IN			
Н	Н	O1 → O120 O121 → O240	IN	OUT	IN			

Timing Diagram (Row Mode)

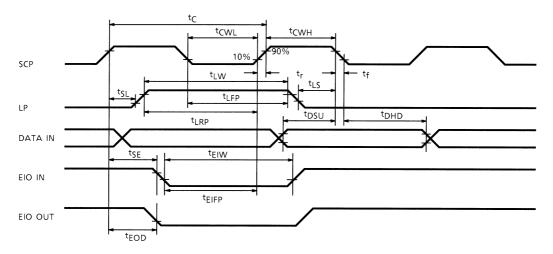
Absolute Maximum Ratings

(Ensure that the following conditions are maintained, $V_{CC} \ge V_0 \ge V_{2,1} \ge V_{3,4} \ge V_5 \ge V_{SS}$)

Item	Symbol	Pin Name	Rating	Unit
Supply Voltage 1	V_{DD}	V _{DD}	-0.3 to 6.5	V
Supply Voltage 2	V _{CC}	V _{CC} L / R	-0.3 to 42.0	V
Supply Voltage 3	V ₀ , V ₂	V ₀ L / R _, V _{2, 1} L / R	-0.3 to V _{CC} + 0.3	٧
Supply Voltage 4	V ₃ , V ₅	V _{3, 4} L / R _, V ₅ L / R	-0.3 to 42.0	V
Input Voltage	V _{IN}	(Note 2)	-0.3 to V _{DD} + 0.3	V
Operating Temperature	T _{opr}	_	−20 to 75	°C
Storage Temperature	T _{stg}	_	- 40 to 125	°C

Note 2: SCP, FR, LP, DIR, DUAL, EIO1, EIO2, DI1 to DI8, / DSPOF, TEST,S / C

Electrical Characteristics DC Characteristics


(Unless otherwise noted, V_{SS} = 0 V, V_{DD} = 2.7 to 5.5 V, Ta = -20 to 75°C)

Iter	Item Symbol Test Circuit Test Condition		Min	Тур.	Max	Unit	Pin Name		
Supply Voltage 1		V_{DD}	_	_	2.7	5.0	5.5		V_{DD}
Supply Volta	age 2	V _{CC}	_	_	14.0	_	40.0		V _{CC} L / R
lanut	H Level	V _{IH}	_	ı	0.8 V _{DD}	_	V _{DD}		SCP, FR, LP, DIR, DUAL
Input Voltage	L Level	V_{IL}	_	_	0	_	0.2 V _{DD}	٧	EIO1, EIO2, DI1 to DI8, / DSPOF, TEST, S / C
Output	H Level	V _{OH}	_	I _{OH} = −0.5 mA	V _{DD} - 0.5		VDD		EIO1, EIO2
Voltage	L Level	V _{OL}	_	I _{OL} = 0.5 mA	0	_	0.5		2101, 2102
	H Level	R _{OH}	_	$V_{OUT} = V_0 - 0.5 V$ (Note 3)	_	0.4	0.8		
Output	M Level	R _{OM}	_	$V_{OUT} = V_2 \pm 0.5 V$ (Note 3)	_	0.4	0.8	kΩ	O1 to O240
Resistance		R _{OM}	_	$V_{OUT} = V_3 \pm 0.5 V$ (Note 3)	_	0.4	0.8	K22	01100240
	L Level	R _{OL}	_	$V_{OUT} = V_5 + 0.5 V$ (Note 3)	_	0.4	0.8		
Current Consumption (Note 4)		I _{DD}	_	V_{DD} = 5.5 V, V_{CC} = 42 V f_{FR} = 40 Hz, f_{scp} = 8.0 MHz Input Data: every bit inverted V_{IH} = 5.5 V, V_{IL} = 0 V (Current consumption while the internal data receiver is operating)	_	_	81.5	mA	V _{DD}
		I _{DD} ST/BY	_	Current consumption while the internal data receiver is sleeping	_	_	240	μA	V _{DD}

Note 3: $V_{CC} = 20 \text{ V}, 1 / 13 \text{ bias}$

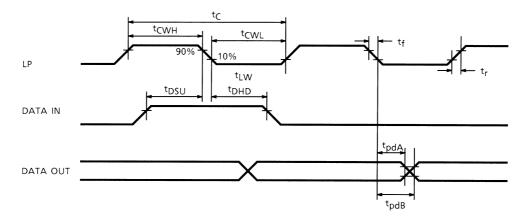
AC Electrical Characteristics (Column Mode)

Test Conditions (1) ($V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 4.5 \text{ V}, V_{CC} = 14 \text{ to } 42 \text{ V}, Ta = -20 \text{ to } 75^{\circ}\text{C}$)

Item	Symbol	Test Condition	Min	Max	Unit
Clock Cycle	t _C	_	76	_	
SCP Pulse Width	t _{CWH} , t _{CWL}	_	26	_	
Data Set-up Time	t _{DSU}	_	26	_	
Data Hold Time	t _{DHD}	_	26	_	
SCP Rise / Fall Time	t _r , t _f	_	_	(Note 4)	
LP Rise Time	t _{LRP}	_	26	_	
LP Fall Time	t _{LFP}	_	26	_	ns
LP Pulse Width	t _{LW}	_	26	_	115
SCP to LP Delay Time (SCP \rightarrow LP)	t _{SL}	_	26	_	
LP to SCP Delay Time (LP \rightarrow SCP)	t _{LS}	_	26	_	
EIO IN Rise Time	t _{EIFP}	_	26	_	
EIO IN Pulse Width	t _{EIW}	_	26	_	
SCP to EIO Delay Time (SCP \rightarrow EIO)	t _{SE}	_	0	_	
EIO OUT Delay Time	t _{EOD}	(Note 5)	_	50	

Note 4: t_r , $t_f \le (t_C - t_{CWH} - t_{CWL}) / 2$ and t_r , $t_f \le 50$ ns

Note 5: $C_L = 10 pF$


Test Conditions (2) (V_{SS} = 0 V, V_{DD} = 4.5 to 5.5 V, V_{CC} = 14 to 42 V, Ta = -20 to 75°C)

Item	Symbol	Test Condition	Min	Max	Unit
Clock Cycle	t _C	_	37	_	
SCP Pulse Width	t _{CWH} , t _{CWL}	_	15	_	
Data Set-up Time	t _{DSU}	_	15	_	
Data Hold Time	t _{DHD}	_	15	_	
SCP Rise / Fall Time	t _r , t _f	_	_	(Note 6)	
LP Rise Time	t _{LRP}	_	15	_	
LP Fall Time	t _{LFP}	_	15	_	ns
LP Pulse Width	t _{LW}	_	15	_	115
SCP to LP Delay Time	t _{SL}	_	15	_	
LP to SCP Delay Time	t _{LS}	_	15	_	
EIO IN Rise Time	t _{EIFP}	_	15	_	
EIO IN Pulse Width	t _{EIW}	_	15	_	
SCP to EIO Delay Time	t _{SE}	_	0	_	
EIO OUT Delay Time	t _{EOD}	(Note 7)	-	25	

Note 6: t_r , $t_f \le (t_C - t_{CWH} - t_{CWL}) / 2$ and t_r , $t_f \le 50$ ns Note 7: $C_L = 10 \ pF$

AC Electrical Characteristics (Row Mode)

Test Conditions (1) ($V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 4.5 \text{ V}, V_{CC} = 14 \text{ to } 42 \text{ V}, \text{ Ta} = -20 \text{ to } 75^{\circ}\text{C}$)

Item		Symbol	Test Condition	Min	Max	Unit
Clock Cycle		t _C	LP	250	_	
LP Pulse Width H		t _{CWH}	LP	40	_	
LP Pulse Width L		t _{CWL}	LP	170	_	
SCP Rise / Fall Time		t _r , t _f	LP, FR, EIO1, EIO2, DI8	_	(Note 8)	ns
Data Set-up Time		t _{DSU}	EIO1, EIO2, DI8	100	_	115
Data Hold Time		t _{DHD}	EIO1, EIO2, DI8	0	_	
EIO OUT Delay Time A	(Note 9)	t _{pdA}	EIO1, EIO2	40	_	
EIO OUT Delay Time B	(Note 9)	t _{pdB}	EIO1, EIO2	0	130	

Test Conditions (2) ($V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_{CC} = 14 \text{ to } 42 \text{ V}, Ta = -20 \text{ to } 75^{\circ}\text{C}$)

Item		Symbol	Test Condition	Min	Max	Unit
Clock Cycle		t_{C}	LP	150	_	
LP Pulse Width H		tcwH	LP	20	_	
LP Pulse Width L		t _{CWL}	LP	100	_	
SCP Rise / Fall Time		t _r , t _f	LP, FR, EIO1, EIO2, DI8	_	(Note 10)	ns
Data Set-up Time		t _{DSU}	EIO1, EIO2, DI8	50	_	115
Data Hold Time		t _{DHD}	EIO1, EIO2, DI8	0	_	
EIO OUT Delay Time A	(Note 11)	t _{pdA}	EIO1, EIO2	20	_	
EIO OUT Delay Time B	(Note 11)	t _{pdB}	EIO1, EIO2	0	100	

Note 8, 10: t_{Γ} , $t_{f} \le (t_{C} - t_{CWH} - t_{CWL}) / 2$ and t_{Γ} , $t_{f} \le 50$ ns

Note 9, 11: $C_L = 10 pF$

Note: Insert the bypass capacitor (0.1 μF) between V_{DD} and V_{SS} and between V_{CC} and V_{SS} to decrease power supply noise

Place the bypass capacitor as close to the LSI as possible.