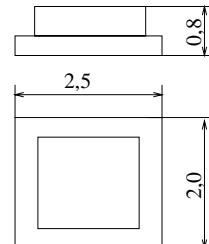
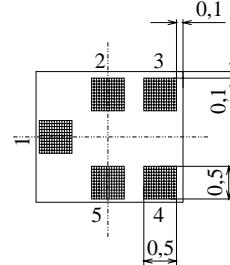


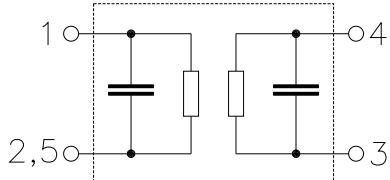
SAW Components

Data Sheet B7706



Data Sheet

SAW Components
B7706
Low-Loss Filter for Mobile Communication
942,5 MHz
Data Sheet

Features


- Low-loss RF filter for mobile telephone EGSM system, receive path
- Usable passband 35 MHz
- Unbalanced to balanced operation
- Excellent symmetry between balanced ports
- Impedance transformation from 50Ω to 200Ω
- Ceramic Package for **Surface Mounted Technology (SMT)**

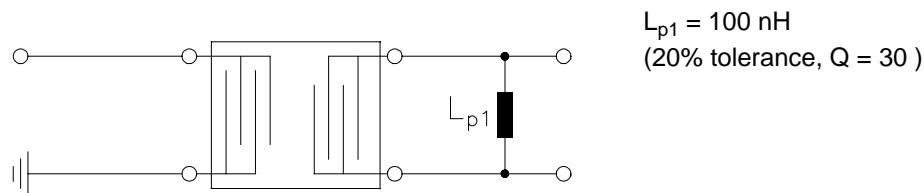
Chip sized SAW package QCS5A

Dimensions in mm, approx. weight 0,015 g

Terminals

- Ni, gold-plated

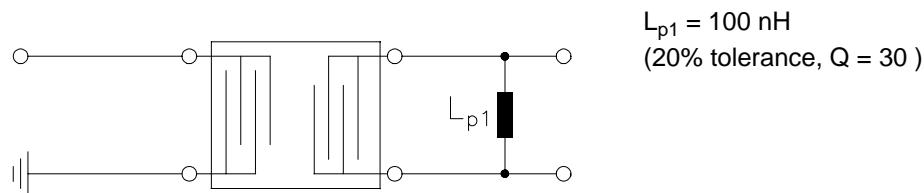
Type	Ordering code	Marking and Package according to	Packing according to
B7706	B39941-B7706-B610	C61157-A7-A71	F61074-V8104-Z000


Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	$-10 / +80$	$^{\circ}\text{C}$	
Storage temperature range	T_{stg}	$-40 / +85$	$^{\circ}\text{C}$	
DC voltage	V_{DC}	3	V	
Input power max.				
880...915 MHz		16		impedance $50/200 \Omega$;
1710...1785 MHz	P_{IN}	10	dBm	effective input power in ON-state,
1850...1910 MHz		15		GSM duty cycle 2 : 8
1920...1980 MHz		7	dBm	continuous wave
elsewhere		0		continuous wave

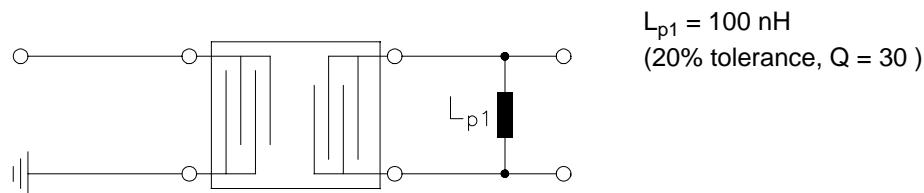
Characteristics

Operating temperature: $T = 25 \pm 2^\circ\text{C}$
 Terminating source impedance: $Z_S = 50 \Omega$
 Terminating load impedance: $Z_L = 200 \Omega$ including matching network


			min.	typ.	max.	
Center frequency	f_C		—	942,5	—	MHz
Maximum insertion attenuation	α_{\max}		—	2,6	3,2	dB
925,0 ... 960,0 MHz						
Amplitude ripple (p-p)	$\Delta\alpha$		—	1,3	1,9	dB
925,0 ... 960,0 MHz						
Output phase balance ($\phi(S_{31}) - \phi(S_{21})$)			-4	0	4	degree
925,0 ... 960,0 MHz						
Output amplitude balance (S_{31}/S_{21})			-0,3	0	0,3	dB
925,0 ... 960,0 MHz						
Input VSWR			—	1,8	2,3	
925,0 ... 960,0 MHz						
Output VSWR			—	1,8	2,3	
925,0 ... 960,0 MHz						
Attenuation	α					
0,0 ... 880,0 MHz			50	60	—	dB
880,0 ... 905,0 MHz			30	40	—	dB
905,0 ... 915,0 MHz			20	27	—	dB
980,0 ... 1050,0 MHz			22	24	—	dB
1050,0 ... 6000,0 MHz			50	65	—	dB

Test matching network

Characteristics


Operating temperature range: $T = -10$ to $+80$ °C
 Terminating source impedance: $Z_S = 50 \Omega$
 Terminating load impedance: $Z_L = 200 \Omega$ including matching network

			min.	typ.	max.	
Center frequency	f_C		—	942,5	—	MHz
Maximum insertion attenuation	α_{\max}		—	2,7	3,5	dB
925,0 ... 960,0 MHz						
Amplitude ripple (p-p)	$\Delta\alpha$		—	1,4	2,2	dB
925,0 ... 960,0 MHz						
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-4	0	4	degree
925,0 ... 960,0 MHz						
Output amplitude balance (S_{31}/S_{21})			-0,3	0	0,3	dB
925,0 ... 960,0 MHz						
Input VSWR			—	1,8	2,3	
925,0 ... 960,0 MHz						
Output VSWR			—	1,8	2,3	
925,0 ... 960,0 MHz						
Attenuation	α					
0,0 ... 880,0 MHz		50	60	—	—	dB
880,0 ... 905,0 MHz		30	40	—	—	dB
905,0 ... 915,0 MHz		20	27	—	—	dB
980,0 ... 1050,0 MHz		22	23	—	—	dB
1050,0 ... 6000,0 MHz		50	65	—	—	dB

Test matching network

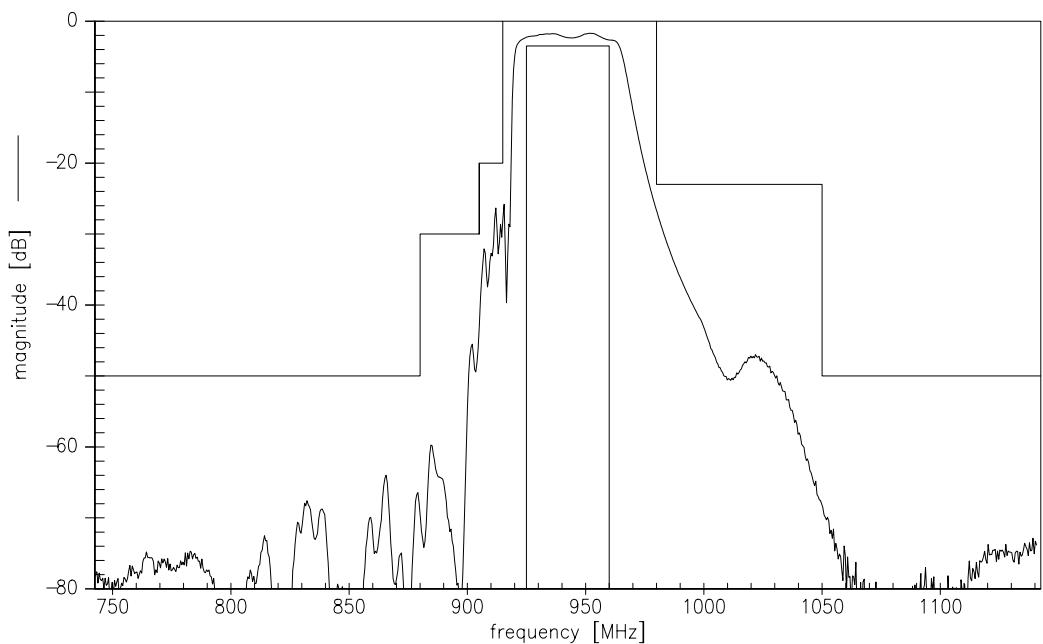
Characteristics

Operating temperature range:	$T = -30$ to $+85$ °C				
Terminating source impedance:	$Z_S = 50$ Ω				
Terminating load impedance:	$Z_L = 200$ Ω including matching network				
Center frequency	f_C	—	942,5	—	MHz
Maximum insertion attenuation	α_{max}	—	2,8	3,6	dB
925,0 ... 960,0 MHz					
Amplitude ripple (p-p)	$\Delta\alpha$	—	1,5	2,3	dB
925,0 ... 960,0 MHz					
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)		-10	0	10	degree
925,0 ... 960,0 MHz					
Output amplitude balance ($ S_{31}/S_{21} $)		-1	0	1	dB
925,0 ... 960,0 MHz					
Input VSWR		—	2,0	—	
925,0 ... 960,0 MHz					
Output VSWR		—	2,0	—	
925,0 ... 960,0 MHz					
Attenuation	α	50	60	—	dB
0,0 ... 880,0 MHz					
880,0 ... 905,0 MHz		30	40	—	dB
905,0 ... 915,0 MHz		16	20	—	dB
980,0 ... 1050,0 MHz		20	22	—	dB
1050,0 ... 6000,0 MHz		50	65	—	dB

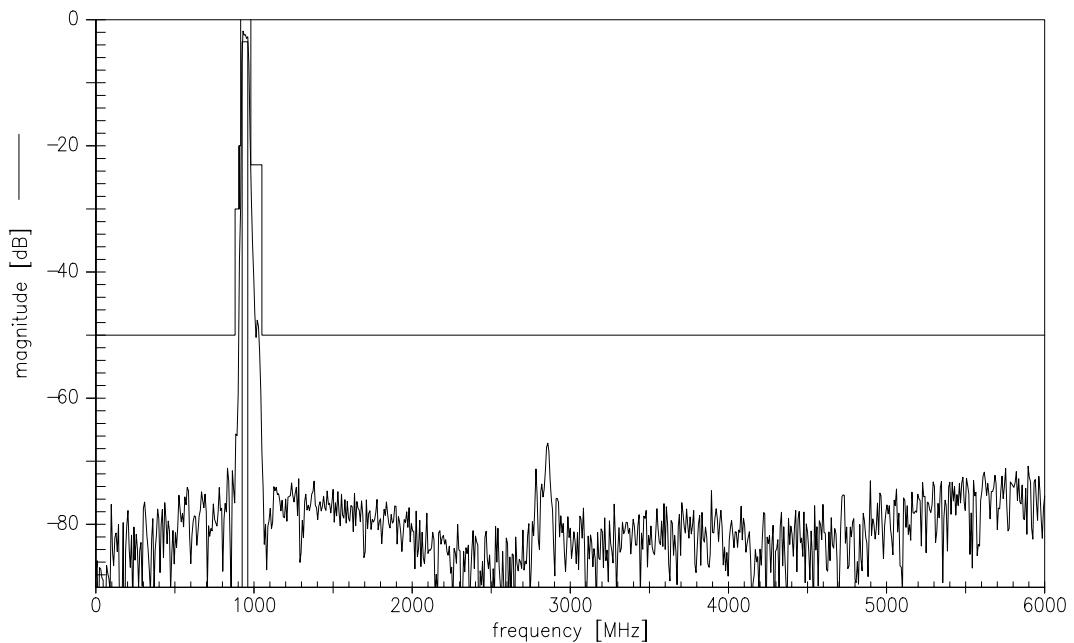
Test matching network

SAW Components

B7706


Low-Loss Filter for Mobile Communication

942,5 MHz

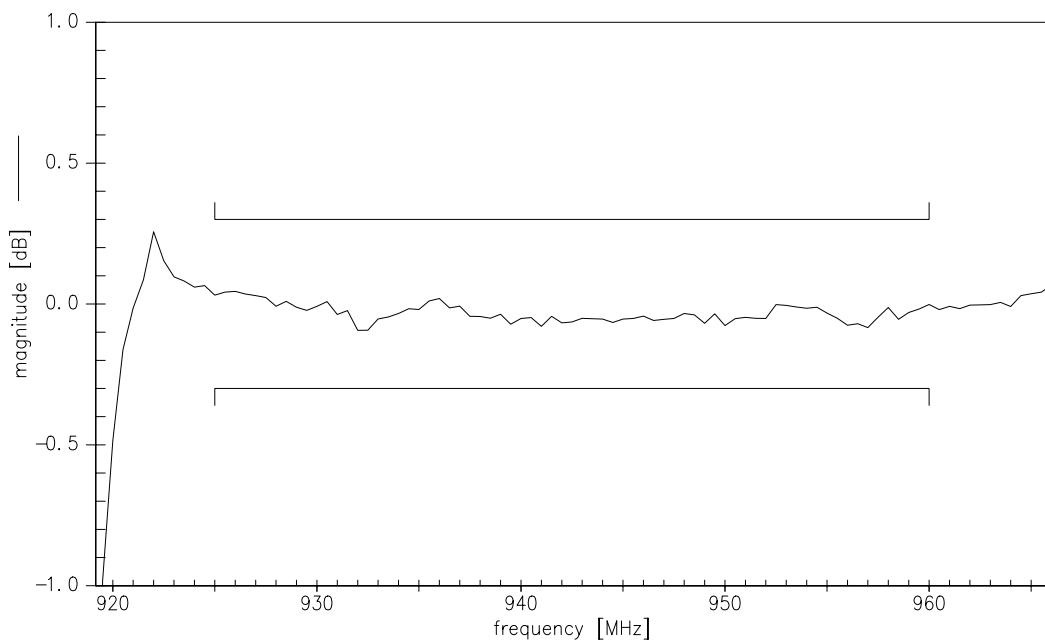

Data Sheet

Transfer function

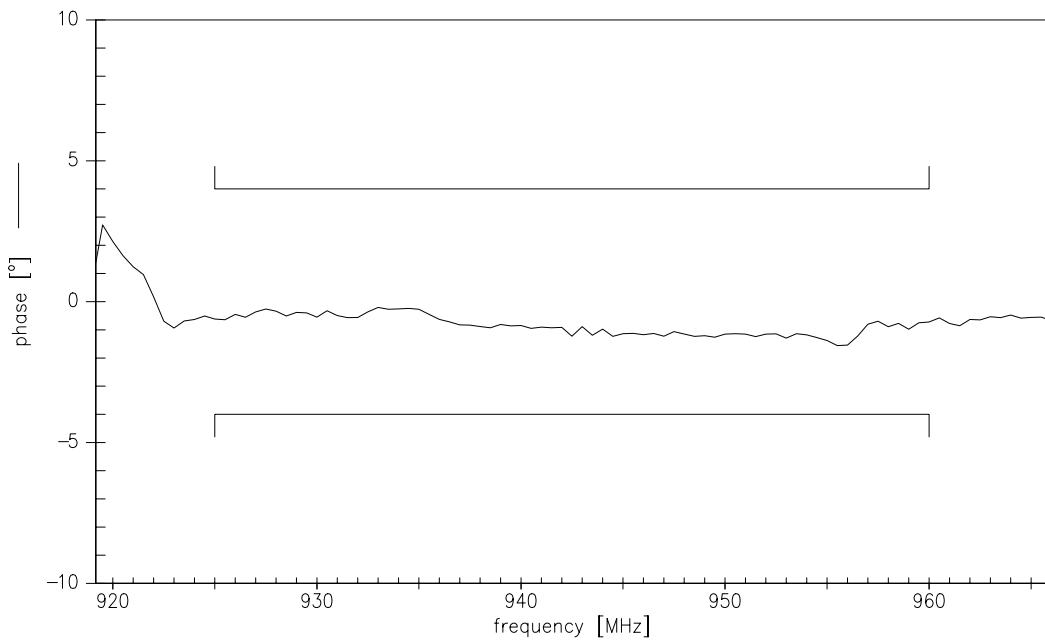
Transfer function (wideband)

SAW Components

B7706


Low-Loss Filter for Mobile Communication

942,5 MHz


Data Sheet

Output amplitude balance ($|S_{31}/S_{21}|$)

Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)

SAW Components

B7706

Low-Loss Filter for Mobile Communication

942,5 MHz

Data Sheet

Published by EPCOS AG
Surface Acoustic Wave Components Division, SAW MC WT
P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2000. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.