Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

Diodes for Mobile Communications

Application Note

ADE-508-016

Rev.0 Aug. 2001 Hitachi

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's
 patent, copyright, trademark, or other intellectual property rights for information contained in
 this document. Hitachi bears no responsibility for problems that may arise with third party's
 rights, including intellectual property rights, in connection with use of the information
 contained in this document.
- Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Preface

Thank you for purchasing Hitachi semiconductor products.

In recent years, the development of the information technology (IT) industry has become prominent. Specifically, mobile communication is spreading widely due to improvements such as compact, light-weight devices with multi-functions. These improvements were widely adopted in information-data communications other than telecommunication because of their full reservation of communication capacity, improvement of communication quality, and high-privacy function.

With an ample product lineup, Hitachi diodes for mobile communications are widely used in various electronic devices.

The application notes for Hitachi mobile communications describes the electrical characteristics, maximum ratings, packages, reliability, and applications, etc., that are necessary for the user to select the appropriate type for their needs.

There is a demand for smaller, lighter, and lower priced digital mobile phones with longer battery life. Lower loss is also demanded for antenna switching circuits which are the largest cause of high-frequency electrical loss as well as lower prices.

Note that the technical information this document describes are the general characteristics of the product. For detailed data, please contact the Hitachi sales office.

Product specifications may be modified for improvement, so please check the latest information on our website of Semiconductor & Integrated Circuits Group.

Typical applications include use for:

- Digital mobile phones, digital cordless phones,
- Various radio equipment (hand transceivers, mobile transceivers),
- Antenna switches for GSM and PCS, shifting frequency for CDMA, and other communication devices.

Contents

	on 1 Discrete Products for Mobile Phones	1
Secti	on 2 Variable Capacitance Diodes for VCO	2
Secti	on 3 Hitachi Diodes for Mobile Communications	3
3.1	Characteristics of Variable Capacitance Diode Standard	3
3.2	Characteristics of Variable Capacitance Diodes	5
3.3	Digital Cellular Phone	6
3.4	PDC System Configuration Example.	7
3.5	GSM System Configuration Example	8
3.6	PIN Diodes for Switching Antenna	9
3.7	Characteristics of PIN Diode Standard	10
3.8	Characteristics of PIN Diodes	11
3.9	Schottky Barrier Diode	12
3.10	Characteristics of Schottky Barrier Diode Standard	13
3.11	Characteristics of Schottky Barrier Diodes	14
3.12	Power Control Circuit for Mobile Phones	15
3.13	Characteristics of Zener Diodes for Surge Absorption	16
3.14	Main Characteristics of Zener Diodes for Surge Absorption	17
3.15	Example of Using Zener Diode for Surge Absorption	18
3.16	Pin Arrangement	18
Secti	on 4 Standard Dimensions of Diode Packages	19
Secti	on 5 Structure of Diodes	22
Secti	on 6 Quality Control and Reliability	23
occu		
	Hitachi Diode Manufacturing Process and Quality Control	
6.1 6.2	Hitachi Diode Manufacturing Process and Quality Control Periodic Reliability Tests	23
6.1	Hitachi Diode Manufacturing Process and Quality Control. Periodic Reliability Tests Periodic Reliability Data	23
6.1 6.2 6.3	Periodic Reliability Tests Periodic Reliability Data	23 25 25
6.1 6.2 6.3 Secti	Periodic Reliability Tests	23 25 25 26
6.1 6.2 6.3 Secti 7.1	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage	23 25 25 26 26
6.1 6.2 6.3 Secti 7.1 7.2	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation	23 25 25 26 26 26
6.1 6.2 6.3 Secti 7.1 7.2 7.3	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation Precautions for Soldering	23 25 25 26 26 26 27
6.1 6.2 6.3 Secti 7.1 7.2 7.3 7.4	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation Precautions for Soldering Cleaning	23 25 25 26 26 26 27 28
6.1 6.2 6.3 Secti 7.1 7.2 7.3 7.4 7.5	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation Precautions for Soldering Cleaning Genaral Precautions for Circuit Mounting	23 25 25 26 26 26 27 28 29
6.1 6.2 6.3 Secti 7.1 7.2 7.3 7.4 7.5 7.6	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation Precautions for Soldering Cleaning General Precautions for Circuit Mounting General Precautions (General Precautions for Circuit Designing)	23 25 25 26 26 26 27 28 29 30
6.1 6.2 6.3 Secti 7.1 7.2 7.3 7.4 7.5	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation Precautions for Soldering Cleaning Genaral Precautions for Circuit Mounting	23 25 25 26 26 26 27 28 29
6.1 6.2 6.3 Secti 7.1 7.2 7.3 7.4 7.5 7.6	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation Precautions for Soldering Cleaning General Precautions for Circuit Mounting General Precautions (General Precautions for Circuit Designing) Characteristic Parameters and their Relation to Reliability	23 25 25 26 26 26 27 28 29 30 31
6.1 6.2 6.3 Secti 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Periodic Reliability Tests Periodic Reliability Data on 7 Precautions for Application Precautions for Storage Precautions for Transportation Precautions for Soldering Cleaning General Precautions for Circuit Mounting General Precautions (General Precautions for Circuit Designing) Characteristic Parameters and their Relation to Reliability	23 25 25 26 26 27 28 29 30 31

Described Products

Variable capacitance dioc	les		3
HVU17	HVC366	HVD350B	
HVU350B	HVC368B	HVD355B	
HVU355B	HVC369B	HVD358B	
HVU359	HVC372B	HVD359	
HVU383B	HVC374B	HVD365	
HVC350B	HVC375B	HVD368B	
HVC355B	HVC376B	HVD369B	
HVC358B	HVC379B	HVD372B	
HVC359	HVC381B	HVD381B	
HVC362	HVC383B		
HVC365	HVC386B		
PIN Diodes			10
HVU131	HVC134	HVD135	10
HVU132	HVC134 HVC135	HVD136	
HVU133	HVC136	HVD130 HVD141	
HVC131	HVD131	HVD141 HVD142	
HVC131 HVC132	HVD131 HVD132	HVD142	
HVC132 HVC133	HVD132 HVD133		
HVC133	HVD133		
Schottky barrier diodes			13
HSU88	HSM88ASR	HSB88WA	10
HSU227	HSM88WA	HSB226S	
HSU276A	HSM88WK	HSB226WK	
HSC88	HSM198S	HSB226YP	
HSC226	HSM276AS	HSB276AS	
HSC276A	HSM276ASR	HSB276AYP	
HSC278	HSB88AS	HSB0104YP	
HSD278	HSB88YP	HRC0103A	
HSM88AS	HSB88WK	HRC0203B	
7 1' 1 C 1	,·		1.0
9	sorption		16
HZU-G Series			
HZM5.6ZFA			
HZM6.2ZFA			
HZM6.2ZWA			
HZM6.8ZMFA			
HZM6.8MFA			
HZM6.8MWA			
HZM6.8ZMWA			

Section 1 Discrete Products for Mobile Phones



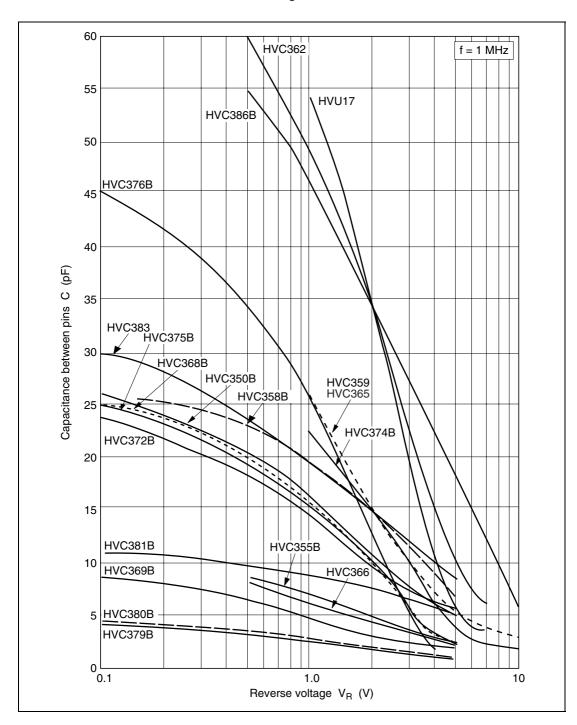
Main applications

- Antenna switching circuit
- VCO
- Frequency signal detection circuit
- Reverse current prevention circuit
- Serge absorption circuit

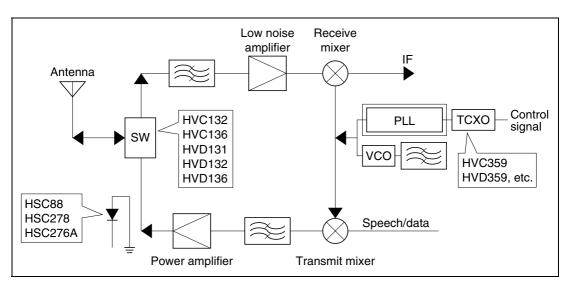
- \rightarrow PIN diodes
- → Variable capacitance diodes
- → Schottky barrier diodes
- → Schottky barrier diodes
- → Zener diodes

Section 2 Variable Capacitance Diodes for VCO

Section 3 Hitachi Diodes for Mobile Communications

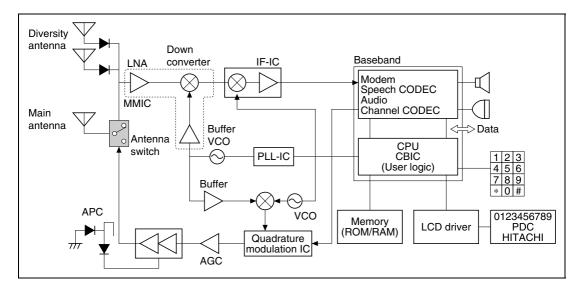

3.1 Characteristics of Variable Capacitance Diode Standard

	Two No	2		HVU17		HVU350B		HVU355B		HVU359		HVU383B		HVC350B		HVC355B		HVC358B		HVC359		HVC362		HVC365		HVC366		HVC368B		HVC369B		HVC372B		HVC374B	HVC375B		
	Package	ac a		URP		URP		URP		URP		URP		UFP		UFP		UFP		UFP		UFP		UFP		UFP		UFP		UFP		UFP		UFP	UFP		
		io	(MHz)	-		1		-		-		-		-		-		-		1		-		-		-		-		-		-		-	-		
	u	Test Condition	$C(V_R)/C(V_R)$ ((MHz)	1/4.5		1/4		1/4		1/4		1/4	1/7	1/4		1/4		1/4		1/4		1/4		1/4		1/2		1/3		1/4		1/4		1/2	1/4		
			max.	1		1		I		I		I		1		1		ı		1		1		I						1		1		1.75	1		
			min.	5.60		2.80		2.20		3.00		2.00	3.50	2.00		2.20		2.20		3.00		3.00		3.00		1.39		2.20		2.30		2.00		1.68	4.00		
		ndition	(MHz)	-		-		-		-		-		-		-		-		-		-		-		-		-		-		-		-	-		
	<u>-</u>	Test Condition	$V_R(V)$ (MHz)	-	8 4.5	-	4	-	4	-	4	-	4 /	-	4	-	4	-	4	-	4	-	4	-	4	-	7	- 0	m	-	4	-	4	- 0	-	က	4
(Ta = 25°C)	C(pF)		max.	50.00 85.00	16.10 27.30 5.23 8.84			6.40 7.20	2.55 2.95	24.80 29.80	6.00 8.30	19.00 21.00	8.50 10.00		5.00 6.00	10 7.20	2.55 2.95	19.50 21.00	8.00 9.30	24.80 29.80	6.00 8.30	41.60 49.90	10.10 14.80	27.05 28.55			4.35 4.95	15.00 16.50	5.00 6.00	4.65 5.15	1.85 2.15		7.00 8.50	21.50 24.00	15.00 16.50	00.9 00	3.30 4.00
T) sc		<u></u>	z) mi	20.	2.5		$\overline{}$					•	80 4		2.0	0 6.40	2.5		8.0		9.0		<u>.</u> .		_				2.	_	<u>+</u>				15.0	2.00	ĕ
Electrical Characteristics	(7)	Test Condition	max. V _R (V) f(MHz) min.	-		470		470		100		470		470		470		100		100		100		100		470		470		470		470		470	470		
naraci	rs(Ω)	Test	. V _R (\	1		1		_		4		_		_		-		-		4		4		4		_		N		-		-		-	7		
cal Ct			max	I		0.5		9.0		1.5		0.5		0.5		9.0		9.0		1.5		2.0		1.5		9.0		F		0.5		0.4		1.2	Ξ:		
lectri		Test Condition	$V_R(V)$ f(MHz)	9		1		I		1		I		1		1		1		1		1		1		1				1		1		I	1		
٣	Ø	Test C	$V_R(V)$	2.5		I				I		I		1		1		1		I		1		I		I				1		1		1	1		
			min.	20		1		I		1		I		1		1		1		1		1		I						1		1		I	I		
	_	Fest Condition	V _R (V) Ta(°C)	52		25	09	22	09	22	09	52	09	25	99	52	09	52	60	25	99	22	8	22	9	52	9	52		52	90	52	9	8 8	52	09	
	In(nA)	Fest Co	/ _R (V)	တ		15	15	15	15	10	10	15	12	15	15	15	15	15	15	10	10	9	9	10	9	15	15	0 0	!	12	15	15	12	우 은	9	10	
	i		max.	9		10	100	10	100	10	100	위	8	10	9	9	100	10	100	10	100	10	9	10	100	9	9	9 9		9	100	9	8	5 5	9	100	
	<u></u>	Test	I _R (µA)	9		Τ		l		I		ı		ī		ı		ī		1		1		Ι				1		Т		T		1	ı		
	$V_R(V)$	0	min.	15		ı		I		1		I		ī		ı		ī		1		1		1		ı				Т		1		ı	ī		
ating						125		125		125		125		125		125		125		125		125		125		125		125		125		125		125	125		
num Ri	2°C)	Tstg	၁့	-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125	-55 to +125		
Absolute Maximum Rating	(Ta = 25°C)	F	(၁	125		125 -		125		125		125		125 -		125 -		125 -		125 -		125		125 -		125		125		125 -		125 -E		125	125 -		
bsolute		> ~		15		15	_	15	\rightarrow	15	_	15		15		15		15		15		12		15		15		· 우		15		15	_	우	10		
4	Two No	200		HVU17		HVU350B	_	HVU355B	\dashv	HVU359		HVU383B		HVC350B		HVC355B		HVC358B		HVC359		HVC362		HVC365		HVC366		HVC368B		HVC369B		HVC372B		HVC374B	HVC375B		
	Application	2000		For VCO																																	


3.1 Characteristics of Variable Capacitance Diode Standard (cont)

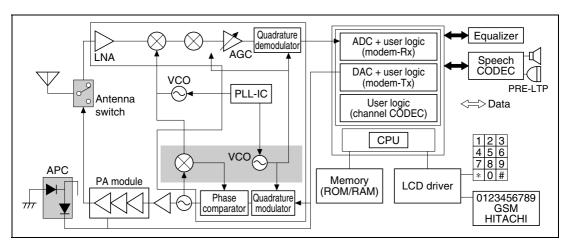
	i i	lype No.		HVC376B		HVC379B		HVC381B		HVC383B			HVC386B		HVD350B		HVD355B		HVD358B		HVD359		HVD365		HVD368B			HVD369B		HVD372B		HVD381B	
	9	Fackage		UFP		HP H		UFP		UFP			UFP		SFP		SFP		SFP		SFP		SFP		SFP			SFP		SFP		SFP	
		tion	f(MHz)	-		-		-		-			-		-		-		-		-		-		-			-		-		-	
	c	Test Condition	C(V _R)/C(V _R) f(MHz)	1/4		0.5/2.5		1/3		1/4	1/7		1/4		1/4		1/4		1/4		1/4		1/4		1/3			1/4		1/4		1/3	
			max.	_		I		-		1	1		I		Ι		-		1		1		1		1			1		1		I	
			min.	4.30		1.80		1.65		2.00	3.50		1.80		2.80		2.80		2.20		3.00		3.00		2.20			2.30		2.00		1.65	
		ndition	(MHz)	-		-		-		-			-		-		-		-		-		-		-			-		-		-	
	Œ.	Fest Condition	(V _R (V	-	4	0.5	2.5	-	3	-	4	7	-	4	-	4	-	4	-	4	-	4	-	4	-	2	က	-	4	-	4	-	က
Electrical Characteristics (Ta = 25°C)	C(pF)		min. max. V _R (V) f(MHz)	25.00 28.50	4.80 6.80	2.90 3.20	1.25 1.53	10.00 11.00	5.80 6.40	19.00 21.00	8.50 10.00	4.50 5.50	43.00 49.00	18.50 25.50	15.50 17.00	5.00 6.00	6.40 7.20	2.55 2.95	19.50 21.00	8.00 9.30	24.80 29.80	6.00 8.30	27.05 28.55	6.05 7.55	15.00 16.50	9.00 10.20	5.00 6.00	4.65 5.15	1.85 2.15	15.00 17.00	7.00 8.50	10.00 11.00	5.80 6.40
L) so		6			4.		-		5.	_	œί	4		9.		5.		2	_	æί		9	_	9.		6	ις.	-	- -	-	7.		5.
teristi	(G	Test Condition	V _R (V) f(MHz)	470		470		470		470			470		470		470		470		100		100		470			470		470		470	
harac	$rs(\Omega)$	<u> </u>	×.	1		_		-		-			2		-		-		_		4		4		0			-		_		-	
ical O			V _R (V) f(MHz) max.	0.8		1.0		0.5		0.5			0.9		0.5		9.0		0.4		1.5		1.5		Ξ			0.5		0.4		0.5	
Electr		Test Condition	(WH;	1		I		1		1			1		1		1		1		1		1		1			1		1			
-	Ø	Test	> 	I		I		1		1			1		I		1		1		1		1		1			1		1		I	
			min.	Ι		I		1		I			1		1				1		1		١		1			1		I		1	
	~	Fest Condition	V _R (V)Ta(°C)	25	9	52	09	25	9	25	9		52	09	25	09	25	9	22	09	25	9	22	09	25	09		52	09	25	9	25	9
	I _R (nA)	Test Co	V _R (V)	10	10	10	10	15	15	15	15		15	15	15	15	15	15	15	10	10	10	10	10	10	10		15	15	15	15	15	12
			max.	10	100	10	100	10	10	10	100		10	100	10	100	10	100	10	100	10	100	10	100	10	100		9	100	10	100	10	10
	<u>``</u>	Test	min. I _R (µA)	I		I		ı		I			I		ı		Ι		I		I		I		Ι			ı		Ι		I	
	V _R (V)		min.	Ι		I		1		I			ī		Ι		Ι		1		I		1		I			1		ı		I	\exists
Absolute Maximum Rating	55°C)	Tstg		-55 to +125		125 -55 to +125		-55 to +125		-55 to +125			-55 to +125		-55 to +125		-55 to +125		-55 to +125		-55 to +125		125 -55 to +125		125 -55 to +125			-55 to +125		-55 to +125		-55 to +125	
e Maxi	$(Ta = 25^{\circ}C)$	i=	ŝ	125		125		125		125			125		125		125		125		125		125		125			125		125		125	\exists
Absolut	_	> ~		15		9		15		12			15		15		15		15		15		15		9			15		12		12	\exists
		lype No.		HVC376B		HVC379B		HVC381B		HVC383B			HVC386B		HVD350B		HVD355B		HVD358B		HVD359		HVD365		HVD368B			HVD369B		HVD372B		HVD381B	
		Application Type No.		For VCO																													

3.2 Characteristics of Variable Capacitance Diodes


3.3 Digital Cellular Phone

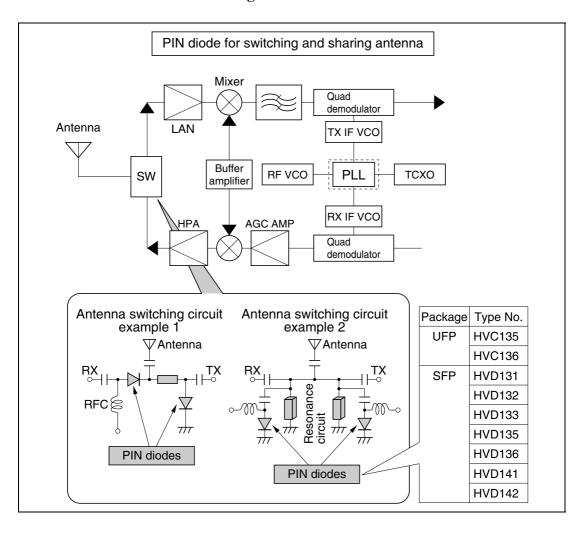
Variable Capacitance Diodes

to 200 MHz	200 to 400 MHz	300 to 500 MHz	500 to 1000 MHz	1 to 3 GHz
Cordless phones	Pagers Marine telecoms	Cordless phones Taxi radios	Vehicle phones MCA Mobile phones	Digital cordless phones Marine satellite communications GPS
HVU359 HVC359 HVD359	<u> </u>	 		HVU355B HVC355B HVD355B
HVC362		HVC358B		HVC369B HVD369B
HVU369B HVC374B				HVC379B
HVC376B		IVC372B, HVD372	В	HVC380B


3.4 PDC System Configuration Example

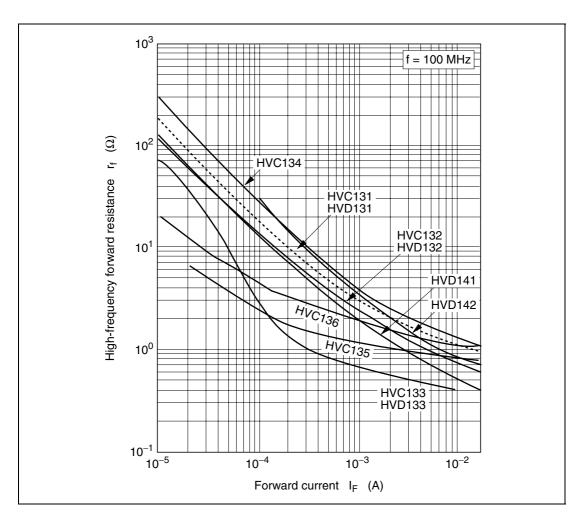
Diodes for PDC

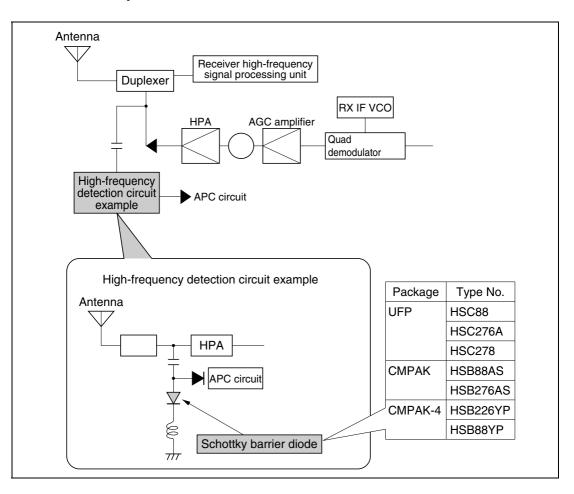
Block		Product	Features	
For RF power contro	ol	HSB276AS, HSC278, HSC88, etc.	Low VF, sm	all package
RF discrete	For VCO	HVC350B/358B/372B	to 1 GHz	Variable capacitance diodes
		HVC355B/369B	1 to 3 GHz	with high capacitance change ratio and low serial resistance
For antenna switch For diversity antenna (reel type)	a switch	HVC131 to 134/135/136 HVD131, etc.	Low loss, sr	mall package (PIN diodes)
Surge protection of oinput/output part	data	HZM6.8ZMFA, etc.	Low capacit ample lineu	tance, high surge tolerance, p


3.5 GSM System Configuration Example

Diodes for GSM

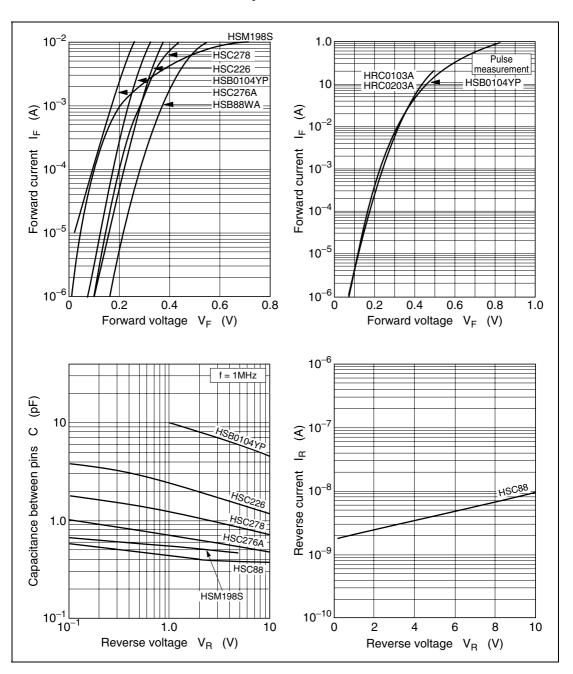
Block		Product	Features	
For RF power control		HSB276A, HSC278, HSC88, etc.	Low VF, sm	nall package
RF discrete	For VCO	HVC350B/358B/372B	to 1 GHz	Variable capacitance diodes
		HVC355B/369B, etc.	1 to 3 GHz	with high capacitance change ratio and low serial resistance
For antenna switch		HVC131 to 134/135/136	Low loss, s	mall package (PIN diodes)
Surge protection of d input/output part	ata	HZM6.8ZMFA, etc.	Low capaci ample lineu	tance, high surge tolerance,

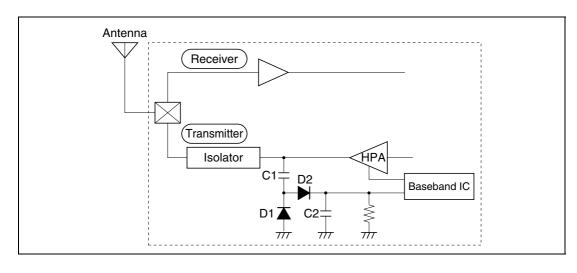

3.6 PIN Diodes for Switching Antenna


3.7 Characteristics of PIN Diode Standard

	ON GOVE			HVU131	HVU132	HVU133		HVC131	HVC132	HVC133		HVC134	HVC135	HVC136	HVD131	HVD132	HVD133		HVD135	HVD136	HVD141	HVD142
	Dockodo	achage		URP	URP	URP		UFP	UFP	UFP		UFP	UFP	UFP	SFP	SFP	SFP		SFP	SFP	SFP	SFP
		ndition	f (MHz)	100	100	100		100	100	100		100	100	100	100	100	100		100	100	100	100
	π(Ω)	Test Condition	max. I _F (mA) f (MHz)	10	10	2		10	10	2		10	2	2	10	10	2		2	2	10	10
	£			1.0	2.0	0.7		1.0	2.0	0.7		2.0	2.0	2.5	1.0	2.0	0.7		2.0	2.5	0.8	1.5
			typ.	ı	I	0.55		ı	Ι	0.55		I	I	I	ı	I	0.55		ı	I	I	I
2°C)		ndition	V _R (V) f (MHz)	-	1	-		1	1	-		1	1	-	-	1	-		-	1	-	-
Ta = 2	C(pF)	Test Condition	V _R (V)	1	1	1	9	1	1	1	9	1	1	-	1	1	1	9	-	1	1	-
Electrical Characteristics (Ta = 25°C)			max.	0.80	0.50	1.00	0.90	0.80	0.50	1.00	0.90	0.40	09.0	0.45	0.80	0.50	1.00	0.90	09.0	0.45	0.82	0.35
aracte	5	Test Condition	l _F (mA) max.	10	10	2		10	10	2		10	2	2	10	10	5		2	2	10	10
ical Ch	V _F (V)		max.	1.0	1.0	0.85		1.0	1.0	0.85		1.0	6.0	6.0	1.0	1.0	0.85		6.0	6.0	1.0	1.0
Electr	l _R (μΑ)	Test Condition	max. V _R (V) max.	09	09	25		09	09	25		09	09	09	09	09	25		09	09	30	30
	<u>1</u> 2		max.	0.1	0.1	0.1		0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0.1	0.1
	V _R (V)	Test Condition	l _P (µA)	I	1	1.0		I	1	1.0		Ι	Ι	ı	I	I	1.0		ı	Ι	I	I
	>		m Li	Ι	Ι	30		ı	Ι	30		1	1	ı	I	I	30		ı	1	I	I
()010	Absolute Maximum Rating (1a = 25 °C)	Tstg	ွိ	-55 to +125	-55 to +125	-55 to +125		-55 to +125	-55 to +125	-55 to +125		-55 to +125		-55 to +125	-55 to +125	-55 to +125	-55 to +125					
T) 20	ng (18	F	Ç Ç	125	125	125		125	125	125		125	125	125	125	125	125		125	125	125	125
0	ווו המו	Pd	(mW)	150	150	150		150	150	150		150	150	150	150	150	150		150	150	150	150
A cive	Maximu	_4	(mA)	100	100	I		100	100	I		100	100	90	100	100	I		100	100	100	100
4.10.	eolute	, 8	3	09	09	30		09	09	30		09	09	09	09	09	30		09	09	30	30
4	Ä	V	S	92	92	ı		92	92	I		92	92	92	92	92	ı		65	92	I	ı
	Type No			HVU131	HVU132	HVU133		HVC131	HVC132	HVC133		HVC134	HVC135	HVC136	HVD131	HVD132	HVD133		HVD135	HVD136	HVD141	HVD142
	Application	The second		For	switching	antenna																

3.8 Characteristics of PIN Diodes


3.9 Schottky Barrier Diode


3.10 Characteristics of Schottky Barrier Diode Standard

	Package	a constant	URP	URP	URP	UFP	UFP	UFP	UFP	SFP	10 MPAK	MPAK	MPAK	MPAK	MPAK	MPAK	MPAK	CMPAK	CMPAK-4	CMPAK		CMPAK	CMPAK	CMPAK	CMPAK-4	CMPAK	CMPAK-4	CMPAK-4	UFP	UFP
			١	١	۱	١	١	١			10 N	10	10	10 N	2			10	10	10		9	ı	ı	Ι	1	1	_	<u> </u>	ر
	ΔV _F (mV)	Test Condition Condition V _R (mA) f(MHz) max.	1	ı	1	I	1	1	Ι	I	10	9	9	10	9	ī	1	9	9	5	2	9	1	I	I	T	ī	Ι	1	T
	П	(MHz)	I	I	1	I	1	Ι	Ι	I	1	-	-	-	I	-	1	-	-	-		-	ı	I	I	-	-	Ι	1	T
	∆C(pF)	Test Condition V _R (mA) ((MHz)	1	ī	Ι	I	1	ı	Ι	I	0	0	0	0	I	0.5	0.5	0	0	c	,	0	1	I	I	0.5	0.5	-	Ι	ī
	V	max.	I	I	Ι	I	1	Ι	1	1	0.1	0.1	0.1	0.1	I	0.1	0.1	0.1	0.1	0	;	0.1	1	I	I	0.1	0.1	Ι	Ι	Т
		Test Condition Test Condition Test Condition	-	-	-	-	-	-	1	-	1	-	-	-	-	-	1	-	-	-		-	-	-	-	-	-	1	-	Ι
(၁	C(pF)	Test Co V _R (V)	0	-	0.5	0	-	0.5	1	1	0	0	0	0	-	0.5	0.5	0	0	c	•	0	-	-	1	0.5	0.5	0	I	Τ
Electrical Characteristics (Ta = 25°C)	Ö		0.8	က	6.0	0.8	2.8	0.85	1.50	1.50	0.85	0.85	0.85	0.85	1.5	0.90	0.90	0.8	0.8	80	9	0.9	2.80	2.8	2.8	0.90	0.85	_	_	1
s (Ta		typ.	1 1	2.45	I	1 1	1	1	1	1	1	1	1	1	I	1	1	1	1	I		1	1	1	1	1	1	20	1	1
eristic		Test Condition Condition Condition Condition Condition Lyp. max. F(mA)	- 6	-	1	- 우	- 5	1	30	1 8	10	- 우	- 우	10	2	1	1	- 우		2 ←	Ι' Ι	- 2	- ro	5 -	- 5	1	1	100	0.44 100	0.52 200
aracte	V _F (mV)	max	420 580	0.29 0.35	1	420	0.33	1	300 950	300 950	420 580	420 580	420 580	420 580	Ξ	1	1	420 580	420	420	580	420	330	330	330	1	1	0.58	0.44	0.52
al Ch	VF(typ.	1 1		1	1 1	1	1	1	1	1 1	1 1	1 1	1 1	I	1	1	1 1	I			1 1	1	I	I	1	1	1	1	1
ectric		min.	350	I	١	350	1	1	1	1	350 500	350	350	350	1	1		350	350	350	200	350	1	I	I	1	1	1	1	1
Ĭ		Condition V _F (V)	I	1	0.5	Ι	1	0.5	1	1	1	I	I	1	-	0.5	0.5	I	I	I		I	1	I	Ι	0.5	0.5	1	1	1
	I _F (mA)	max	I	1	1	Ι	1	1	1	1	1	I	1	1	1	1	1	I	1	1		I	1	1	I	1	1	1	1	1
		min.	1	1	35	1	1	35	1	1	_	1	1	1	2	32	32	1	1	I		1	1	I	I	32	32	1	1	
	1 1	Test Condition max. V _R (V)	2 0	8	0.5	2 은	8	0.5	10	10	2 10	9 9	9	10	9	0.5	0.5	2 우	0 5			9 2	8	20	20	0.5	0.5			8
	(Aμ)aj	. may	10	0	20	10	0.45	20	0.7	0.7	0.2	10	10	0.2	20	20	20	10	0.2	2 0	9	10.2	0.45	0.45	0.45	20	20	20	20	9
		typ.	I	0.3	1	I	1	1	1	1	1	1	1	1	1	1	1	I	1	I		I	1	1	1	1	1	1	1	1
	V _B (V)	Condition In(mA)	1	1	-	Ι	1	-	1	1	1	I	1	1	1	-	-	1	I	I		I	1	I	I	-	-	1	1	1
Ш	>	m n		1	3	- 2		2	- 2		- 2			- 2	1	2	5 3	-								က	2	- 2	- 2	2
1	5	Tstg (°C)	125 -55 to +125	-55 to +125	-55 to +125	125 -55 to +125	125 -55 to +125	-55 to +125	-55 to +125	-55 to +125	-	-55 to +100	-55 to +125	-55 to +125	-55 to +125	-55 to +125	125 -55 to +125	125 -55 to +125	125 -55 to +125	200 125 -55 to +125										
Absolute Maximum Bating (Te = 25°C)	3		2 -55 1	2 -55 1	2 -55 1	22.1	199	2 -55 1	2 -55 1	2 -55 1	2 -55		22-1	2 -55	2 -55 1	2 -55 1	2 -55 1	22-1				55	22.1	22-1	22-1	2 -55 1	2 -55 1	5 -55 1	2 -55 1	2 -55
Ę		, (°C)		125	125	125	125	125	125	125	125	125	125	125	125			125	125	125	_	125	125	125	125	125			125	125
l ito	יים פיי	lo (mA)	15	20		15	1		30	30	15	15	15	15	30	\vdash	30	15	15	7.		15	1	I	I	30	30			-
1		I _{FM} (mA)	1	1	1	1	1	1	150	150	_	1	1	1	1	1	1	1	1			1	1	I	I	1	1		1	1
A viv	ומא וו	l (mA)	I	1	1	I	20	1	-	1	_	I	I	1	1	1		I	1	I		I	20	20	20	1	1	100	1	1
1		I _{FSM} (mA)	I	200	1	I	200	1	200	200	1	I	I	1	1	1	1	I	1	- 1	_	I	200	200	200	1	1	3(A)		3(A)
A P	SOL .	≥ S<	. 10	1		9	1		30	8	. 10	9	9	10	우 ·	က	3	9	9	5	_	<u>و</u>	1	1	1	ო	ო			1
		VRRM (V)	1	22		I	52	A 5	30	30	 S	<u>~</u>		У	l S	S	R 5	 	I			<u> </u>	S 25	25	P 25	S	D C			B 30
	Two No	on odk	HSU88	HSU227	HSU276A	HSC88	HSC226	HSC276A	HSC278	HSD278	HSM88AS	HSM88ASR	HSM88WA	HSM88WK	HSM198S	HSM276AS	HSM276ASR	HSB88AS	HSB88YP	HSBRWK		HSB88WA	HSB226S	HSB226WK	HSB226YP	HSB276AS	HSB276AYP	HSB0104YP	HRC0103A	HRC0203B
	Application Type No		For Schottky	barrier																										

3.11 Characteristics of Schottky Barrier Diodes

3.12 Power Control Circuit for Mobile Phones

Small Signal Schottky Barrier Diodes for Mobile Communications

	SFP (1406)	UFP (1608)	URP (2512)	CMPAK-3 (SC-70)	CMPAK-4 (SC-70M)	MPAK-3 (SC-59A)	
Туре							Application
HS*276A	_	HSC276A	HSU276A	HSB276AS	HSB276AYP	HSM276AS HSM276ASR	Signal processing
HS*88	_	HSC88	HSU88	HSB88AS HSB88WA HSB88WK	HSB83YP HSB88YP	HSM88ASS HSM88ASR HSM88WA HSM88WK	Signal processing, reverse current protection
HS*226 HS*227 HS*278	HSD278	HSC226 HSC278	HSU227	HSB226S HSB226WK	HSB226YP	_	Signal processing, reverse current protection
Pin	(Top view)			(Top view)	(Top view)	(Top vi	<u> </u>
arrangement				S 3	1 1 2		VK 3
				WA 3		SR 3 V	VA ☐ 3 ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
				WK 3			

3.13 Characteristics of Zener Diodes for Surge Absorption

Absolute maximum ratings (Ta = 25°C)

Type No.	Pd (mW)	Tj (°C)	Tstg (°C)
HZU-G Series	200 *1	150	-55 to +150
HZM5.6ZFA	200 *2		
HZM6.2ZFA	200 *2		
HZM6.2ZWA	200 *³		
HZM6.8ZMFA	200 *2		
HZM6.8MFA	200 *2		
HZM6.8MWA	200 * ³		
HZM6.8ZMWA	200 *³		

Notes: 1. See figure 1 in section 3.14.

- 2. See figure 2 in section 3.14.
- 3. See figure 3 in section 3.14.

Electrical Characteristics (Ta = 25°C)

	Zene	r Voltaç	ge	Revers	e Current	Operat Resista	•	Static voltage	electricity destroy e
	V _R (V	') * ¹	Test Condition	I _R (μΑ)	Test Condition	rd (Ω)	Test Condition	— (kV)	*2
Type No.	Min	Max	I _z (mA)	Max	V _R (V)	Max	I _z (mA)	Min	Failure determination criteria
HZU5.1G	4.84	5.37	5	5	1.5	130	5	30	I _R standard is used
HZU5.6G	5.31	5.92	5	5	2.5	80	5	30	
HZU6.2G	5.86	6.53	5	2	3	50	5	30	
HZU6.8G	6.47	7.14	5	2	3.5	30	5	30	
HZU7.5G	7.06	7.84	5	2	4	30	5	30	
HZU8.2G	7.76	8.64	5	2	5	30	5	30	
HZU9.1G	8.56	9.55	5	2	6	30	5	30	
HZU10G	9.45	10.55	5	2	7	30	5	30	
HZM5.6ZFA	5.31	5.92	5	0.5	2.5	80	5	8	$I_R > 0.5 \mu\text{A} (V_R = 2.5 \text{V})$
HZM6.2ZFA	5.90	6.50	5	3	5.5	60	5	13	$I_R > 3 \mu A (V_R = 5.5 V)$
HZM6.2ZWA	5.90	6.50	5	3	5.5	60	5	13	
HZM6.8ZMFA	6.47	7.00	5	2	3.5	30	5	25	$I_{R} > 2 \mu A (V_{R} = 3.5 V)$
HZM6.8MFA	6.47	7.00	5	2	3.5	30	5	30	
HZM6.8MWA	6.47	7.00	5	2	3.5	30	5	30 * ³	•
HZM6.8ZMWA	6.47	7.00	5	2	3.5	30	5	220 *³	

Notes: 1. V_z is a value of 40-ms pulse.

- 2. C = 150 pF, R = 330 Ω , forward and reverse currents are applied 10 times each.
- 3. Surge tolerance between cathode and anode.

3.14 Main Characteristics of Zener Diodes for Surge Absorption

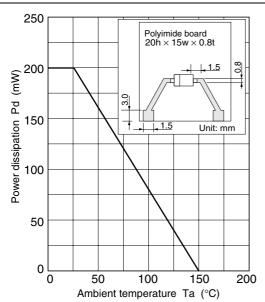
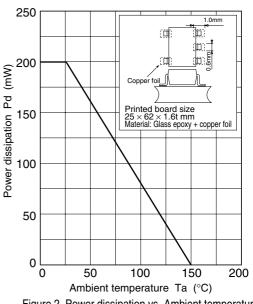
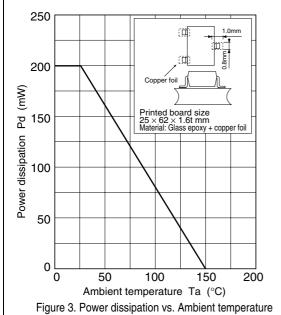
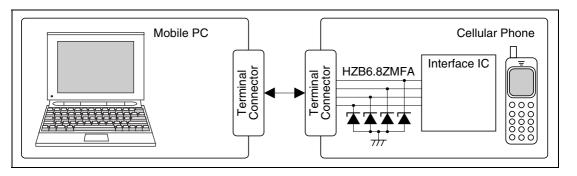
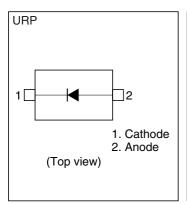
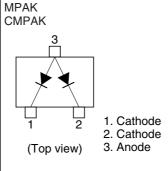
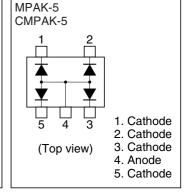


Figure 1. Power dissipation vs. Ambient temperature

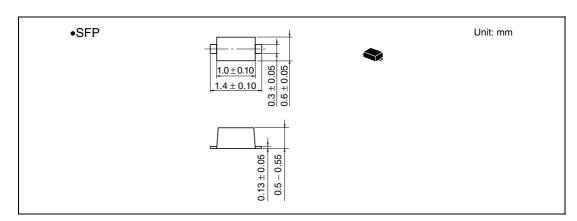




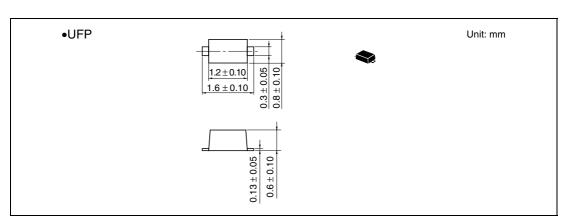

Figure 2. Power dissipation vs. Ambient temperature

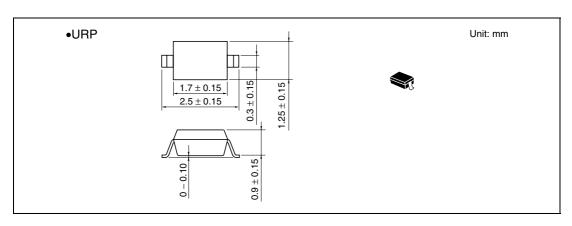


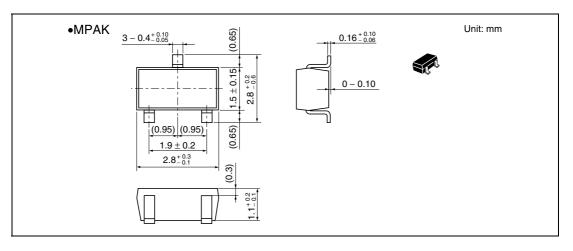

3.15 Example of Using Zener Diode for Surge Absorption

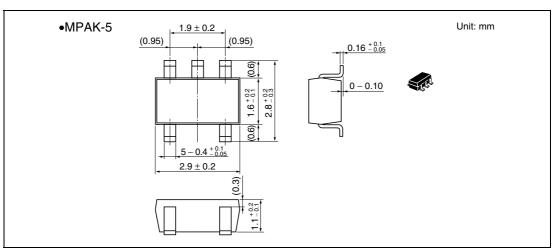
3.16 Pin Arrangement

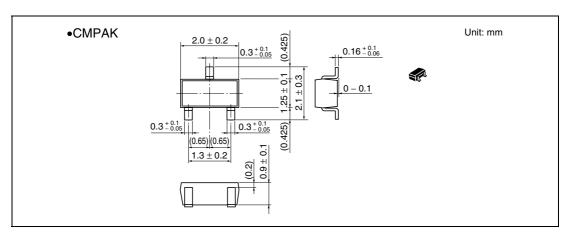


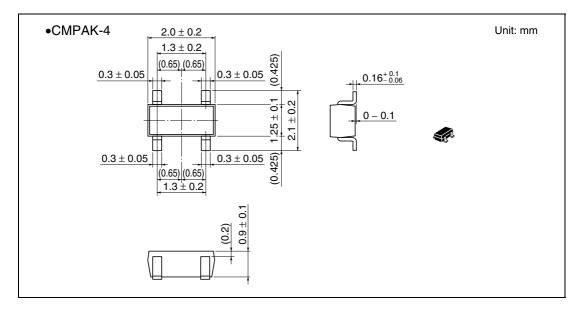


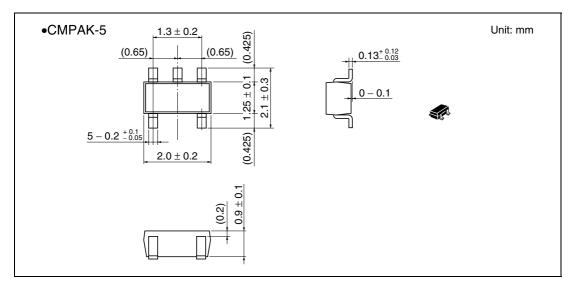


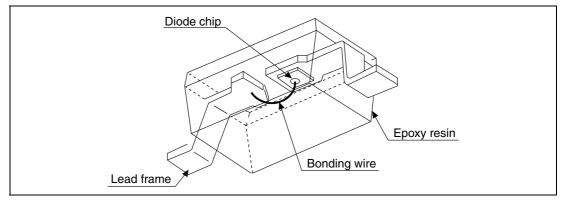

Section 4 Standard Dimensions of Diode Packages

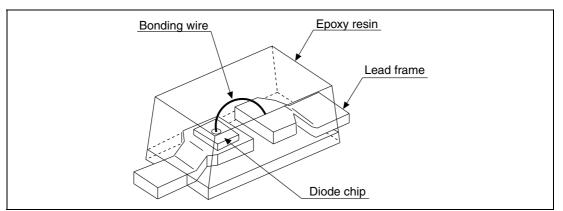

Note: For description of dimensions of footprint (land), see pages 27 and 28.



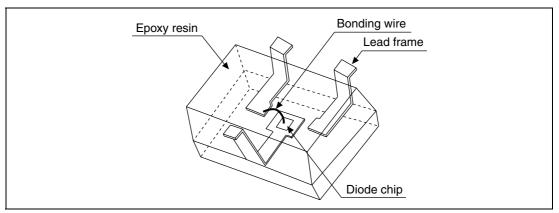





Rev.0, Aug. 2001, page 20 of 33



Section 5 Structure of Diodes


Assembly structure of SRP and URP

Assembly structure of UFP and SFP

Assembly structure of MPAK and CMPAK

Section 6 Quality Control and Reliability

6.1 Hitachi Diode Manufacturing Process and Quality Control

Hitachi makes every possible effort to maintain the quality of its diodes from manufacturing to shipment, and pays strict attention to quality control in the production process. Meticulous care over each of the manufacturing process enables timely detection of faults, and helps maintain stable quality control.

Figure 6.1 shows the manufacturing process, Figure 6.2 shows details of quality control.

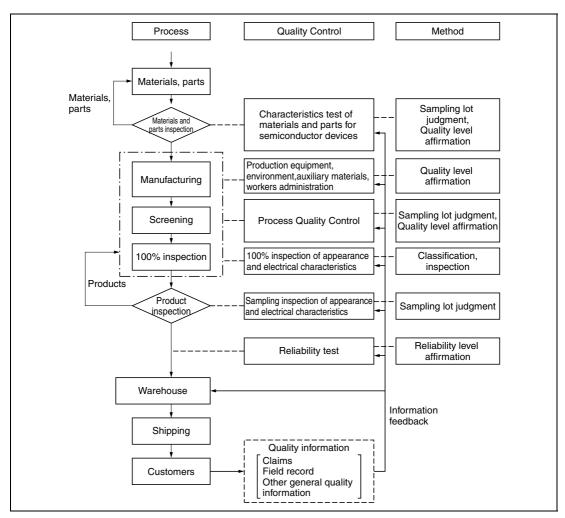


Figure 6.1 Manufacturing Process and Quality Control Flowchart

	Process N		Main Equipment	Contro	ol Item	Remarks
Wafer	O	Diffusion	Metallurgical microscope	Diffusion depth Resistivity	1 wafer/batch	
vvaici		Photolitho- graphy	Resistivity meter Metallurgical microscope	External appearance	All wafers	
		Metallization				
		PQC	Metallurgical	External appearance	2 lots/day	
		Dicing	microscope			
			Otenesesia	Estamal anna anna	All weite	
		Pellet grading	Stereoscopic microscope	External appearance	All units	
		PQC	Stereoscopic microscope	External appearance	2 lots/day	
Frame		Assembly				
bonding wire		PQC	Tension gage Stereoscopic	Wire bonding strength	1 time/month×machine	
		Molding	microscope	External appearance	1 time/month×machine	
		Soldering				
		process				
		Marking				
		Disconnection Forming				
		PQC	Stereoscopic microscope	External appearance	1 time/3days×machine	
		Total inspection	Automatic measuring equipment	Electrical characteristics	All units	
Packing material		Taping Packing	Tension gage	Cover tape Peeling strength	1 time/day/machine (10 to 70 g)	
		Inspection	Equipment for each type of inspection	Electrical characteristics External appearance dimensions	JIS Z 9015 Major AQL = 0.1% Minor AQL = 1.0%	
	Ware- house			- Control of the		
◯ Work p	process					
igcirc PQC v $igtriangle$ Inspec	ork tion process					

Figure 6.2 Quality Control Flowchart of Diodes for Mobile Communications

RENESAS

6.2 Periodic Reliability Tests

Periodic reliability tests are performed to guarantee the reliability of Hitachi diodes for mobile communications.

Table 6.1 Periodic Reliability Tests (Examples)

Test Items	Conditions		
Operation life test	V _R Max, Ta = 125°C, 1000 h		
High temp./humidity storage	Ta = 85°C, 85%R.H., t = 1000 h		
Temp. cycling	Ta = −55 to +150°C, 10 cycles		
Pressure cooker	Ta = 121°C, 100%R.H., t = 40 h		
Solder heat resistance	260°C, 10 s		

6.3 Periodic Reliability Data

Examples of reliability test data are shown in table 6.2.

Table 6.2 Reliability Test Results for MPAK, CMPAK, URP, UFP, and SFP

Classification	Test Items	Conditions	Result
Mechanical	Terminal strength (1)	15°, bebding, 1 time (MPAK, CMPAK, URP)	0/15
tests	Terminal strength (2)	Static load, 2.5 N, 10 s (MPAK)	0/15
	Shock test	1500 m/s², 0.5 ms, 3 times each in the XYZ directions	0/15
	Drop test	Height: 75 cm, Onto 3 cm thick maple board	0/100
	Variable frequency vibration	100 to 2000 Hz, 200 m/s², XYZ direction	0/15
Environmental	Temp. cycling	Ta = -55 to +150°C, 10 cycles	0/450
tests	Solder heat resistance	260°C ± 5°C, 10 s	0/280
	Solderability	235°C ± 5°C, 5 ± 0.5 s	0/360
	Thermal shock	Ta = 0 to 100°C, 5 cycles	0/160
	Temp. and humidity cycling	Ta = -10 to +65°C, R.H. ≥ 90°C, 10 cycles	0/40
	PCT	Ta = 121°C, 100%R.H., t = 40 h	0/360
Life tests	High temp. storage	Ta = 125°C, t = 1000 h	0/120
	Low temp. storage	Ta = -55°C, t = 1000 h	0/120
	High temp. and humidity storage	Ta = 85°C, 85%R.H., t = 1000 h	0/400
	Operation life	Ta = 25°C, Pd Max, t = 1000 h	0/45

Section 7 Precautions for Application

7.1 Precautions for Storage

Although the general precautions for storage and transportation of electronic components can be applied as they are to semiconductor devices, the latter require certain special precautions in addition to these. The following account includes includes the general precautions.

Storage of Semiconductor Devices

The following methods of storage are advisable for semiconductor devices. If the precuations are not observed, faults in electrical characteristics, solderability, external appearance and other attributes may occur. In some cases, failure may also result.

Precautions for storage are as follows:

- a. The storage location should be kept within the optimum ranges of temperature and humidity: 5 to 35°C and 45 to 75% R.H. are the optimal conditions.
- b. The atmosphere in the storage location should not contain any noxious gases, and the amound of dust should be minimal.
- c. Storage containers should not be susceptible to static electricity.
- d. Semiconductor devices should not be subjected to loads.
- e. When storing for long periods, store in the non-processed state. When leads have already been formed, corrosion at their bent portion of leads may occur.
- f. Be sure that sudden temperature changes sufficient to cause condensation do not occur during storage of the devices.

7.2 Precautions for Transportation

When transporting semiconductor devices or their assembly units or subsystems, the same precautions as for other electronic components should be taken. The items listed in section 4.1 have to be followed.

- a. Transportation containers, jigs etc., should not pick up static charge due to vibration en route.
- b. Persons handling semiconductor devices should be grounded via a high resistance to discharge any static electricity that may be adhering to their clothing. The resistance value should be around 1 $M\Omega$ and no other person should come between the person being discharged and ground (GND).
- c. When transporting semiconductor devices and PCBs, try to keep mechanical vibration and shocks to an absolute minimum.

7.3 Precautions for Soldering

SMD diodes are formed in consideration of PCB mountability, and can be mounted without modification.

- a. When mounting on a PCB, adhesive is used to temporarily hold diodes in place before solder is applied. When a SMD diode is held by adhesive, be sure that it is not subjected to undue stress.
- b. Using a mounter to fix SMD diodes to a PCB can result in bending of the leads, so make sure that a force of no more than 1 N is applied. And also required to not apply any force on the leads as being mounted, especially for UFP, SFP package. At the time of mounting, the nozzle's presser force should not exceed 5 N.
- c. Since SMD diodes come in small package, be aware of thermal stress from soldering. Soldering should be done in as short a time as possible.

For conditions on high-temperature soldering, please contact us on an individual basis.

- When flow solder is used: 260°C or less, 10 s or less
- When soldering iron is used: 350°C or less, 3 s or less
- When high-temperature atmosphere is used: 235°C or less, 10 s or less
- Do not apply high-temperature soldering using soldering iron etc. to the SFP package since it puts a large heat stress to the package.
- d. Use the reflow method for mounting SFP packages.

Surface Mounting Diode (SMD)

The recommended conditions for soldering SMD diodes are shown in table 7.1.

Table 7.1 SMD Soldering Mounting Inset Conditions

Package	Footprint (land) Dimensions	Cream Solder Thickness
MPAK-5	0.95 0.95	0.15 to 0.30 mm
МРАК	0.95 0.95	0.15 to 0.30 mm

Table 7.1 SMD Soldering Mounting Inset Conditions (cont)

Package	Footprint (land) Dimensions	Cream Solder Thickness
CMPAK-4	1.3	0.15 to 0.30 mm
СМРАК	0.65 0.65	0.15 to 0.30 mm
CMPAK-5	0.65 0.65	0.15 to 0.30 mm
SFP	<u>♦0.5</u>	0.15 to 0.30 mm
URP	0.8 1.5 0.8	0.15 to 0.30 mm
UFP	0.6 1.1 0.6	0.15 to 0.30 mm

Notes: 1. Footprint (land) dimension units: mm.

2. Cream solder thickness at reflow installation.

7.4 Cleaning

Fading of the Marking and Color Codes

Clearness of markings and color-fastness of color codes may be lost due to cleaning. Be sure to check these after using cleaning agents.

Electrical and mechanical characteristics (discoloration, deformation, denaturation, etc.)

After cleaning a PCB, some corrosive material contained in the cleaning agent or flux may remain on semiconductor devices, causing corrosion of device wiring and leads with resulting loss of reliablility. Thorough cleaning is therefore required for PCBs. It is recommended that the level of purity of the PCB after cleaning should conform with the MIL standard below.

Table 7.2 PCB Level of Purity After Cleaning

Item	Standard
Remaining CI volume	\leq 1 μ g/cm ²
Resistance of solvent (after extraction)	\geq 2 × 10 $^{6}\Omega$ • cm

Notes: 1. PCB surface area: Both sides of the PCB + mounted components.

- 2. Extract solvent: Isopropyl alcohol : $H_2O = 3 : 1$ (Resistance of solvent before extraction is $\ge 6 \times 10^6 \Omega \cdot \text{cm}$)
- 3. Extraction method: Clean both sides of PCB with 10 ml/2.54 \times 2.54 cm 2 (minimum of 1 minute)
- 4. Measuring extracted solvent resistance: Conductivity meter See MIL-P-28809A for details of the MIL standard.

Ultrasonic cleaning

It should be avoid to resonant to the devices. We recommend the following conditions.

• SMD, etc.

Frequency : 28 to 29 kHz (device should resonant)

Ultrasonic power output: 15 W/I (1 time)
Time : up to 30 s

Others : Make sure that neither devices nor PCB come into contact with the

vibration source.

7.5 Genaral Precautions for Circuit Mounting

Matching the circuit design and initial standards is a prerequisite for regards reliability design, while a margin must be allowed in consideration of deratings and fluctuations in characteristics. Reliability problems involve wiring, external surge, reactance load, noise margin, area of safe operation (ASO), reverse bias, flyback pulse, static electricity pulse stress and more.

7.6 General Precautions (General Precautions for Circuit Designing)

Important factors in achieving the specified system reliability are using the devices within the parameter specifications shown in the catalog and observing the following points, taking account of the influence of peripheral components.

- a. Keep the peripheral temperature as low as possible in order to avoid high temperatures in the vicinity of semiconductor elements.
- b. Ensure that the power supply voltage, input voltage, power consumption, etc., are within specification, and use degrading.
- c. Ensure that an excessive voltage is not applied to, or caused on, input, output, power supply, and other pins. Also ensure that these pins are not subjected to strong electromagnetic waves.
- d. Ensure that static electricity is not generated during use.
- e. When using high-speed elements, which have an extremely fine structure, either provide protection circuitry, etc., for the input section, or else ensure that electrostatic pulses are not applied.
- f. When power is turned on and off, ensure that voltage application does not become unbalanced. For example, excessive stress will be exerted if a voltage is applied to input or power supply pins, etc., when circuit ground pins are floating.
- g. Note on use in electromagnetic wave environments

A source of strong electromagnetic waves in the vicinity of a Zener diode may alter the characteristics of the diode. For example, a drop in the breakdown voltage has been reported when a portable wireless unit (144 MHz, 430 MHz) with a 3 W output is brought within a distance of 10 cm from a diode.

Please consult Hitachi if there is a risk of exposure to strong electromagnetic waves in the operating environment.

h. About lot traceability

To help us handle customer inquiries smoothly, please write down the following on the labels on the component's package or reels before using the diode products.

- 1. Type number (INT.C/TYPE)
- 2. Lot number (LOT)
- 3. Weekly code (W/C)

7.7 Characteristic Parameters and their Relation to Reliability

Each semiconductor device has its own characteristic parameters prescribed accoding to function and application. Each of these parameters has a predetermined range which should be matched. In system design, the significance of these parameters varies a great deal depending on application, and design must project a margin in initial characteristics as regards the critical parameters, or derating must be carried out. In the former case, a device should be selected with regard to the limit of operation range as a system. The statistical design method should be employed, and reliability testing as well as failure criteria of Hitachi semiconductor devices should also be taken into consideration. In the case of derating, refer to the derating applications given under Hitachi Semiconductor Device Reliability. Since the majority of parameter fluctuations cannot be foreseen under conditions of use, althouth design employing initial standards is considered justifiable in many cases, design with reference to failure criteria is needed as regards significant system items or items with no margin.

The following are points for consideration with regard to parameters.

- Whether the significance of a parameter extends to system failure.
- The state of the parameter's initial value margin.
- Does the parameter change over time, and if so, is the change in the direction of the margin?
- Is the change permissible for use of the device with other devices?
- Is redundant design possible?
- Is it possible to introduce the statistical design method for parameters?

Section 8 Product Shipment and After-Sales Service

8.1 Taping Specifications

Table 8.1 is a list of taping specifications.

Table 8.1 Taping Specifications

Appearance	Packing Form	Packing Unit	Packing Specification Code	Comments
MPAK-5 CMPAK-5	Taping	3000 *2 (units/reel)	TR (<u>T</u> aping to <u>R</u> ight)	TR withdrawl direction→
MPAK CMPAK	Taping	3000 *² (units/reel)	TR (<u>T</u> aping to <u>R</u> ight)	TR withdrawl direction→ (Marked surface up)
CMPAK-4	Taping	3000 *2 (units/reel)	TR (<u>T</u> aping to <u>R</u> ight)	TR withdrawl direction→
SRP URP	Taping	3000 *2 (units/reel)	TR (<u>T</u> aping to <u>R</u> ight)	TR withdrawl direction→
UFP	Taping	4000 (units/reel)	TR (<u>T</u> aping to <u>R</u> ight)	TR withdrawl direction→
	THE STATE OF THE S	8000 (units/reel)	KR	KR withdrawl direction→
SFP	Taping	8000 (units/reel)	KR	KR withdrawl direction→

Notes: 1. Missing devices $\leq 0.2\%$ /reel, continous miss = 0/reel.

^{2.} Recommended taping specifications.

8.2 After-Sales Service System

Hitachi has an after-sales service system with sales, product marketing, design, fabrication, and quality assurance departments all united as one so that quick and appropriate responses can be made to customer inquires and in the event of failures related to diodes. Thorough quality control system prevents reoccurrence of failures so customers can use Hitachi diodes with assurance.

Figure 8.1 shows the after-sale service system.

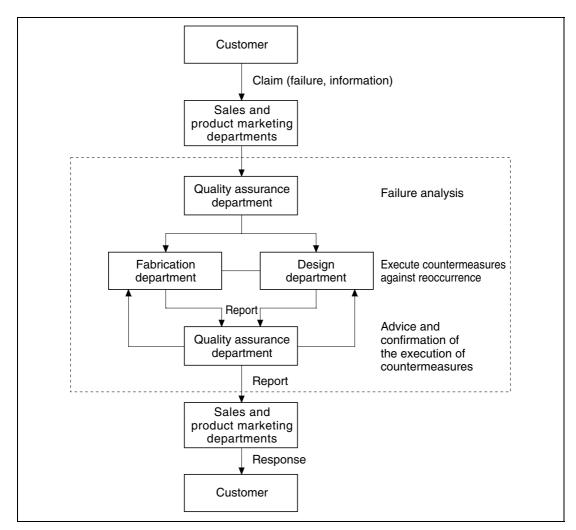


Figure 8.1 After-Sales Service System

Diodes for Mobile Communications Application Note

Publication Date: 1st Edition, August 2001
Published by: Customer Service Division

Semiconductor & Integrated Circuits

Hitachi, Ltd.

Edited by: Technical Documentation Group

Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 2001. All rights reserved. Printed in Japan.