
SILICON N-CHANNEL DUAL GATE MOS-FET

Depletion type field-effect transistor in a plastic X-package with source and substrate interconnected, intended for use in u.h.f. applications in television tuners and professional communication equipment. This MOS-FET tetrode is protected against excessive input voltage surges by integrated back-to-back diodes between gates and source.

QUICK REFERENCE DATA

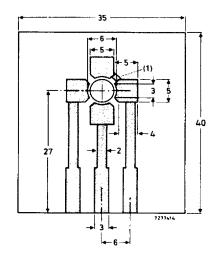
Drain-source voltage	V _{DS}	max.	20 V
Drain current	1D	max.	20 mA
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max.	225 mW
Junction temperature	T_{i}	max.	150 °C
Transfer admittance at $f = 1 \text{ kHz}$ $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ \text{ V}_{G2-S} = 4 \text{ V}$	lyfsl	typ.	12 mS
Input capacitance at gate 1; f = 1 MHz ID = 7 mA; VDS = 10 V; + VG2-S = 4 V	C _{ia1-s}	typ.	1.8 pF
Feedback capacitance at f = 1 MHz ID = 7 mA; VDS = 10 V; + VG2-S = 4 V	C _{rs}	typ.	25 fF
Noise figure at $G_S = 2 \text{ mS}$; $B_S = B_S \text{ opt}$ $I_D = 7 \text{ mA}$; $V_{DS} = 10 \text{ V}$; $+ \text{ V}_{G2-S} = 4 \text{ V}$; $f = 800 \text{ MHz}$	F	typ.	2.8 dB

December 1988

291

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)


Drain-source voltage	v_{DS}	max.	20 V
Drain current (DC or average)	ID	max.	20 mA
Gate 1 - source current	±IG1-S	max.	10 mA
Gate 2 - source current	±IG2-S	max.	10 mA
Total power dissipation up to $T_{amb} = 75 {}^{\circ}\text{C}$	P _{tot}	max.	225 mW
Storage temperature range	T _{stg}	65 to +	- 150 °C
Junction temperature	τ_j	max.	150 °C

THERMAL RESISTANCE

From junction to ambient in free air mounted on the printed-circuit board

 $R_{th j-a} = 335 \text{ K/W}$

Dimensions in mm

(1) Connection made by a strip or Cu wire.

Fig.2 Single-sided 35 μ m Cu-clad epoxy fibre-glass printed-circuit board, thickness 1.5 mm. Tracks are fully tin-lead plated. Board in horizontal position for R_{th} measurement.

292 December 1988

🖿 6653931 0035924 T4**8**

 T_j = 25 °C unless otherwise specified

STATIC CHARACTERISTICS

Gate cut-off currents $\pm V_{G1-S} = 5 \text{ V}; V_{G2-S} = V_{DS} = 0$ $\pm V_{G2-S} = 5 \text{ V}; V_{G1-S} = V_{DS} = 0$ Gate-source breakdown voltages	^{±I} G1-SS ^{±I} G2-SS	max. max.	25 nA 25 nA
$\pm I_{G1-SS} = 10$ mA; $V_{G2-S} = V_{DS} = 0$ $\pm I_{G2-SS} = 10$ mA; $V_{G1-S} = V_{DS} = 0$ Drain current	±V(BR)G1-SS ±V(BR)G2-SS		6 to 20 V 6 to 20 V
VDS = 10 V; VG1-S = 0; + VG2-S = 4 V Gate-source cut-off voltages	DSS		2 to 20 mA
$I_D = 20 \mu A$; $V_{DS} = 10 V$; $+ V_{G2-S} = 4 V$ $I_D = 20 \mu A$; $V_{DS} = 10 V$; $V_{G1-S} = 0$	V(P)G1-S V(P)G2-S	max. max.	2.7 V 2.7 V

DYNAMIC CHARACTERISTICS

Measuring conditions (common source): $I_D = 7$ mA; $V_{DS} = 10$ V; + $V_{G2-S} = 4$ V; $T_{amb} = 25$ °C

Transfer admittance at f = 1 kHz	y _{fs}	min. typ.	9.5 mS 12 mS
Input capacitance at gate 1; f = 1 MHz	C _{ig1-s}	typ.	1.8 pF
Input capacitance at gate 2; f = 1 MHz	C _{ig2-s}	typ.	1.0 pF
Feedback capacitance at f = 1 MHz	C _{rs}	typ.	25 fF
Output capacitance at f = 1 MHz	Cos	typ.	0.9 pF
Noise figure at $G_S = 2$ mS; $B_S = B_S$ opt f = 200 MHz f = 800 MHz	F F	typ.	1.6 dB 2.8 dB
Power gain at $G_S = 2$ mS; $B_S = B_S$ opt $G_L = 0.5$ mS; $B_L = B_L$ opt; $f = 200$ MHz $G_L = 1$ mS; $B_L = B_L$ opt; $f = 800$ MHz	G _p G _p	typ. typ.	23 dB 16.5 dB

December 1990

293