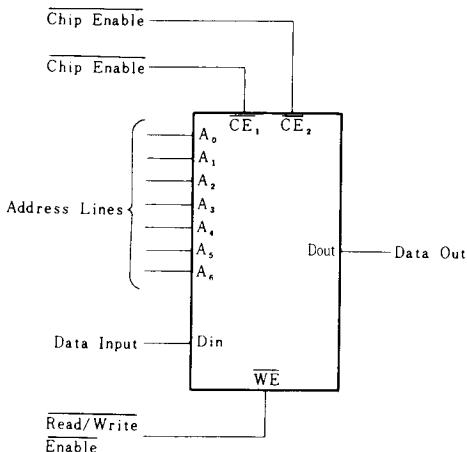

HD10147

128-word × 1-bit Random Access Memory

The HD10147 is a fast 128-word × 1-bit RAM. Bit selection is achieved by means of a 7-bit address, A0 through A6. The active-low chip selects and fast chip select access time allow easy memory expansion up to 512 words without affecting system performance. The operating mode (CE


input low) is controlled by the WE input. With WE low the chip is in the write mode- the output is low and the data present at Dn is stroed at the selected address. With WE high the chip is in the read mode- the data state at the selected memory location is presented non-inverted at Dout.

■PIN ARRANGEMENT

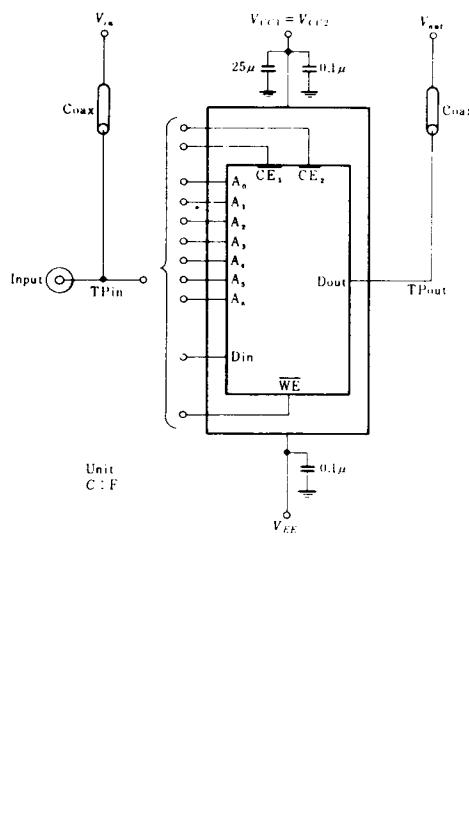
(Top View)

■BLOCK DIAGRAM

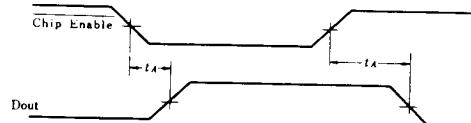
■FUNCTION TABLE

Mode	Input				Output
	CE ₁	CE ₂	WE	Din	
Write "L"	L	L	L	L	L
Write "H"	L	L	L	H	L
Read	L	L	H	×	Q
Disabled	H	L	×	×	L
	L	H	×	×	L

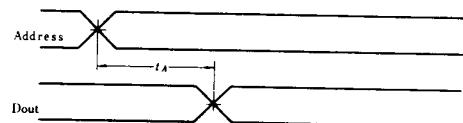
Note) × : Don't care.

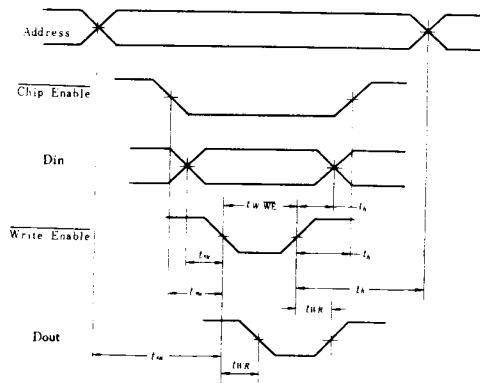

■DC CHARACTERISTICS ($V_{EE} = -5.2V$, $Ta = -30 \sim +85^\circ C$)

Item	Symbol	Test Condition		min	typ	max	Unit
Supply Current	I_{EE}			25°C	—	80	100
Input Current	I_{IH}	$V_{IH} = -0.810V$	A, D, \overline{CE}	25°C	—	—	35
			\overline{WE}		—	—	75
	I_{IL}	$V_{IL} = -1.850V$	A, \overline{WE}	25°C	— 6.0	—	6.0
Output Voltage	V_{OH}	$\overline{WE} = -1.205V$, $\overline{CE} = -1.500V$		—30°C	— 1.060	—	— 0.890
			$\overline{WE} = -1.105V$, $\overline{CE} = -1.475V$	25°C	— 0.960	—	— 0.810
			$\overline{WE} = -1.035V$, $\overline{CE} = -1.440V$	85°C	— 0.890	—	— 0.700
	V_{OL}	$\overline{WE} = -1.205V$, $\overline{CE} = -1.500V$		—30°C	— 1.890	—	— 1.675
			$\overline{WE} = -1.105V$, $\overline{CE} = -1.475V$	25°C	— 1.850	—	— 1.650
			$\overline{WE} = -1.035V$, $\overline{CE} = -1.440V$	85°C	— 1.825	—	— 1.615
Output Threshold Voltage	V_{OHA}	$\overline{WE} = -1.205V$, $\overline{CE} = -1.500V$		—39°C	— 1.080	—	—
			$\overline{WE} = -1.105V$, $\overline{CE} = -1.475V$	25°C	— 0.980	—	—
			$\overline{WE} = -1.035V$, $\overline{CE} = -1.440V$	85°C	— 0.910	—	—
	V_{OLA}	$\overline{CE_1}$ or $\overline{CE_2} = -1.205V$		—30°C	—	—	— 1.655
			$\overline{CE_1}$ or $\overline{CE_2} = -1.105V$	25°C	—	—	— 1.630
			$\overline{CE_1}$ or $\overline{CE_2} = -1.035V$	85°C	—	—	— 1.595


■AC CHARACTERISTICS ($V_{EE} = -3.2V$, $V_{CC} = +2.0V$, $Ta = 25^\circ C$)

Item	Symbol	Input	Output	Test Condition	min	typ	max	Unit
Access Time	t_A	\overline{CE}	Q	$R_L = 50\Omega$	—	—	8.0	ns
		A_5	Q		—	10	12	
		A_6	Q		—	9	10	
Write Strobe Mode	t_{st}	$D \rightarrow \overline{WE}$	Q		1.0	—	—	ns
		$\overline{CE} \rightarrow \overline{WE}$	Q		1.0	—	—	
		$A_2 \rightarrow \overline{WE}$	Q		3.0	—	—	
		$A_5 \rightarrow \overline{WE}$	Q		4.0	—	—	
Setup Time	t_{su}	$D \rightarrow \overline{WE}$	Q		1.0	—	—	ns
		$\overline{CE} \rightarrow \overline{WE}$	Q		1.0	—	—	
		$A_2 \rightarrow \overline{WE}$	Q		1.0	—	—	
		$A_5 \rightarrow \overline{WE}$	Q		3.0	—	—	
Hold Time	t_h	$D \rightarrow \overline{WE}$	Q		—	—	8.0	ns
		$\overline{CE} \rightarrow \overline{WE}$	Q		—	—	8.0	
		$A \rightarrow \overline{WE}$	Q		—	2.0	—	
Write Recovery Time	t_{WR}	\overline{WE}	Q		—	1.0	—	ns
Write Pulse Width	t_{WPW}	\overline{WE}	Q		—	—	—	ns
Rise Time	t_{TRH}		Q		—	—	—	ns
Fall Time	t_{TRL}		Q		—	—	—	ns


■SWITCHING TIME TEST CIRCUIT


1. Chip Enable Access Time

2. Address Access Time

3. Write Strobe Mode

Notes)

1. 50Ω termination to ground located in each scope channel input.
All input and output cables to the scope are equal lengths of 50Ω coaxial cable.
2. Wire length should be $< 6.35\text{mm}$ (1/4 inch) from TPin to input pin and TPout to output pin.
3. Unused outputs connected to a 50Ω resistor to ground.