

MOS Integrated Circuit $\mu PD75P036$

DESCRIPTION

The μ PD75P036 is a 4-bit signgle-chip microcontroller that replaced the μ PD75028's on-chip ROM with one-time PROM or EPROM. Because this device can operate at the same supply voltage as its mask version, it is suited for preproduction in development stage or small-scale production.

4-BIT SINGLE-CHIP MICROCONTROLLER

The one-time PROM version is programmable only once and is useful for small-scale production of many different products and time-to-market of a new product. The EPROM version is programmable, erasable, and reprogrammable, and is suited for the evaluation of application systems.

Detailed functions are described in the followin user's manual. Be sure to read it for designing. μ PD75028 User's Manual: IEU-1280

FEATURES

- μPD75028 compatible
 - At full production, the μ PD75P036 can be replaced with the μ PD75028 which incorporates mask ROM
- Memory capacity
 - Program memory (PROM): 16256 x 8 bits
 - Data memory (RAM): 1024 x 4 bits
- Internal pull-up resistors can be specified by software: Ports 0-3, 6-8
- Internal pull-down resistors can be specified by software: Port 9
- Open-drain input/output: Ports 4, 5, 10
- Can operate at low voltage: VDD = 2.7 to 6.0 V

ORDERING INFORMATION

Part Number	Package	Internal ROM	Quality Grade
μPD75P036CW	64-pin plastic shrink DIP (750 mils)	One-time PROM	Standard
μ PD75P036GC-AB8	64-pin plastic QFP (14 x 14 mm)	One-time PROM	Standard
μ PD75P036KG	64-pin ceramic WQFN	EPROM	Not applicable

Caution Internal pull-up/pull-down resistors cannot be specified by mask option as for this device.

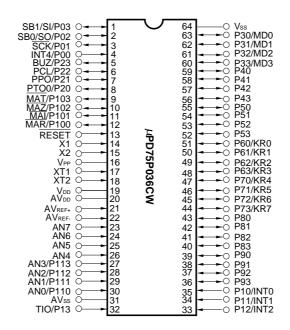
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on e devices and its recommended applications.

The reliability of the EPROM version, μ PD75P036KG, is not guaranteed when used in mass-produced application sets. Please use this device only experimentally or for evaluation during trial manufacture.

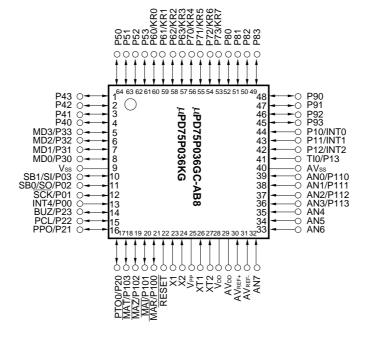
The function common to the one-time PROM and EPROM versions is referred to as PROM throughout this document.

The information in this document is subject to change without notice.

Document No. U10051EJ3V0DS00 (3rd edition) (Previous No. IC-2967


Date Published September 1995 P

Printed in Japan



PIN CONFIGURATIONS (Top View)

• 64-pin plastic shrink DIP (750 mils)

- 64-pin plastic QFP (14 x 14 mm)
- 64-pin ceramic WQFN

PIN IDENTIFICATION ★

P00-P03 : Port 0 INT0, INT1, INT4: External Vectored Interrupt

P10-P13 : Port 1 INT2 : External Test Input
P20-P23 : Port 2 X1, X2 : Main System Clock Oscillation

P30-P33 : Port 2 X1, X2 : Main System Clock Oscillation
P30-P33 : Port 3 XT1, XT2 : Subsystem Clock Oscillation

P50-P53 : Port 5 Control

P80-P83 : Port 8 MAT : External Comparate

P90-P93 : Port 9 MAT : External Comparate
Timing Input

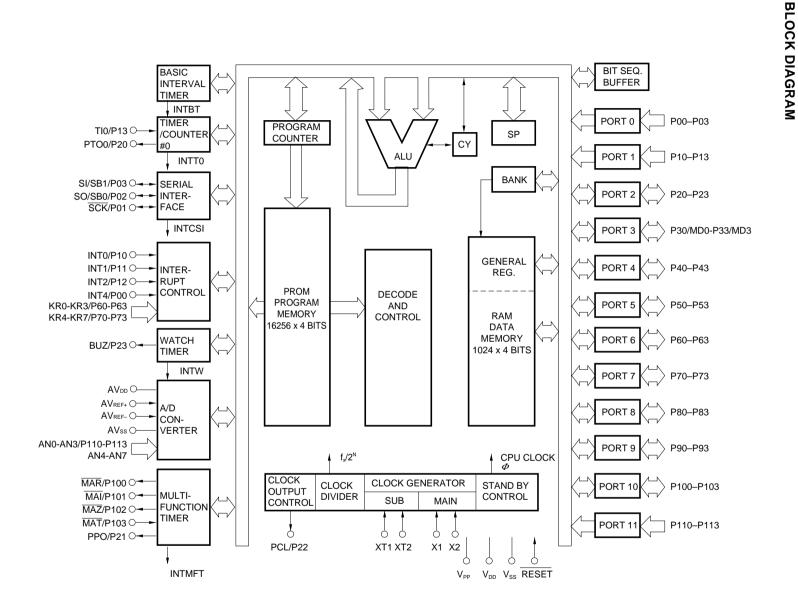
P100-P103 : Port 10 PPO : Programmable Pulse Output

P110-P113: Port 11 ··· MFT timer mode

KR0-KR7 : Key Return AN0-AN7 : Analog Input

SCK : Serial Clock AVREF+ : Analog Reference (+)
SI : Serial Input ABREF- : Analog Reference (-)

SO : Serial Output AVDD : Analog VDD SB0, SB1 : Serial Bus AVss : Analog Vss


TIO : Timer Input Vss : Ground

PTO0 : Programmable Timer Output MD0-MD3 : Mode Selection

BUZ : Buzzer Clock VPP : Programming/Verifying Power Supply

PCL : Programmable Clock

Remark MFT: Multifunction Timer

 μ PD75P036

CONTENTS

1.	PIN I	FUNCTIONS 6	
	1.1	Port Pins 6	
	1.2	Non-Port Pins 8	
	1.3	Pin Input/Output Circuits 10	
	1.4	Recommended Connection of Unused Pins 13	*
2.	MEN	MORY 14	
	2.1	Differences between μ PD75P036 and μ PD75028/75036 14	
	2.2	Program Memory (ROM) 15	
	2.3	Data Memory (RAM) 17	
3.	WRI	ITING AND VERIFYING PROM (PROGRAM MEMORY) 19	
	3.1	Operation Modes For Writing/Verifying Program Memory 19	
	3.2	Program Memory Write Procedure 20	
	3.3	Program Memory Read Procedure 21	
	3.4	Erasure (μPD75P036KG only) 22	*
4.	ELE	ECTRICAL SPECIFICATIONS 23	
5.	СНА	ARACTERISTIC CURVES 38	*
6.	PAC	CKAGE DRAWINGS 44	
7.	REC	COMMENDED SOLDERING CONDITIONS 47	
ΑP	PEND	DIX A. DEVELOPMENT TOOLS 48	
ΑP	PEND	DIX B. RELATED DOCUMENTS 49	*

1. PIN FUNCTIONS

1.1 Port Pins (1/2)

Pin Name	Input/Output	Alternate	Function	8-Bit I/O	When Reset	Input/Output
		Function				Circuit
						Type Note 1
P00	Input	INT4	4-bit input port (PORT0).	No	Input	B
P01	Input/Output	SCK	Internal pull-up resistors can be specified in			F - A
P02	Input/Output	SO/SB0	3-bit units for the P01 to P03 pins by			F - B
P03	Input/Output	SI/SBI	software.			M - C
P10	Input	INT0	With noise elimination function	No	Input	B - C
P11		INT1	4-bit input port (PORT1).			
P12		INT2	Internal pull-up resistors can be specified in			
P13		TI0	4-bit units by software.			
P20	Input/Output	PTO0	4-bit input/output port (PORT2).	No	Input	E-B
P21		PPO	Internal pull-up resistors can be specified in			
P22		PCL	4-bit units by software.			
P23		BUZ				
P30 Note 2	Input/Output	MD0	Programmable 4-bit input/output port	No	Input	E-B
P31 Note 2		MD1	(PORT3).			
P32 Note 2		MD2	This port can be specified for input/output			
P33 Note 2		MD3	in bit units.			
			Internal pull-up resistors can be specified in			
			4-bit units by software.			
Note 2			N-ch open-drain 4-bit input/output port	Yes	Input	M - A
P40-P43	Input/Output		(PORT4).			
			Withstands up to 10 V.			
			Data input/output pin for writing and verifying			
			of program memory (PROM) (lower 4 bits).			
Note 2	Input/Output		N-ch open-drain 4-bit input/output port		Input	M - A
P50-P53			(PORT5).			
			Withstands up to 10 V.			
			Data input/output pin for writing and verifying			
			of program memory (PROM) (upper 4 bits).			

Notes 1. Circles indicate Schmitt-triggerred inputs.

2. Can directly drive LEDs.

1.1 Port Pins (2/2)

Pin Name	Input/Output	Alternate Function	Function	8-Bit I/O	When Reset	Input/Output Circuit Type Note 1
P60	Input/Output	KR0	Programmable 4-bit input/output port	Yes	Input	F - A
P61		KR1	(PORT6).			
P62		KR2	Internal pull-up resistors can be specified in			
P63		KR3	4-bit units by software.			
P70	Input/Output	KR4	4-bit input/output port (PORT7).		Input	(F) - A
P71		KR5	Internal pull-up resistors can be specified in			
P72		KR6	4-bit units by software.			
P73		KR7				
P80-P83	Input/Output	_	4-bit input/output port (PORT8). Internal pull-up resistors can be specified in 4-bit units by software.	No	Input	E - B
P90-P93	Input/Output	_	4-bit input/output port (PORT9). Internal pull-up resistors can be specified in 4-bit units by software.		Input	E-D
P100	Input/Output	MAR	N-ch open-drain 4-bit input/output port	No	Input	M -A
P101		MAI	(PORT10).			
P102		MAZ	Withstands up to 10 V in open-drain mode.			
P103		MAT				
P110	Input	AN0	4-bit input/output port (PORT11).		Input	Υ
P111		AN1	1			
P112		AN2				
P113		AN3				

Note Circles indicate schmitt-triggerred inputs.

1.2 Non-Port Pins (1/2)

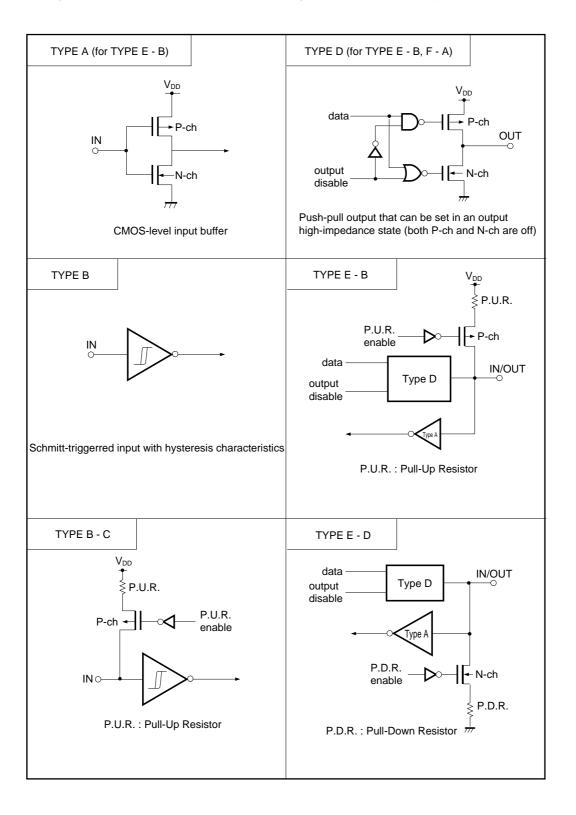
Pin Name	Input/Output	Alternate Function	Function	8-Bit l/	O When Reset	Input/Output Circuit Type Note 1
TI0	Input	P13	External event pul	se input pin to timer/event counter	Input	B - C
PTO0	Input/Output	P20	Timer/event count	er output pin	Input	E - B
PCL	Input/Output	P22	Clock output pin		Input	E - B
BUZ	Input/Output	P23	Fixed frequency o the system clock)	Input	E - B	
SCK	Input/Output	P01	Serial clock input/	output pin	Input	F- A
SO/SB0	Input/Output	P02	Serial data output	•	Input	(F)- В
01/054		Doo	Serial bus input/or	<u>' ' </u>		
SI/SB1	Input/Output	P03	Serial data output Serial bus input/or	Input	M- C	
INT4	Input	P00	Edge detection ve	ctored interrupt input pin (Either ge detection is effective)	Input	B
INT0	Input	P10	Edge detection ve	ctored interrupt input pin (Detection	Input	B - C
INT1		P11	edge can be selec	eted)		
INT2	Input	P12	Edge detection tes	stable input pin (rising edge detection	Input	B - C
KR0-KR3	Input/Output	P60-P63	Testable input/out	put pin (parallel falling edge detection) Input	F-A
KR4-KR7	Input/Output	P70-P73	Testable input/out	put pin (parallel falling edge detection) Input	F - A
MAR	Input/Output	P100	In integral A/D	Reverse integration signal output p	n Input	M - A
MAI	Input/Output	P101	converter mode	Integration signal output pin	Input	M - A
MAZ	Input/Output	P102	of MFT	Auto zero signal output pin	Input	M - A
MAT	Input/Output	P103		Comparator input pin	Input	M - A
PPO	Input/Output	P21	In timer mode of MFT	Timer pulse output pin	Input	E - B

Note Circles indicate Schmitt-triggerred inputs.

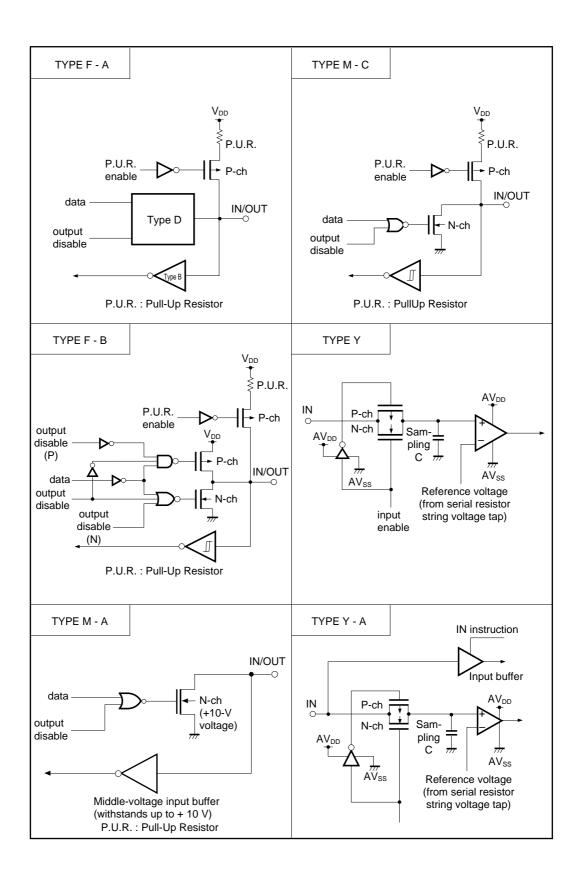
Remark MFT: Multifunction timer

1.2 Non-Port Pins (2/2)

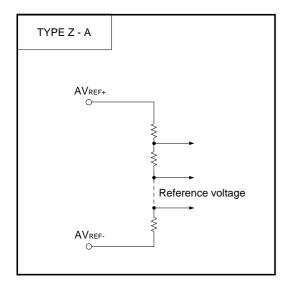
Pin Name	Input/Output	Alternate Function	Function		When Reset	Input/Output Circuit Type Note 1
AN0-AN3	Input	P110-P113	Pins only for A/D	8-bit analog input pin.	_	Y
AN4-AN7	•	_	converter			Y - A
AV _{REF+}	Input	_		Reference voltage input	_	Z - A
				pin (AV _{DD} side).		
AV _{REF} -	Input	_		Reference voltage input	_	Z - A
				pin (AVss side).		
AVDD	_	_		Positive power supply pin.	_	_
AVss	_	_		GND potential pin.	_	_
X1, X2	Input	_	Crystal or ceramic resonate	or connection for main	_	_
			system clock generation.	To use external clock, input		
			the external clock to X1 and	d its reverse phase to X2.		
XT1, XT2	Input	_	Crystal or ceramic resonate	or connection for subsystem	_	_
			clock generation. To use	external clock, input the		
			external clock to XT1 and it	ts reverse phase to XT2.		
			XT1 can be used as a 1-bit	input (test) pin.		
RESET	Input	_	System reset input pin.		_	B
MD0/MD3	Input/Output	P30-P33	Mode selection pins in prog	gram memory (PROM)	Input	E - B
			write/verify mode.			
V _{PP} Note 2	_	_	Program voltage application pin in program memory		_	
			(PROM) write/verify mode.			
			At normal operation, conne	ect the pin to VDD directly.		
			In the PROM write/verify m			
V _{DD}	_	_	Positive power supply pin.	_	_	
Vss	_	_	GND potential pin.		_	1_


Notes 1. Circles indicate schmitt trigger inputs.

2. If the V_{PP} pin is not connected directly to the V_{DD} pin at normal operation, the μ PD75P036 does not operate normally.



1.3 Pin Input/Output Circuits


The following shows a simplified input/output circuit diagram for each pin of the μ PD75P036.

μPD75P036

 μ PD75P036

1.4 Recommended Connection of Unused Pins

Pin Name	Recomended Connecting Method
P00/INT4	Connect to Vss.
P01/SCK	Connect to Vss or VDD.
P02/SO/SB0	
P03/SI/SB1	
P10/INT0-P12/INT2	Connect to Vss.
P13/TI0	
P20/PTO0	Input state: Independently connect to Vss or VDD via a
P21/PPO	resistor.
P22/PCL	Output state: Leave Open.
P23/BUZ	
P30/MD0-P33/MD3	
P40-P43	
P50-P53	
P60/KR0-P63/KR3	
P70/KR4-P73/KR7	
P80-P83	
P90-P93	
P100/MAR	
P101/MAI	
P102/MAZ	
P103/MAT	
P110/AN0-P113/AN3	Connect to Vss or VDD.
AN4-AN7	
AV _{REF+}	Connect to Vss.
AVref-	
AVss	
AV _{DD}	Connect to Vdd.
XT1	Connect to Vss or VDD.
XT2	Leave Open.
V _{PP}	Connect directly to VDD.

2. MEMORY

2.1 Differences between μ PD75P036 and μ PD75028/75036

The μ PD75P036 is a microcontroller provided by replacing the μ PD75028's on-chip mask ROM with one-time PROM or EPROM. Capacity of program memory and data memory are different, but CPU function and internal hardware are identical. Table 2-1 shows the differences between the μ PD75P036 and μ PD75028/75036. Users should fully consider these differences especially when debugging or producing an application system on an experimental basis by using the PROM version and then mass-producing the system using the mask ROM version. For details about the CPU function and the internal hardware, refer to μ PD75028 User's Manual (IEM-1280).

Table 2-1. Differences between μ PD75P036 and μ PD75028/75036

Item		μPD75P036	μPD75028	μPD75036		
Program memory		One-time PROM/EPROM Mask ROM				
		0000H-3F7FH	0000H-1F7FH	0000H-3F7FH		
		(16256 x 8 bits)	(8064 x 8 bits)	(16256 x 8 bits)		
Data memory		000H-3FFH	000H-1FFH	000H-3FFH		
		(1024 x 4 bits)	(512 x 4 bits)	(1024 x 4 bits)		
Pull-up resistor	Ports 0-3, 6-8	Can be specified by software.		•		
Ports 4, 5, 10		Not provided	Can be connected by mas	sk option		
Pull-down resistor Port 9		Can be specified by software.				
XT1 feedback resistor		Provided on-chip	ded on-chip Can be disconnected by mask option			
Supply voltage		V _{DD} = 2.7 to 6.0 V				
Pin connection	Pin 16 (SDIP)	VPP	Internally connected			
	Pin 25 (QFP)					
	Pins 60-63	P33/MD3-P30/MD0	P33-P30			
	(SDIP)					
	Pins 5-8 (QFP)					
Electrical specifica	tions	Supply current and operating	temperature ranges differ be	tween µPD75P036 and		
		μ PD75028/75036. For details, refer to the electrical specifications described in Data Sheet				
		of each model.				
Others		Noise immunity and noise radiation differ because circuit complexity and mask layout are				
		different.				

Caution The noise immunity and noise radiation differ between the PROM and mask ROM versions. To replace the PROM version with the mask ROM version in the course of experimental production to mass production, evaluate your system by using the CS version (not ES) of the mask ROM version.

2.2 Program Memory (ROM) -- 16256 words x 8 bits

The program memory is a 16256-word x 8-bit PROM and stores programs, table data, etc.

The program memory is accessed by referencing the program counter contents. Table data can be referenced by executing a table look-up instruction (MOVT).

Figure 2-1 shows the address range in which a branch can be taken by branch instructions and subroutine call instructions. A relative branch instruction (BR α) enables a branch to addresses [PC value α 15 to α 1, +2 to +16] regardless of block boundaries.

Program memory addresses are 0000H-3F7FH and the following addresses are assigned to special purposes: (All areas except 0000H or 0001H can be used as normal program memory.)

• Addresses 0000H-0001H

Vector table into which the program start address and MBE setting value when the RESET signal is generated are written.

Processing at reset is started at any desired address.

• Addresses 0002H-000DH

Vector table into which the program start address and MBE setting value when each vectored interrupt is generated are written.

Interrupt servicing can be started at any desired address.

• Addresses 0020H-007FH

Table area referenced by the GETI instructionNote.

Note The GETI instruction is provided to execute any 2-byte or 3-byte instruction or two 1-byte instructions as a 1-byte instruction; it is used to reduce the number of program steps.

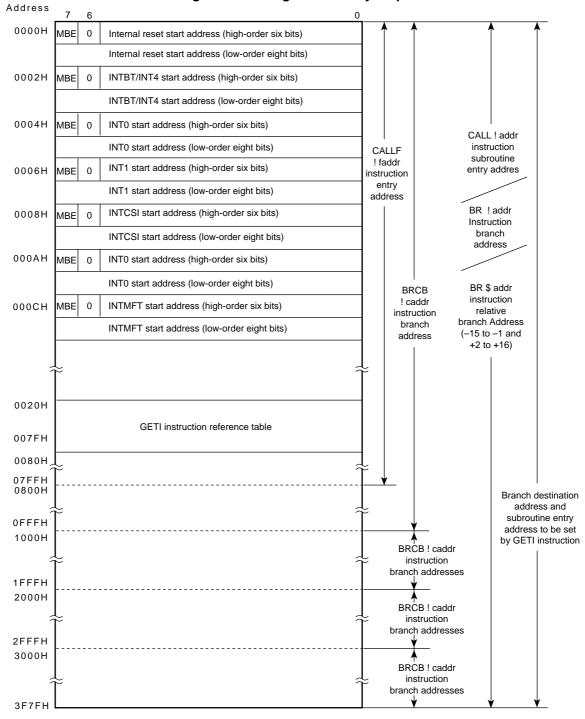
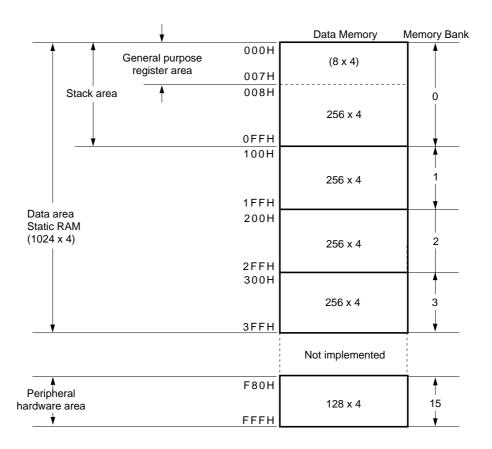


Figure 2-1. Program Memory Map


2.3 Data Memory (RAM)

The data memory consists of a data area and a peripheral hardware area as shown in Figure 2-2.

The data memory consists of banks, each consisting of 256 words x 4 bits, and the following memory banks can be used:

- Memory banks 0-3 (data area)
- Memory bank 15 (peripheral hardware area)

Figure 2-2. Data Memory Map

(1) Data area

The data area consists of static RAM and is used to store process data and as stack memory when a (subroutine) or an interrupt is executed. Even when CPU operation is stopped in the standby mode, the memory contents can be retained for hours with battery backup, etc. The data area is manipulated by executing memory manipulation instructions.

The static RAM is mapped each 256 x 4 bits in memory banks 0-3. Bank 0 is mapped as a data area; it can also be used as a general purpose register area (000H-007H) and a stack area (000H-0FFH).

One address of the static RAM consists of four bits; however it can be manipulated in 8-bit units by executing 8-bit memory manipulation instructions and bit-wise by executing bit manipulation instructions. To execute an 8-bit memory manipulation instruction, specify an even address.

(a) General purpose register area

Can be handled by executing general purpose register and memory manipulation instructions. A maximum of eight 4-bit registers can be used. The portions of the eight general purpose registers not used by a program can be used as a data area or stack area.

(b) Stack area

Is set by an instruction and can be used as a save area when a subroutine is executed or interrupt servicing is performed.

(2) Peripheral hardware area

The peripheral hardware area is mapped in addresses F80H-FFFH of memory bank 15.

Like the static memory, the peripheral hardware area is handled by executing memory manipulation instructions. However, the bit units in which the peripheral hardware can be manipulated vary depending on the address. Addresses in which the peripheral hardware is not mapped do not contain data memory and cannot be accessed.

3. WRITING AND VERIFYING PROM (PROGRAM MEMORY)

The program memory incorporated in the μ PD75P036 is a 16256 x 8-bit electrically writable PROM. The pins as listed in the table given below are used for write and verification of the PROM. No address is input; instead, an address is updated by inputting a clock from the X1 pin.

Pin Name	Function
V _{PP}	Applies voltage when program memory is written/verified (normally, at VDD potential)
X1, X2	These pins input clock that updates address when program memory is written/verified. To X2 pin,
	input X1's signal reverse phase.
MD0-MD3 (P30-P33)	These pins select operation mode when program memory is written/verified.
P40-P43 (Lower 4)	These pins input/output 8-bit data when program memory is written/verified.
P50-P53 (Upper 4)	
V _{DD}	Power supply voltage application pin.
	Apply 2.7 to 6.0 V to this pin during normal operation and 6 V when program memory is written/verified.

- Cautions 1. Always cover the erasure window of the μ PD75P036KG with an opaque film except when the contents of the EPROM are erased.
 - 2. The one-time PROM version μ PD75P036CW/GC is not equipped with a window, and therefore, the contents of the program memory of this model cannot be erased by exposing it to ultraviolet rays.

3.1 Operation Modes For Writing/Verifying Program Memory

When +6V is applied to the V_{DD} pin of the μ PD75P036 with +12.5V applied to the V_{PP} pin, the μ PD75P036 is set in the program memory write/verify mode. In this mode, the following operation modes can be set by using the MD0-MD3 pins. At this time, all remaining pins are set to the V_{SS} potential with pull-down resistors.

Operating Mode Specification					Operating Mode	
VPP	V _{DD}	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	Н	L	Н	L	Program memory address 0 clear mode
		L	Н	Н	Н	Write mode
		L	L	Н	Н	Verify mode
		Н	Х	Н	Н	Program inhibit mode

x: Lor H

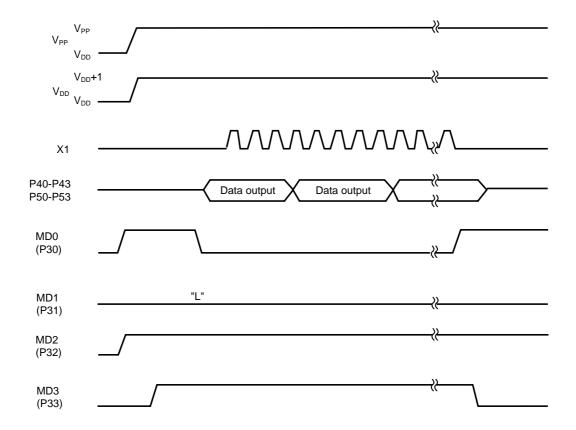


3.2 Program Memory Write Procedure

The program memory write procedure is as follows. High-speed program memory write is possible.

- (1) Connect the unused pins to Vss via pull-down resistors. The X1 pin must be low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Set program memory address 0 clear mode.
- (5) Supply 6 V to the V_{DD} pin and 12.5 V to the V_{PP} pin.
- (6) Set program inhibit mode.
- (7) Write data in 1 ms write mode.
- (8) Set program inhibit mode.
- (9) Set verify mode. If data has been written connectly, proceed to step (10). If data has not yet been written, repeat steps (7) to (9).
- (10) Write additional data for (the number of times data was written (X) in steps (7) to (9)) times 1 ms.
- (11) Set program inhibit mode.
- (12) Supply a pulse to the X1 pin four times to update the program memory address by 1.
- (13) Repeat steps (7) to (12) to the last address.
- (14) Set program memory address 0 clear mode.
- (15) Change the voltages of VDD and VPP pins to 5 V.
- (16) Turn off the power supply.

Steps (2) to (12) are illustrated below.



3.3 Program Memory Read Procedure

The μ PD 75P036 program memory contents can be read in the following procedure. Read operation should be performed in the verify mode.

- (1) Connect the unused pins to Vss via pull-down resistors. The X1 pin must be low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Set program memory address 0 clear mode.
- (5) Supply 6 V to the V_{DD} pin and 12.5 V to the V_{PP} pin.
- (6) Set program inhibit mode.
- (7) Set verify mode. Data of each address is sequentially output each time a clock pulse is input to the X1 pin four times.
- (8) Set program inhibit mode.
- (9) Set program memory address 0 clear mode.
- (10) Change the voltages of VDD and VPP pins to 5 V.
- (11) Turn off the power supply.

Steps (2) to (9) are illustrated below.

***** 3.4 Erasure (μ PD75P036KG only)

The contents of the data programmed to the μ PD75P036 can be erased by exposing the window to ultraviolet rays.

The wavelength of the ultraviolet rays used to erase the contents is about 250 nm, and the quantity of the ultraviolet rays necessary for complete erasure is 15 W•s/cm² (= ultraviolet ray intensity x erasure time).

When a commercially available ultraviolet ray lamp (wavelength: 254 nm, intensity: 12 mW/cm²) is used, about 15 to 20 minutes is required.

- Cautions 1. The contents of the program memory may be erased if the µPD75P036 is exposed for a long time to direct sunlight or a fluorescent light. To protect the contents from being erased, mask the window with the opaque film. NEC attaches quality-tested opaque film to the UV EPROM products for shipping.
 - 2. To erase the memory contents, the distance between the ultraviolet ray lamp and the μ PD75P036 should be 2.5 cm or less.
- **Remark** The time required for erasure changes depending on the degradation of the ultraviolet ray lamp and the surface condition (dirt) of the window.

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25 °C)

Parameter	Symbol	Test Conditions		Ratings	Unit
Supply voltage	V _{DD}			-0.3 to +7.0	V
	V _{PP}			-0.3 to +13.5	V
Input voltage	Vıı	Other than ports 4, 5, or 1	0	-0.3 to V _{DD} +0.3	V
	Vı2	Ports 4, 5 and 10	Open-drain	-0.3 to +11	V
Output voltage	Vo			-0.3 to V _{DD} +0.3	V
Output current, high	Іон	Per pin		-10	mA
		All pins	-30	mA	
Output current, low	IOL Note	Ports 0, 3, 4 and 5	peak value	30	mA
		Per pin	r.m.s. value	15	mA
		Other than ports	peak value	20	mA
		0, 3, 4 and 5	r.m.s. value	5	mA
		Per pin			
		Total for ports 0, 3-9, 11	peak value	170	mA
			r.m.s. value	120	mA
		Total for 0, 2, 10	peak value	30	mA
			r.m.s. value	20	mA
Operating ambient temperature	TA			-40 to +70	°C
Storage temperature	T _{stg}			-65 to +150	°C

Note r.m.s. values should be calculated as follows: [r.m.s. value] = [peak value] $x\sqrt{Duty}$

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25 °C, VDD = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	f = 1 MHz			15	pF
Output capacitance	Со	Unmeasured pins returned to 0 V			15	pF
I/O capacitance	Сю				15	pF

*

Main System Clock Oscillator Characteristics (TA = -40 to +70 °C, VDD = 2.7 to 6.0 V)

Resonator	Recommended Constants	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Oscillation frequency (fx) Note 1	V _{DD} = Oscillation voltage range	2.0		5.0 Note 3	MHz
	C1 — C2	Oscillation stabilization time Note 2	After VDD came to MIN. of oscillation voltage range			4	ms
Crystal resonator	X1 X2	Oscilaltion frequency (fx) Note 1		2.0	4.19	5.0 Note 3	MHz
	C1 = = C2	Oscillation stabilization time Note 2	V _{DD} = 4.5 to 6.0 V			10	ms
	V _{DD}					30	ms
External clock	X1 X2	X1 input frequency (fx) Note 1		2.0		5.0 Note 3	MHz
	APD74HCU04	X1 input high- and low-level widths (txH, txL)		100		250	ns

- **Notes 1.** The oscillation frequency and X1 input frequency are indicated only to express the characteristics of the oscillator. For instruction execution time, refer to AC Characteristics.
 - 2. Time required for oscillation to stabilize after V_{DD} reaches the minimum value of the oscillation voltage range or the STOP mode has been released.
 - 3. When the oscillation frequency is 4.19 MHz < fx \leq 5.0 MHz, do not select PCC = 0011 as the instruction execution time: otherwise, one machine cycle is set to less than 0.95 μ s, falling short of the rated minimum value of 0.95 μ s.
- ★ Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high alternating current flows.
 - Always keep the ground point of the capacitor of the oscillator circuit at the same potential as
 VDD. Do not connect the power source pattern through which a high current flows.
 - Do not extract signals from the oscillation circuit.

Subsystem Clock Oscillator Characteristics (TA = -40 to +70 °C, VDD = 2.7 to 6.0 V)

Resonator	Recommended Constants	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2	Oscillation frequency (fx) Note 1		32	32.768	35	kHz
	R	Oscillation stabilization time Note 2	V _{DD} = 4.5 to 6.0 V		1.0	2	S
	C3 C4					10	s
External clock	X1 X2	X1 input frequency (fx) Note 1		32		100	kHz
	→ → → →	X1 input high-, low-level widths (txH, txL)		5		15	μs

- **Notes 1.** The oscillation frequency and XT1 input frequency are indicated only to express the characteristics of the oscillator. For instruction execution time, refer to AC Characteristics.
 - 2. Time required for oscillation to stabilize after VDD reaches the minimum value of the oscillation voltage range.

Cautions When using the oscillation circuit of the main system clock, wire the portion enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:

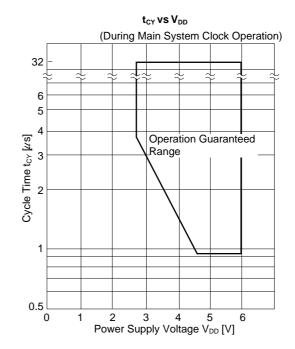
- · Keep the wiring length as short as possible.
- Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator circuit at the same potential as V_{DD}. Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

The amplification factor of the subsystem clock oscillation circuit is designed to be low to reduce the current dissipation and therefore, the subsystem clock circuit is influenced by noise more easily than the main system clock oscillation circuit. When using th subsystem clock, therefore, exercise utmost care in wiring the circuit.

DC Characteristics (TA = -40 to +70 °C, VDD = 2.7 to 6.0 V)

Parameter	Symbol	Test Condition	s	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Ports 2, 3, 8, 9	9, 11	0.7V _{DD}		V _{DD}	V
	V _{IH2}	Ports 0, 1, 6, 7	7, RESET	0.8V _{DD}		V _{DD}	V
	VIH3	Ports 4, 5, 10	Open-drain	0.7V _{DD}		10	V
	V _{IH4}	X1, X2, XT1, X	CT2	V _{DD} -0.5		V _{DD}	V
Input voltage, low	VIL1	Ports 2 to 5, 8	Ports 2 to 5, 8 to 11			0.3V _{DD}	V
	V _{IL2}	Ports 0, 1, 6, 7	7, RESET	0		0.2V _{DD}	V
	V _{IL3}	X1, X2, XT1, X	(T2	0		0.4	V
Output voltage, high	Vон	$V_{DD} = 4.5 \text{ to } 6.$	0 V, Iон = -1 mA	V _{DD} -1.0			V
		Іон = -100 μΑ	,	V _{DD} -0.5			V
Output voltage, low	Vol	Ports 3, 4, 5	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V},$		0.4	2.0	V
			IoL = 15 mA				
		$V_{DD} = 4.5 \text{ to } 6.$	0 V, IoL = 1.6 mA			0.4	V
		IoL = 400 μA				0.5	V
		SB0, 1	Open-drain			0.2V _{DD}	V
			Pull-up Resistor ≥ 1 kΩ				
Input leakage current, high	ILIH1	Vı = Vdd	Other than below			3	μΑ
	I _{LIH2}		X1, X2, XT1, XT2			20	μΑ
	Ішнз	V1 = 9 V	Ports 4, 5, 10			20	μΑ
			(Open-drain)				
Input leakage current, low	ILIL1	V1 = 0 V	Other than below			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
Input leakage current, high	ILOH1	Vo = VDD				3	μΑ
	110Н2	Vo = 9 V	Ports 4, 5, 10			20	μΑ
			(Open-drain)				
Input leakage current, low	ILOL	Vo = 0 V				-3	μΑ
Internal pull-up resistor	Rui	Ports 0, 1, 2,	V _{DD} = 5.0 V ± 10 %	15	40	80	kΩ
		3, 6, 7, 8	$V_{DD} = 3.0 \text{ V} \pm 10 \%$	30		300	kΩ
		(except P00)					
		Vı = Vdd					
Internal pull-down resistor	R□	Port 9	V _{DD} =5.0 V ± 10 %	10	40	70	kΩ
		$V_I = V_{DD}$	V _{DD} = 3.0 V ± 10 %	10		60	kΩ

Parameter	Symbol	Test Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	I _{DD1}	4.19 MHz	VDD = 5 V ± 10% Note 3			4.5	14	mA	
		Crystal	VDD = 3 V	± 10% №	ote 4		0.9	3	mA
	I _{DD2}	oscillator Note 2	HALT	V _{DD} = 5	5 V ± 10%		700	2100	μΑ
		C1 = C2 = 22 pF	mode	V _{DD} = 3	3 V ± 10%		300	900	μΑ
	I _{DD3}	32.768 kHz	Operating	V _{DD} = 3	3 V ± 10%		100	300	μΑ
		Crystal	mode						
	I _{DD4}	oscillator Note 5	HALT	V _{DD} = 3	3 V ± 10%		20	60	μΑ
			mode						
	I _{DD5}	XT1 = 0 V	VDD = 5 V	10%			0.5	20	μΑ
		STOP mode	VDD =				0.1	10	μΑ
			3 V ± 10%	TA	= 25°C		0.1	5	μΑ
	I _{DD6}	32.768 kHz	V _{DD} = 3 V ± 10% Note 6			5	15	μΑ	
		Crystal oscillator							
		STOP mode							


- Notes 1. Currents for the internal pull-up resistor are not included.
 - 2. Including when the subsystem clock is operated.
 - 3. High-speed mode operation (when processor clock control register (PCC) is set to 0011).
 - 4. Low-speed mode operation (when PCC is set to 0000).
 - **5.** When operated with the subsystem clock by setting the system clock control register (SCC) to SCC3 = 1 and SCC0 = 0 to stop the main system clock operation.
 - **6.** When subsystem clock is operated by executing STOP instruction during main system clock operation.

AC CHARACTERISTICS (TA = -40 to +70 °C, VDD = 2.7 to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note 1	tcy	Operating on	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	0.95		32	μs
(minimum instruction execution		main system clock		3.8		32	μs
time = 1 machine cycle)		Operating on		114	122	125	μs
		subsystem clock					
TI0 input frequency	f⊤ı	V _{DD} = 4.5 to 6.0 V		0		1	MHz
				0		275	kHz
TI0 input high-, low-level widths	tтıн,	V _{DD} = 4.5 to 6.0 V		0.48			μs
	t⊤ı∟			1.8			μs
Interrupt input high-, low-level	tinth,	INT0		Note 2			μs
widths	tintl	INT1, 2, 4		10			μs
		KR0 - 7		10			μs
RESET low-level width	t RSL			10			μs

- Notes 1. The CPU clock (Φ) cycle time is determined by the oscillation frequency of the connected oscillator, system clock control register (SCC), and processor clock control register (PCC). The figure on the right is cycle time toy vs. supply voltage V_{DD} characteristics at the main system clock.
 - 2. 2tcy or 128/fx depending on the setting of the interrupt mode register (IM0).

SERIAL TRANSFER OPERATION

Two-Wire and Three-Wire Serial I/O Modes (SCK: internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit	
SCK cycle time	tkCY1	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		1600			ns
				3800			ns
SCK high-, low-level widths	t _{KL1}	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		(tkcy1/2)-50			ns
	t _{KH1}			(tkcy1/2)-150			ns
SI setup time (to $\overline{SCK} \downarrow$)	tsıĸ1			150			ns
SI hold time (from SCK ↑)	t _{KSI1}			400			ns
SO output delay time	tkso1	$R_L = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		250	ns
from $\overline{SCK}\ \downarrow$		C _L = 100 pF Note		0		1000	ns

Two-Wire and Three-Wire Serial I/O Modes (SCK: external clock input)

Parameter	Symbol	Test Conditions	Test Conditions			MAX.	Unit
SCK cycle time	tkcy2	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		800			ns
				3200			ns
SCK high-, low-level widths	t _{KL2}	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		400			ns
	t _{KH2}			1600			ns
SI setup time (to SCK ↓)	tsık2			100			ns
SI hold time (from SCK ↑)	tks12			400			ns
SO output delay time	tks02	$R_L = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V	0		300	ns
from $\overline{SCK}\ \downarrow$		C _L = 100 pF Note		0		1000	ns

Note R_L and C_L are load resistance and load capacitance of the SO output line.

SBI Mode (SCK: internal clock output (master))

Parameter	Symbol	Test Conditions	·	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксүз	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		1600			ns
				3800			ns
SCK high-/low-level widths	tкL3	V _{DD} = 4.5 to 6.0 V		(tксүз/2)-50			ns
	tкнз			(tксүз/2)-150			ns
SB0, 1 Setup time (to SCK ↑)	tsıкз			150			ns
SB0, 1 hold time (from $\overline{SCK} \uparrow$)	tкsıз			tксүз/2			ns
SB0, 1 output delay time	tkso3	$R_L = 1 k\Omega$,	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	0		250	ns
from $\overline{SCK}\ \downarrow$		C _L = 100 pF Note		0		1000	ns
SB0, 1 ↓ from SCK ↑	tкsв			tксүз			ns
SCK ↓ from SB0, 1 ↓	tsвк			tксүз			ns
SB0, 1 low-level width	tsbl			tксүз			ns
SB0, 1 high-level width	tsвн			tксүз			ns

SBI Mode (SCK: external clock output (master))

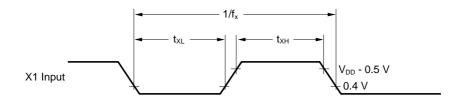
Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy4	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		800			ns
				3200			ns
SCK high-/low-level widths	t _{KL4}	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$		400			ns
	t кн4			1600			ns
SB0, 1 setup time (to SCK ↑)	tsik4			100			ns
SB0, 1 hold time (from SCK ↑)	tksi4			tkcy4/2			ns
SB0, 1 output delay time	tkso4	$R_L = 1 k\Omega$,	$V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$	0		300	ns
from SCK ↓		C _L = 100 pF Note		0		1000	ns
SB0, 1 ↓ from SCK ↑	tкsв			tkcy4			ns
SCK ↓ from SB0, 1 ↓	tsвк			tkcy4			ns
SB0, 1 low-level width	tsbl			tKCY4			ns
SB0, 1 high-level width	tsвн			tKCY4			ns

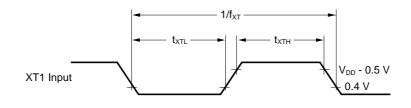
Note RL and CL are load resistance and load capacitance of the SO output line.

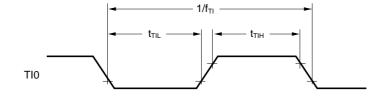
A/D Converter (TA = $-40 \text{ to } +70^{\circ}\text{C}$, VDD = 2.7 to 6.0 V, AVss = Vss = 0 V)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit	
Resolution				8	8	8	bit
Absolute accuracy Note 1		2.5 V ≤ AVREF+ ≤ AVDD	-10 ≤ T _A ≤ 70 °C			±1.5	LSB
			-40 ≤ T _A ≤ -10 °C			±2.0	LSB
Conversion time Note 2	tconv					168/f _x	μs
Sampling time Note 3	tsamp					44/f _x	μs
Analog input voltage	VIAN			AVREF-		AV _{REF+}	V
Analog supply voltage	AVDD			2.5		V _{DD}	V
Reference input voltage Note 4	AV _{REF+}	2.5 V ≤ (AV _{REF+}) − (AV	REF-)	2.5		AVDD	V
Reference input voltage Note 4	AVREF-	2.5 V ≤ (AV _{REF+}) − (AV	REF-)	0		1.0	V
Analog input high impedance	Ran				1000		МΩ
AVREF current	AIREF				0.35	2.0	mA

- **Notes 1.** Absolute accuracy from which quantization error ($\pm 1/2$ LSB) is removed.
 - 2. Time until conversion end (EOC = 1) after conversion start instruction execution (40.1 μ s: Operation at fx = 4.19 MHz).
 - 3. Time until sampling end after conversion start instruction execution (10.5 μ s: Operation at fx = 4.19 MHz).
 - **4.** $(AV_{REF+}) (AB_{REF-})$ should be 2.5 V or more.

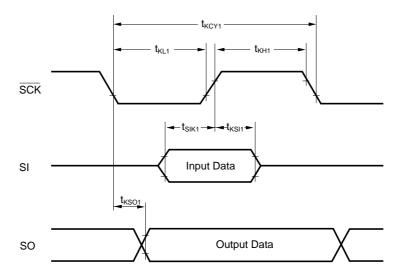

μPD75P036

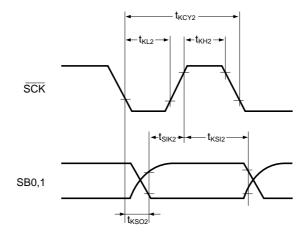

AC Timing Test Point (excluding X1 and XT1 inputs)



Clock Timing

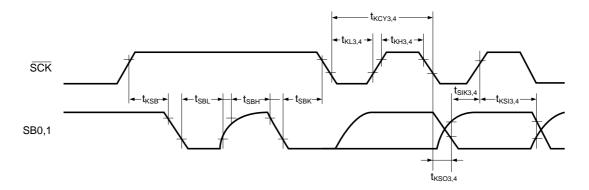
TI0 Timing

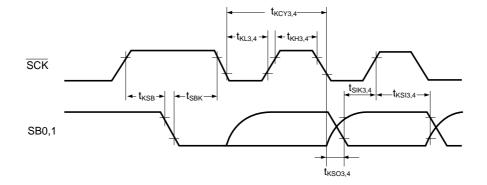



 μ PD75P036

Serial Transfer Timing

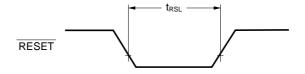
Three-Wire Serial I/O Mode:


Two-Wire Serial I/O Mode:



Serial Transfer Timing

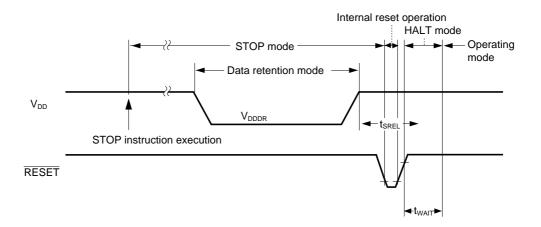

Bus Release Signal Transfer


Command Signal Transfer

Interrupt Input Timing

RESET Input Timing

Data Memory STOP Mode: Low-voltage Data Retention Characteristics ($T_A = -40 \text{ to } +70 \text{ }^{\circ}\text{C}$)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		2.0		6.0	V
Data retention supply current Note 1	IDDDR	VDDDR = 2.0 V		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization wait time Note 2	twait	Released by RESET Released by interrupt		2 ¹⁷ /f _x Note 3		ms ms

Notes 1. Does not include current in the internal pull-up resistor


- **2.** The oscillation stabilization wait time is the time during which the CPU is stopped to prevent unstable operation when oscillation is started.
- 3. Depends on the setting of the basic interval timer mode register (BTM) as follows:

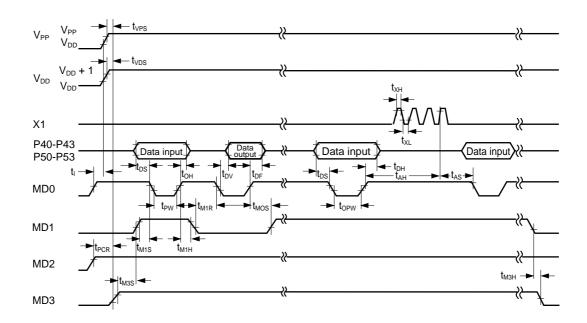
ВТМ3	BTM2	BTM1	BTM0	WAIT time (): $f_x = 4.19 \text{ MHz}$
_	0	0	0	2 ²⁰ /f _x (approx. 250 ms)
_	0	1	1	2 ¹⁷ /f _x (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /f _x (approx. 7.82 ms)
_	1	1	1	2 ¹³ /f _x (approx. 1.95 ms)

Data Retention Timing (releasing STOP mode by RESET)

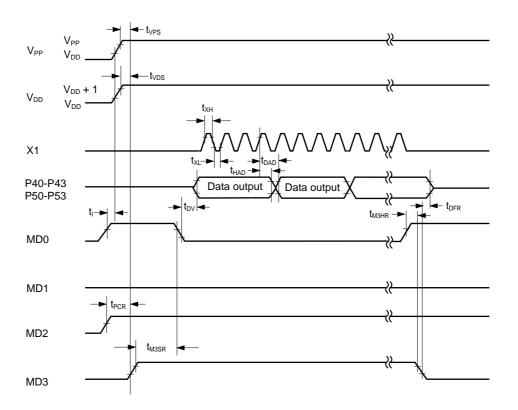
Data Retention Timing (standby release signal: releasing STOP mode by interrupt)

DC Programming Characteristics (TA = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, Vss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Other than X1 or X2	0.7V _{DD}		V _{DD}	V
	V _{IH2}	X1 and X2	V _{DD} -0.5		V _{DD}	V
Input voltage, low	VIL1	Other than X1 or X2	0		0.3V _{DD}	V
	V _{IL2}	X1 and X2	0		0.4	V
Input leakage current	Iu	VIN = VIL OR VIH			10	μΑ
Output voltage, high	Vон	Iон = −1 mA	V _{DD} -1.0			V
Output voltage, low	Vol	IoL = 1.6 mA			0.4	V
V _{DD} supply current	IDD				30	mA
VPP supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

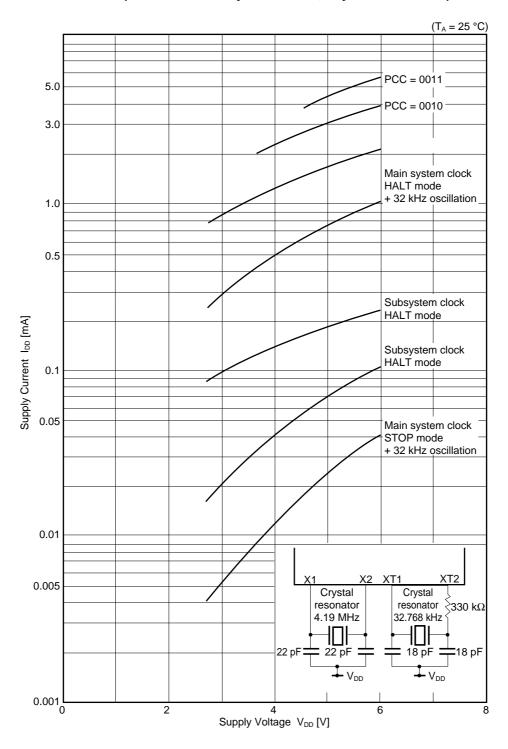

- Cautions 1. VPP must not exceed +13.5 V, including the overshoot.
 - 2. Apply VDD before VPP and disconnect it after VPP.
- **AC Programming Characteristics** (TA = 25 ± 5 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.3 V, Vss = 0 V)

Parameter	Symbol	Note 1	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (to MD0 ↓)	tas	tas		2			μs
MD1 setup time (to MD0 ↓)	t _{M1S}	toes		2			μs
Data setup time (to MD0 ↓)	tos	tos		2			μs
Address hold time Note 2 (from MD0 ↑)	tан	t AH		2			μs
Data hold time (from MD0 ↑)	tон	tон		2			μs
Data output float delay time from MD0 1	tor	t DF		0		130	ns
V _{PP} setup time (to MD3 ↑)	tvps	tvps		2			μs
V _{DD} setup time (to MD3 ↑)	tvds	tvcs		2			μs
Initialized program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1 ↑)	tmos	tces		2			μs
Data output delay time from MD0 \downarrow	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0 ↑)	t _{м1} н	t oeh	tм1H + tм1R ≥ 50 μs	2			μs
MD1 recovery time (from MD0 ↓)	t _{M1R}	tor	1	2			μs
Program counter reset time	tpcr	_		10			μs
X1 input high-/low-level width	txH, txL	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode set time	tı	_		2			μs
MD3 setup time (to MD1 ↑)	tмзs	_		2			μs
MD3 hold time (from MD1 ↓)	tмзн	_		2			μs
MD3 setup time (from MD0 ↓)	t _{M3SR}	_	When data is read from	2			
			program memory				μs
Address Note 2 to data output delay time	t DAD	tacc	When data is read from	2			μs
			program memory				
Address Note 2 to data output hold time	thad	tон	When data is read from	0		130	ns
			program memory				
MD3 hold time (from MD0 ↑)	tмзнк	_	When data is read from	2			μs
			program memory				
Data output float delay time from MD3 J	torr	_	When data is read from	2			μs
			program memory				

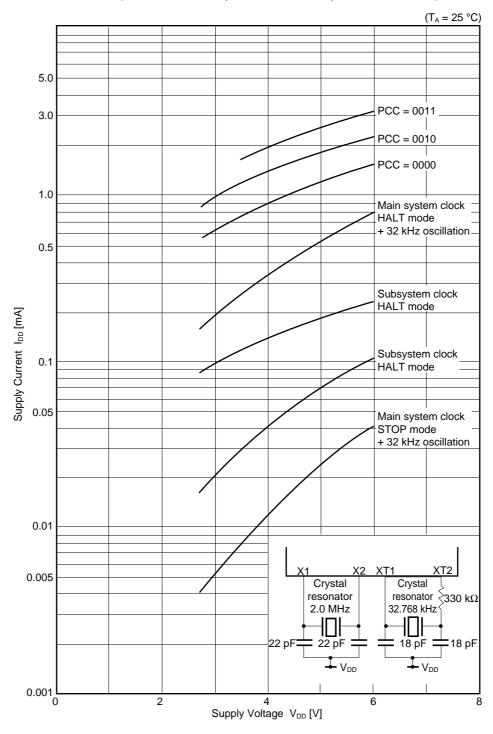

Notes 1. These symbols are correspond to $\mu PD27C256A$ symbols.

2. The internal address signal is incremented by 1 at the rising edge of fourth X1 input. The internal address is not connected to any pin.

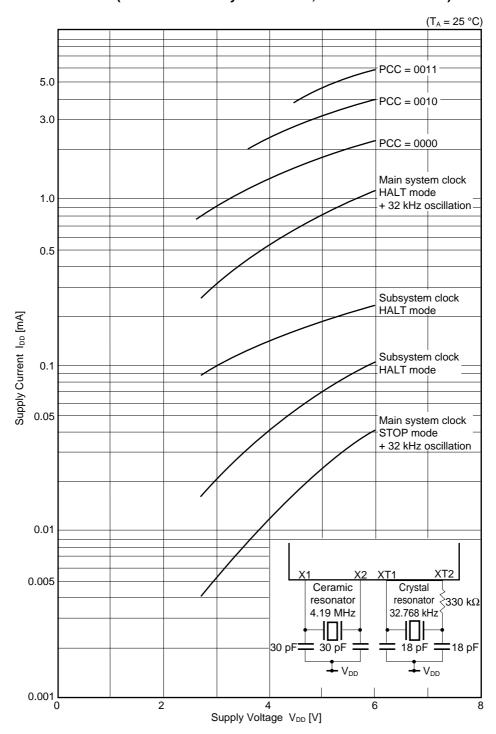
Program Memory Write Timing

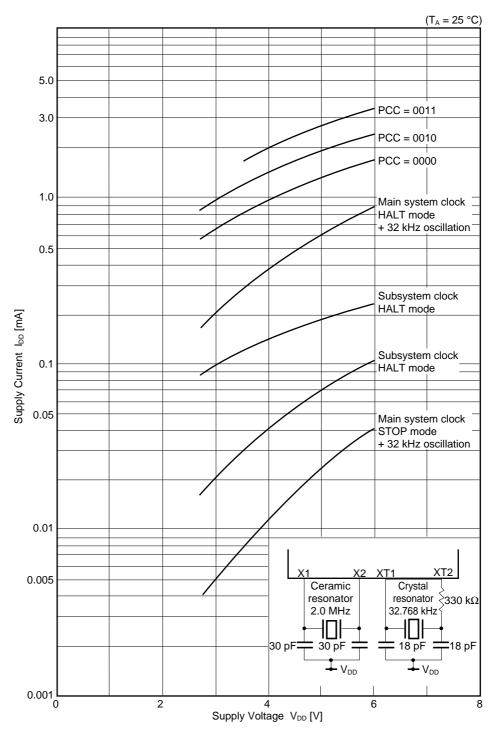


Program Memory Read Timing

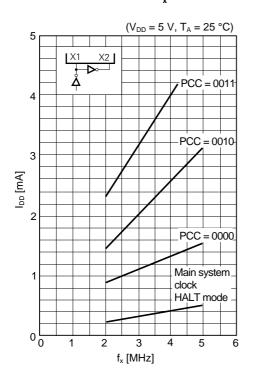


★ 5. CHARACTERISTIC CURVES (REFERENCE VALUES)

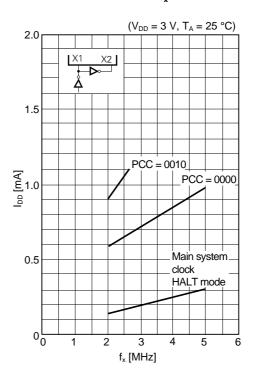

IDD vs VDD (4.19-MHz Main System Clock, Crystal Resonator)


IDD VS VDD (2.0-MHz Main System Clock, Crystal Resonator)

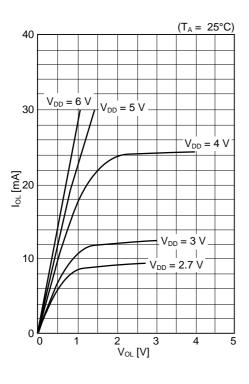
IDD VS VDD (4.19-MHz Main System Clock, Ceramic Resonator)

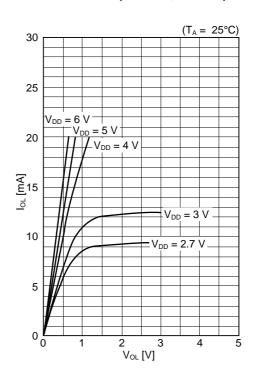


IDD vs VDD (20-MHz Main System Clock, Ceramic Resonator)

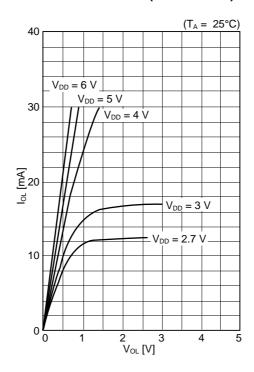


μPD75P036

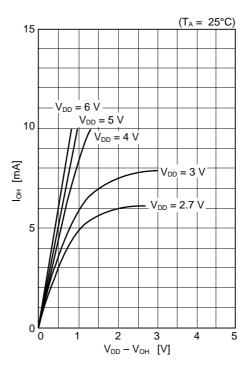

Idd vs f_x


IDD VS fx

IOL VS VOL (Port 0)

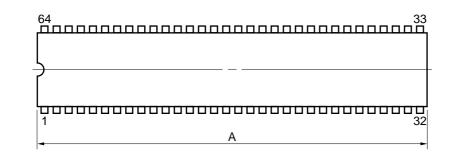


IoL vs Vol (Ports 2, 6 to 10)

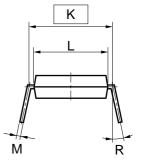


NEC μ PD75P036

IOL vs Vol (Ports 3 to 5)

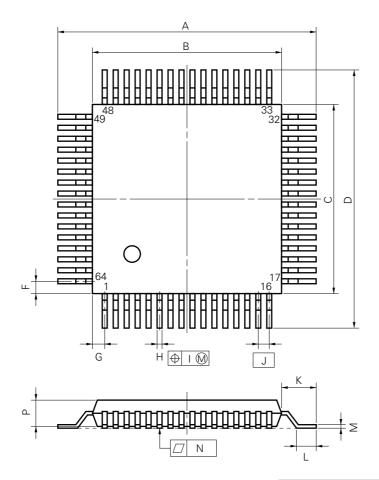



IOH VS VDD-VOH

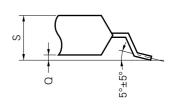


6. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)


NOTE

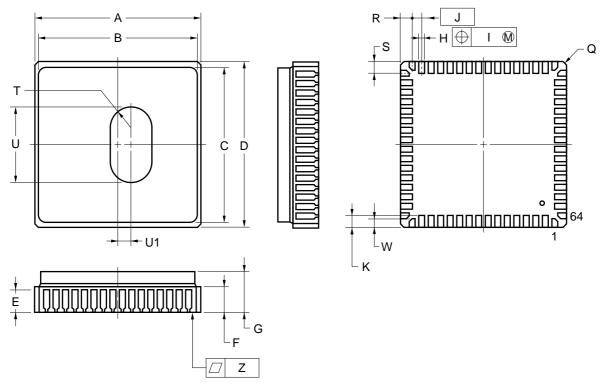
- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS INCHES	
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	0.020+0.004
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

64 PIN PLASTIC QFP (□14)

detail of lead end


NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

P64GC-80-AB8-3

ITEM	MILLIMETERS	INCHES	
А	17.6±0.4	0.693±0.016	
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$	
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$	
D	17.6±0.4	0.693±0.016	
F	1.0	0.039	
G	1.0	0.039	
Н	0.35±0.10	$0.014^{+0.004}_{-0.005}$	
I	0.15	0.006	
J	0.8 (T.P.)	0.031 (T.P.)	
K	1.8±0.2	0.071±0.008	
L	0.8±0.2	0.031+0.009	
М	0.15 ^{+0.10} _{-0.05}	$0.006^{+0.004}_{-0.003}$	
N	0.10	0.004	
Р	2.55	0.100	
Q	0.1±0.1	0.004±0.004	
S	2.85 MAX.	0.112 MAX.	

64 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	13.8±0.25	$0.543^{+0.011}_{-0.010}$
В	13.0	0.512
С	12.4	0.488
D	13.8±0.25	$0.543^{+0.011}_{-0.010}$
Е	1.94	0.076
F	2.14	0.084
G	3.56 MAX.	0.141 MAX.
Н	0.51±0.1	0.020±0.004
I	0.08	0.003
J	0.8 (T.P.)	0.031 (T.P.)
K	1.0±0.15	0.039±0.006
Q	C 0.3	C 0.012
R	0.9	0.035
S	0.9	0.035
Т	R 1.5	R 0.059
U	6.0	0.236
U1	1.0	0.039
W	0.75±0.15	$0.030^{+0.006}_{-0.007}$
Z	0.10	0.004

X64KG-80A-1

NEC μ PD75P036

7. RECOMMENDED SOLDERING CONDITIONS

It is recommended that the μ PD75P036 be soldered under the following conditions.

For details on the recommended soldering conditions, refer to Information Document "Semiconductor Devices Mounting Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

Table 7-1. Soldering Conditions for Surface Mount Devices

μ PD75P036GC-AB8: 64-pin plastic QFP (14 x 14 mm)

Soldering Method	Soldering Conditions	Recommended Soldering
		Code
Wave soldering	Soldering bath temperature: 260°C max.,	WS60-162-1
	Time: 10 seconds max., Number of times: 1,	
	Maximum number of days: 2 daysNote, (thereafter, 16 hours of	
	prebaking is required at 125°C),	
	Preheating temperature: 120°C max. (package surface	
	temperature).	
Infrared reflow	Package peak temperature: 230°C,	IR30-162-1
	Time: 30 seconds max. (210°C min.),	
Number of times: 1, Maximum number of days: 2 days ^{Note}		
	(thereafter, 16 hours of prebaking is required at 125°C)	
VPS	Package peak temperature: 215°C,	VP15-162-1
	Time: 40 seconds max. (200°C min.),	
	Number of times: 1, Maximum number of days: 2 days ^{Note}	
	(thereafter, 16 hours of prebaking is required at 125°C)	
Partial heating	Pin temperature: 300°C max.,	<u> </u>
	Time: 3 seconds max. (per pin row)	

Note Number of days after unpacking the dry pack. Storage conditions are 25°C and 65% RH max.

Caution Do not use different soldering methods together (except the partial heating method).

Table 7-2. Soldering Conditions for Through-hole Devices

μ PD75P036CW: 64-pin Plastic Shrink DIP (750 mils)

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Soldering bath temperature: 260°C max., Time: 10 seconds max.
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)

Caution Apply wave soldering only to the lead part and be careful so as not to bring solder into direct contact with the device body.

★ APPENDIX A. DEVELOPMENT TOOLS

The following development tools are readily available to support development of systems using μ PD75P03s:

Hardware	IE-75000-R Note 1	In-circuit emulator for 75K series
	IE-75001-R	
	IE-75000-R-EM Note 2	Emulation board for IE-75000-R and IE-75001-R
	EP-75028CW-R	Emulation prove for μPD75P036CW
	EP-75028GC-R	Emulation prove for μ PD75P036GC. Provided with 64-pin conversion socket.
	EV-9200GC-64	EV-9200G-80 used for μPD75P036GC/75P036KG
	PG-1500	PROM programmer
	PA-75P036CW	PROM programmer adapter used for μPD75P036CW. It is connected to PG-1500.
	PA-75P036GC	PROM programmer adapter used for μ PD75P036GC. It is connected to PG-1500.
Software	IE control program	Host machine
	PG-1500 controller	• PC-9800 series (MS-DOS™ Ver. 3.30 to Ver. 5.00A Note 3)
	RA75X relocatable	• IBM PC/AT™ (Refer to document OS for IBM PC)
	assembler	

Notes 1. For maintenance purpose only

- 2. Not provided with IE-75001-R
- 3. Ver.5.00/5.00A has a task swap function, but this function cannot be used with these software.

Remark Please refer to the **75X SERIES SELECTION GUIDE (IF-1027)** for information on third party development tools.

OS for IBM PC

The following OS are supported for IBM PC.

OS	Version
PC DOS™	Ver. 3.1 to Ver. 6.3
	J6.1/V ^{Note} to 16.3/V ^{Note}
MS-DOS	Ver. 5.0 to Ver. 6.2
	5.0/V ^{Note} to J6.2/V ^{Note}
IBM DOS™	J5.02/V ^{Note}

Note Supported only English mode.

Caution Ver. 5.0 or later has a task swap function, but this function cannot be used with these software.

APPENDIX B. RELATED DOCUMENTS

Please use this document in conjunction with the following.

Related document may be "Preliminary." However, in this document, "Preliminary" is not indicated.

Device Document

Title	Document Number	
	Japanese	English
μPD75P036 Data Sheet (This document)	IC-7914	IC-2967
μPD75028 User's Manual	IEU-694	IEU-1280
μPD75028 Instruction List	IEM-5511	_
μPD75028 Application Note — Basics	IEA-689	IEA-1277
75X series Selection Guide	IF-151	IF-1027

Development Tool Document

Title			Document Number	
			Japanese	English
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75000-R-EM User's Manual		EEU-673	EEU-1294
	EP-75028CW-R User's Manual		EEU-697	EEU-1314
	IE-75028GC-R User's Manual		EEU-692	EEU-1306
	PG-1500 User'ss Manual		EEU-651	EEU-1335
Software	RA75X Assembler Package User's Manual	Operation	EEU-731	EEU-1346
		Language	EEU-730	EEU-1363
	PG-1500 Controller User's Manual	PC-9800 series	EEU-704	Scheduled
		(MS-DOS) based		
		IBM PC series	EEU-5008	EEU-1291
		(PC DOS) based		

Other Document

Title	Number	
	Japanese	English
Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	IEI-616	IEI-1207
Quality Grades on NEC Semiconductor Devices	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	IEM-5068	_
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Microcomputer-Related Product Guide — Third Party Products	MEI-604	_

Caution The contents of the documents listed above are subject to change without prior notice to user's.

Make sure to use the latest edition when starting design.

 μ PD75P036

NEC

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input lelvel may be generated due to noise, etc., hence causing mulfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

и**PD75P036** NEC

MS-DOS is a trademark of Microsoft Corporation. IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may prohibited without governmental license. To export or re-export some or all or these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed: μPD75P036KG

The customer must judge the need for license: µPD75P036CW, 75P036GC-AB8

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standatd", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computer, office equipment, communication equipment, test and measurement equipment,

audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special:

Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nucleare reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11