
DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

- HIGH SPEED :
 $t_{PD} = 22 \text{ ns (TYP.)}$ at $V_{CC} = 6V$
- LOW POWER DISSIPATION:
STAND BY STATE :
 $I_{CC} = 4 \mu\text{A}$ (MAX.) at $T_A = 25^\circ\text{C}$
ACTIVE STATE :
 $I_{CC} = 700 \mu\text{A}$ (TYP.) at $V_{CC} = 6V$
- HIGH NOISE IMMUNITY:
 $V_{NIH} = V_{NIL} = 28\%$ V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE:
 $|I_{OH}| = I_{OL} = 4 \text{ mA (MIN)}$
- BALANCED PROPAGATION DELAYS:
 $t_{PLH} \approx t_{PHL}$
- WIDE OPERATING VOLTAGE RANGE:
 V_{CC} (OPR) = 2V to 6V
- WIDE OUTPUT PULSE WIDTH RANGE :
 $t_{WOUT} = 120 \text{ ns} \sim 60 \text{ s}$ OVER AT $V_{CC} = 4.5 \text{ V}$
- PIN AND FUNCTION COMPATIBLE WITH
74 SERIES 423

DESCRIPTION

The M74HC423 is an high speed CMOS MONOSTABLE MULTIVIBRATOR fabricated with silicon gate C²MOS technology.

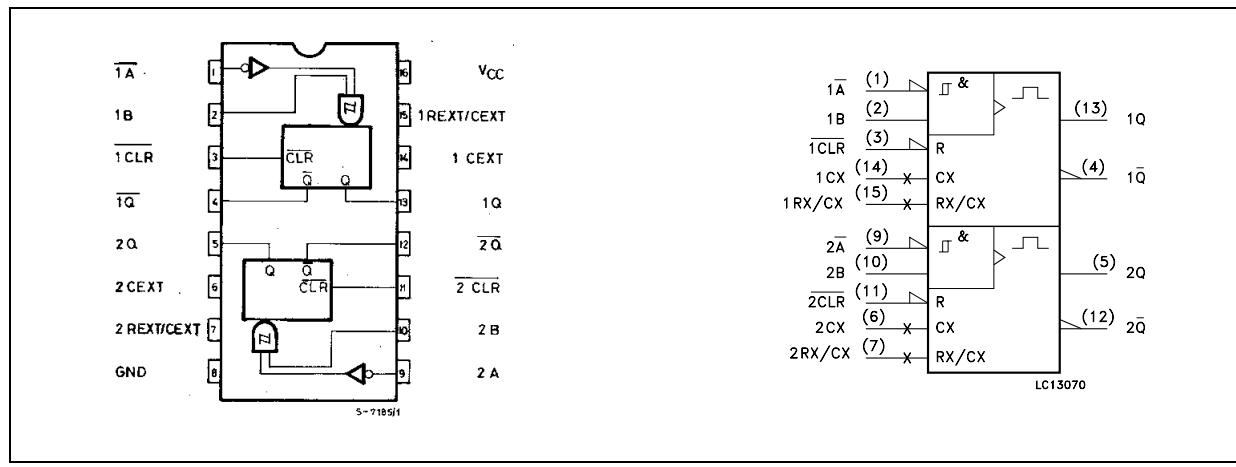
There are two trigger inputs, A INPUT (negative edge) and B INPUT (positive edge). These inputs are valid for slow rising/falling signals, ($t_r = t_f = 1 \text{ sec}$). After triggering the output maintains the MONOSTABLE state for the time period

ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC423B1R	
SOP	M74HC423M1R	M74HC423RM13TR
TSSOP		M74HC423TTR

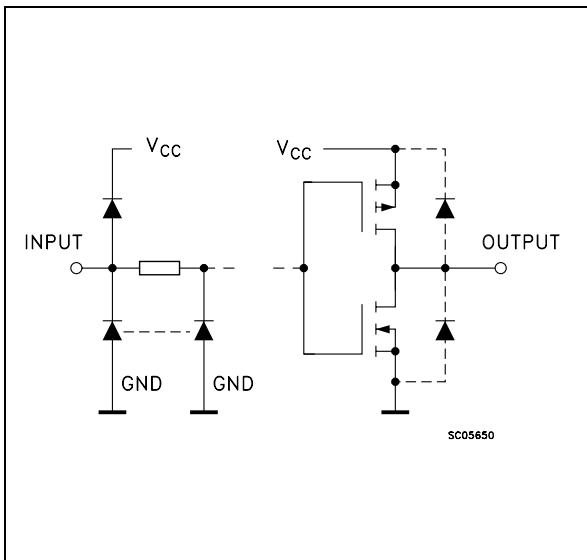
determined by the external resistor Rx and capacitor Cx.

The pulse width constant is $K \approx 0.46$.
Taking CLR low breaks this MONOSTABLE STATE. If the next trigger pulse occurs during the MONOSTABLE period it makes the MONOSTABLE period longer. Limit for values of Cx and Rx :


Cx : NO LIMIT

Rx : $V_{CC} < 3.0V$ 5K Ω to 1M Ω

$V_{CC} \geq 3.0V$ 1K Ω to 1M Ω

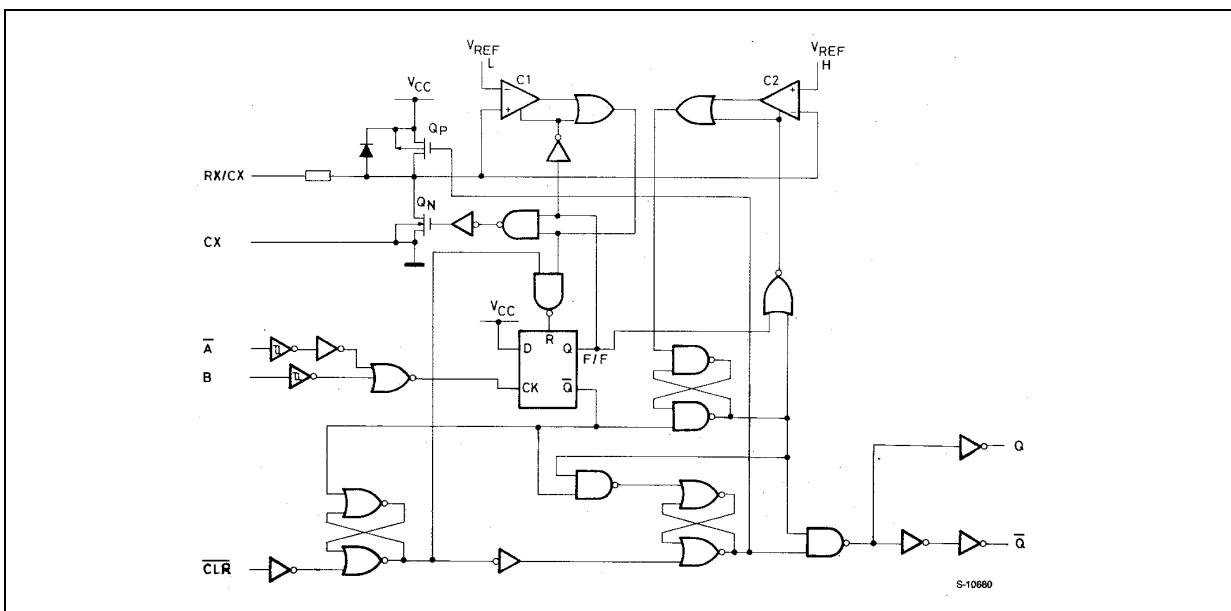

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

M74HC423

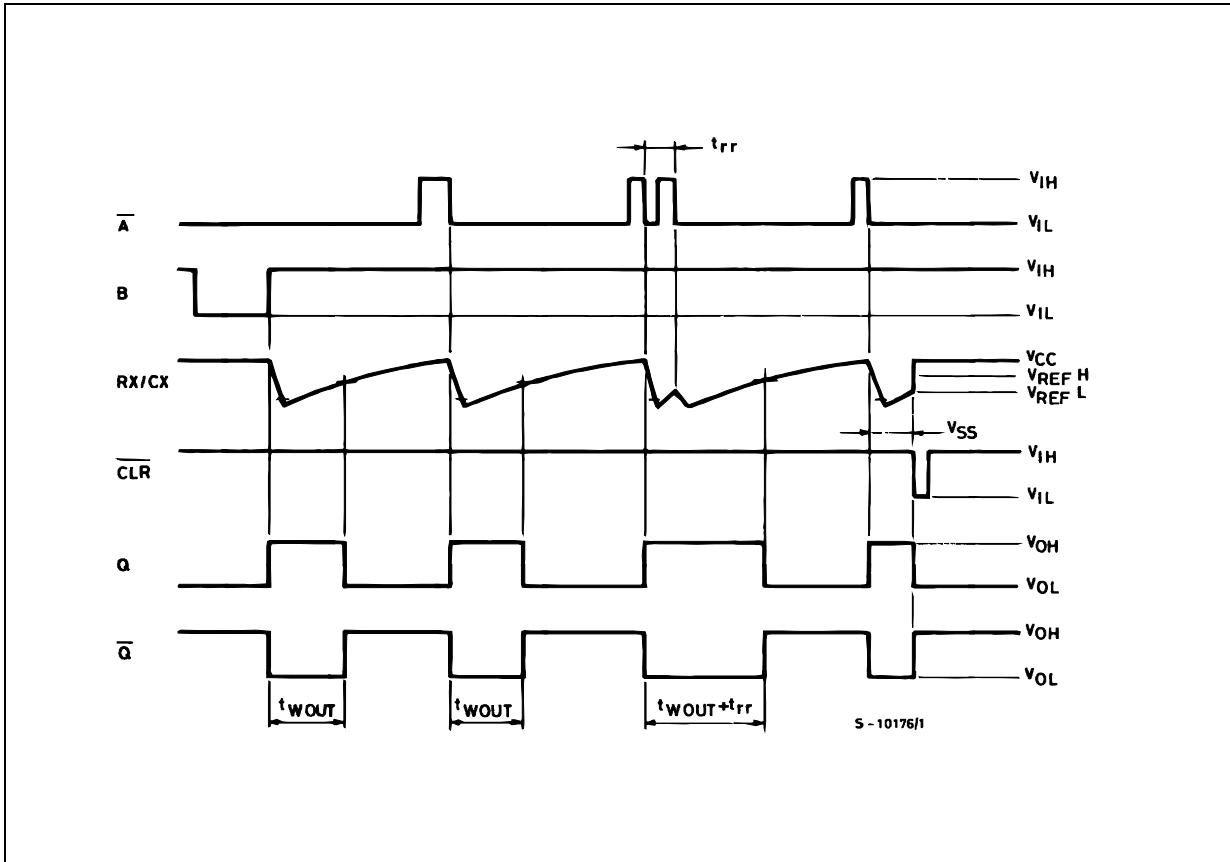
INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

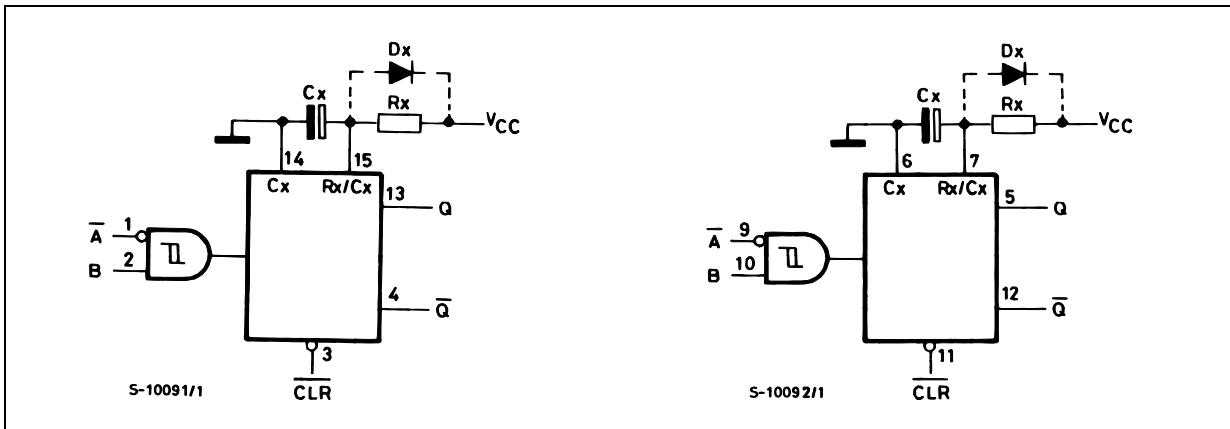

PIN No	SYMBOL	NAME AND FUNCTION
1, 9	1 \bar{A} , 2 \bar{A}	Trigger Inputs (Negative Edge Triggered)
2, 10	1B, 2B	Trigger Inputs (Positive Edge Triggered)
3, 11	1 CLR 2 CLR	Direct Reset (Active LOW)
4, 12	1Q, 2Q	Outputs (Active Low)
7	2R _X /C _X	External Resistor Capacitor Connection
13, 5	1Q, 2Q	Outputs (Active High)
14, 6	1C _X 2C _X	External Capacitor Connection
15	1R _X /C _X	External Resistor Capacitor Connection
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

TRUTH TABLE

INPUTS			OUTPUTS		NOTE
\bar{A}	B	CLR	Q	\bar{Q}	
1	H	H	1	0	OUTPUT ENABLE
X	L	H	0	1	INHIBIT
H	X	H	0	1	INHIBIT
L	1	H	1	0	OUTPUT ENABLE
X	X	L	0	1	INHIBIT


X : Don't Care

SYSTEM DIAGRAM



This logic diagram has not be used to estimate propagation delays

TIMING CHART

BLOCK DIAGRAM

1) Cx, Rx, Dx are external components.

(2) Dx is a clamping diode.

The external capacitor is charged to Vcc in the stand-by-state, i.e. no trigger. When the supply voltage is turned off Cx is discharged mainly through an internal parasitic diode (see figures). If Cx is sufficiently large and Vcc decreases rapidly, there will be some possibility of damaging the I.C. with a surge current or latch-up. If the voltage supply filter capacitor is large enough and Vcc decrease slowly, the surge current is automatically limited and damage to the I.C. is avoided. The maximum forward current of the parasitic diode is approximately 20 mA. In cases where Cx is large the time taken for the supply voltage to fall to 0.4 Vcc can be calculated as follows :

$$t_f \geq (V_{cc} - 0.7) \times Cx / 20mA$$

In cases where t_f is too short an external clamping diode is required to protect the I.C. from the surge current.

FUNCTIONAL DESCRIPTION

STAND-BY STATE

The external capacitor, C_x , is fully charged to V_{CC} in the stand-by state. Hence, before triggering, transistor Q_p and Q_n (connected to the R_x/C_x node) are both turned-off. The two comparators that control the timing and the two reference voltage sources stop operating. The total supply current is therefore only leakage current.

TRIGGER OPERATION

Triggering occurs when :

- 1 st) A is "LOW" and B has a falling edge;
- 2 nd) B is "HIGH" and A has a rising edge;
- 3 rd) A is "LOW" and B is HIGH and C_1 has a rising edge;

After the multivibrator has been retriggered comparator C_1 and C_2 start operating and Q_n is turned on. C_x then discharges through Q_n . The voltage at the node R/C external falls.

When it reaches V_{REFL} the output of comparator C_1 becomes low. This in turn reset the flip-flop and Q_n is turned off.

At this point C_1 stops functioning but C_2 continues to operate.

The voltage at R/C external begins to rise with a time constant set by the external components R_x , C_x .

Triggering the multivibrator causes Q to go high after internal delay due to the flip-flop and the gate. Q remains high until the voltage at R/C external rises again to V_{REFH} . At this point C_2

output goes low and Q goes low. C_2 stop operating. That means that after triggering when the voltage R/C external returns to V_{REFH} the multivibrator has returned to its MONOSTABLE STATE. In the case where $R_x \cdot C_x$ are large enough and the discharge time of the capacitor and the delay time in the I.C. can be ignored, the width of the output pulse $t_W(OUT)$ is as follows :

$$t_W(OUT) = 0.46 C_x \cdot R_x$$

RE - TRIGGERED OPERATION

When a second trigger pulse follows the first its effect will depend on the state of the multivibrator. If the capacitor C_x is being charged the voltage level of R/C external falls to V_{REFL} again and Q remains High i.e. the retrigger pulse arrives in a time shorter than the period $R_x \cdot C_x$ seconds, the capacitor charging time constant. If the second trigger pulse is very close to the initial trigger pulse it is ineffective ; i.e. the second trigger must arrive in the capacitor discharge cycle to be ineffective; Hence the minimum time for a second trigger to be effective depends on V_{CC} and C_x

RESET OPERATION

C_L is normally high. If C_L is low, the trigger is not effective because Q output goes low and trigger control flip-flop is reset.

Also transistor Q_p is turned on and C_x is charged quickly to V_{CC} . This means if C_L input goes low the IC becomes waiting state both in operating and non operating state.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
V_I	DC Input Voltage	-0.5 to $V_{CC} + 0.5$	V
V_O	DC Output Voltage	-0.5 to $V_{CC} + 0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_O	DC Output Current	± 25	mA
I_{CC} or I_{GND}	DC V_{CC} or Ground Current	± 50	mA
P_D	Power Dissipation	500(*)	mW
T_{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value		Unit	
V_{CC}	Supply Voltage	2 to 6		V	
V_I	Input Voltage	0 to V_{CC}		V	
V_O	Output Voltage	0 to V_{CC}		V	
T_{op}	Operating Temperature	-55 to 125		°C	
t_r, t_f	Input Rise and Fall Time	$V_{CC} = 2.0V$	0 to 1000		ns
		$V_{CC} = 4.5V$	0 to 500		ns
		$V_{CC} = 6.0V$	0 to 400		ns
C_x	External Capacitor	NO LIMITATION			pF
R_x	External Resistor	$V_{CC} < 3V$	5K to 1M		Ω
		$V_{CC} \geq 3V$	1K to 1M		

The Maximum allowable values of C_x and R_x are a function of leakage of capacitor C_x , the leakage of device and leakage due to the board layout and surface resistance. Susceptibility to externally induced noise may occur for $R_x > 1M\Omega$

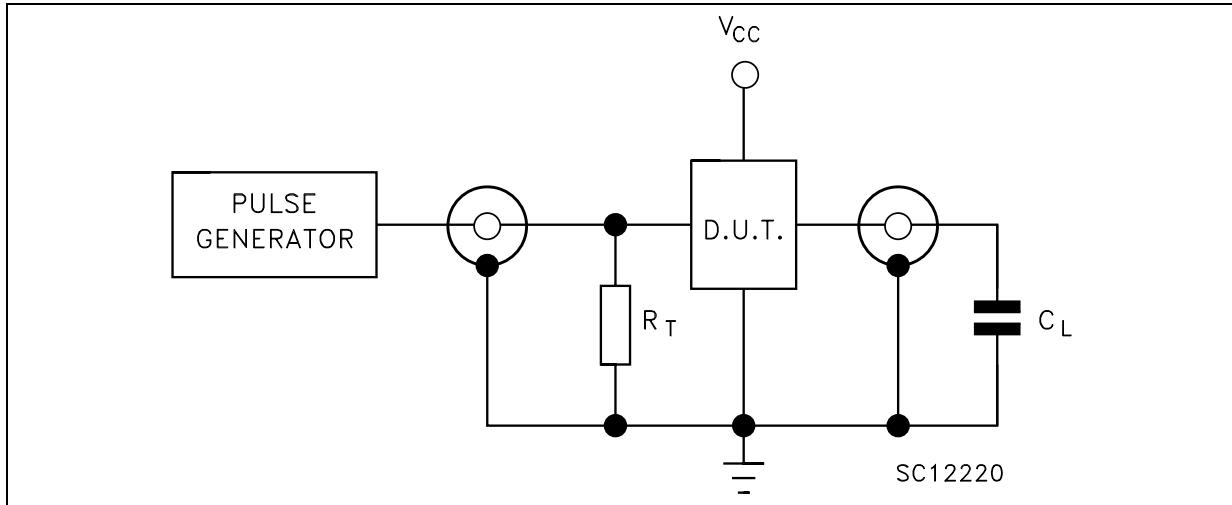
DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value						Unit	
		V_{CC} (V)		$T_A = 25^\circ C$			-40 to $85^\circ C$		-55 to $125^\circ C$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0		1.5			1.5		1.5		V
		4.5		3.15			3.15		3.15		
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input Voltage	2.0			0.5		0.5		0.5		V
		4.5			1.35		1.35		1.35		
		6.0			1.8		1.8		1.8		
V_{OH}	High Level Output Voltage	2.0	$I_O = -20 \mu A$	1.9	2.0		1.9		1.9		V
		4.5	$I_O = -20 \mu A$	4.4	4.5		4.4		4.4		
		6.0	$I_O = -20 \mu A$	5.9	6.0		5.9		5.9		
		4.5	$I_O = -4.0 mA$	4.18	4.31		4.13		4.10		
		6.0	$I_O = -5.2 mA$	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output Voltage	2.0	$I_O = 20 \mu A$		0.0	0.1		0.1		0.1	V
		4.5	$I_O = 20 \mu A$		0.0	0.1		0.1		0.1	
		6.0	$I_O = 20 \mu A$		0.0	0.1		0.1		0.1	
		4.5	$I_O = 4.0 mA$		0.17	0.26		0.33		0.40	
		6.0	$I_O = 5.2 mA$		0.18	0.26		0.33		0.40	
I_I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	µA
I_I	R/C Terminal Off State Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	µA
I_{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	µA
I_{CC}	Active State Supply Current (1)	2.0	$V_I = V_{CC}$ or GND		45	200		260		320	µA
		4.5	Pin 7 or 15		500	600		780		960	µA
		6.0	$V_{IN} = V_{CC}/2$		0.7	1		1.3		1.6	mA

(1) : Per Circuit

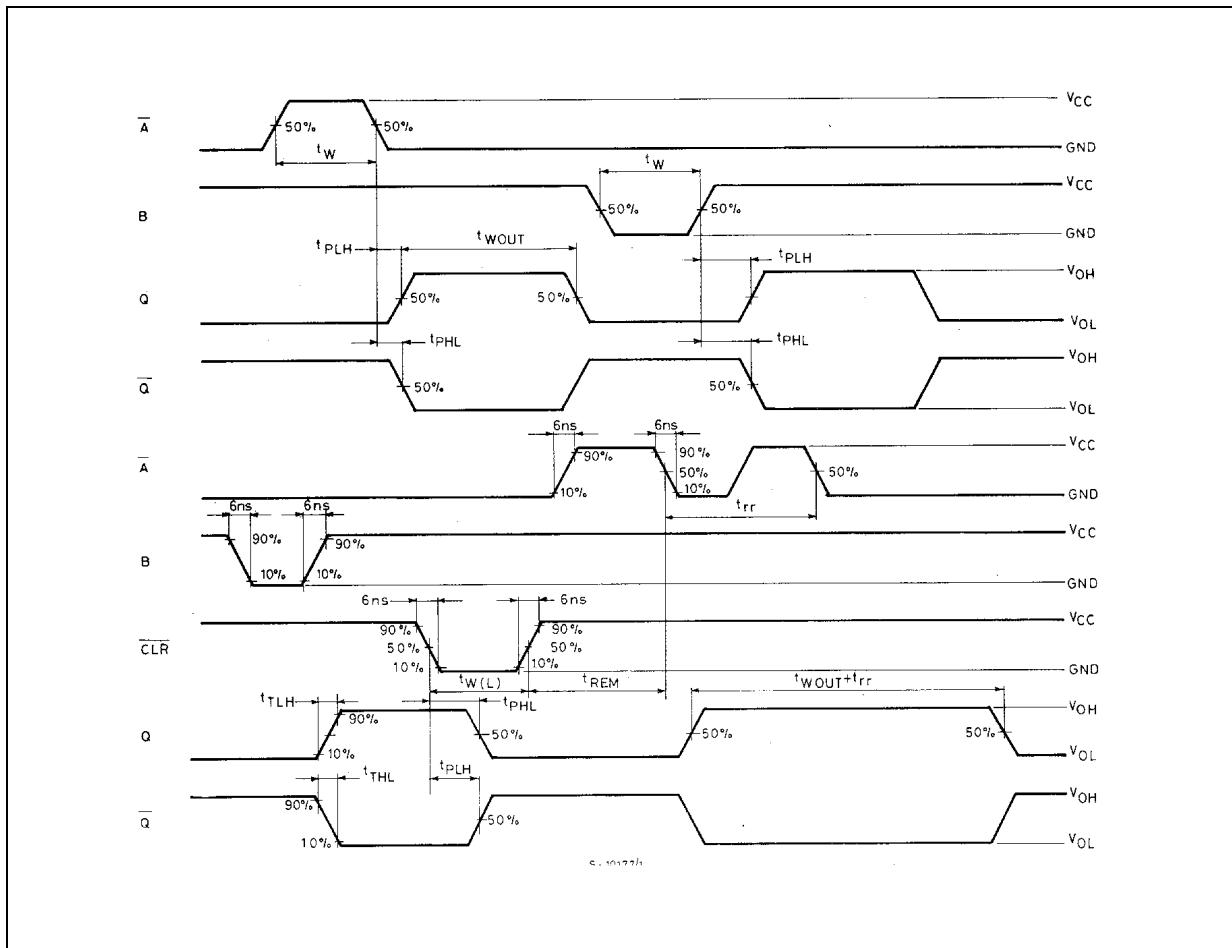
M74HC423

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6\text{ns}$)

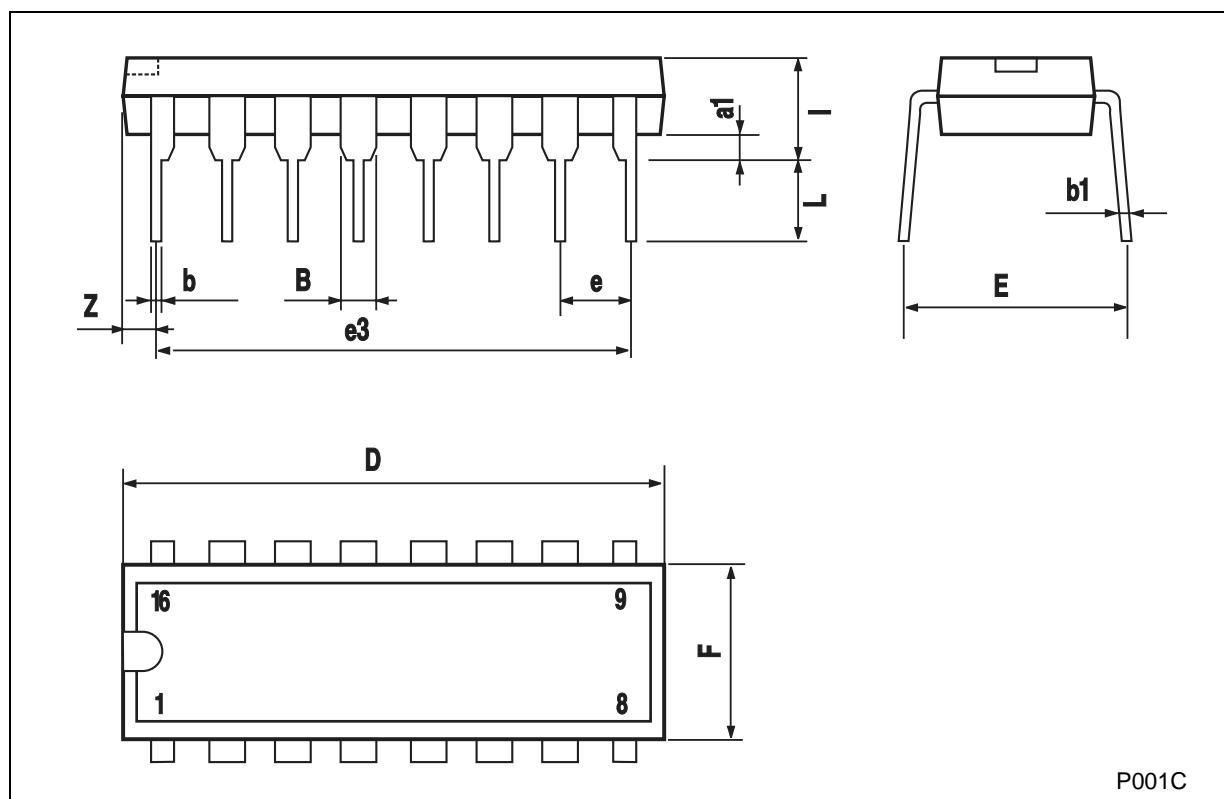

Symbol	Parameter	Test Condition		Value						Unit	
		V_{CC} (V)		$T_A = 25^\circ\text{C}$			$-40 \text{ to } 85^\circ\text{C}$		$-55 \text{ to } 125^\circ\text{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.		
t_{TLH} t_{THL}	Output Transition Time	2.0			30	75		95		ns	
		4.5			8	15		19			
		6.0			7	13		16			
t_{PLH} t_{PHL}	Propagation Delay Time ($\bar{A}, B - Q, \bar{Q}$)	2.0			102	210		265		ns	
		4.5			29	42		53			
		6.0			22	36		45			
t_{PLH} t_{PHL}	Propagation Delay Time ($CLR - Q, \bar{Q}$)	2.0			68	160		200		ns	
		4.5			20	32		40			
		6.0			16	27		34			
t_{WOUT}	Output Pulse Width	2.0	$C_x = 100 \text{ pF}$ $R_x = 10\text{K}\Omega$		1.3					μs	
		4.5			1.1						
		6.0			1						
		2.0	$C_x = 0.1\mu\text{F}$ $R_x = 100\text{K}\Omega$		4.8					ms	
		4.5			4.6						
		6.0			4.5						
Δt_{WOUT}	Output Pulse Width Error Between Circuits in Same Package				± 1					%	
$t_{W(H)}$ $t_{W(L)}$	Minimum Pulse Width	2.0			75		95			ns	
		4.5			15		19				
		6.0			13		16				
$t_{W(L)}$	Minimum Pulse Width (CLR)	2.0			75		95			ns	
		4.5			15		19				
		6.0			13		16				
t_{rr}	Minimum Retrigger Time	2.0	$C_x = 100 \text{ pF}$ $R_x = 10\text{K}\Omega$		325					ns	
		4.5			108						
		6.0			78						
		2.0	$C_x = 0.1\mu\text{F}$ $R_x = 100\text{K}\Omega$		5					μs	
		4.5			1.4						
		6.0			1.2						

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		Value						Unit	
		V_{CC} (V)		$T_A = 25^\circ\text{C}$			$-40 \text{ to } 85^\circ\text{C}$		$-55 \text{ to } 125^\circ\text{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.		
C_{IN}	Input Capacitance	5.0			5	10		10		10	pF
C_{PD}	Power Dissipation Capacitance (note 1)	5.0			160						pF

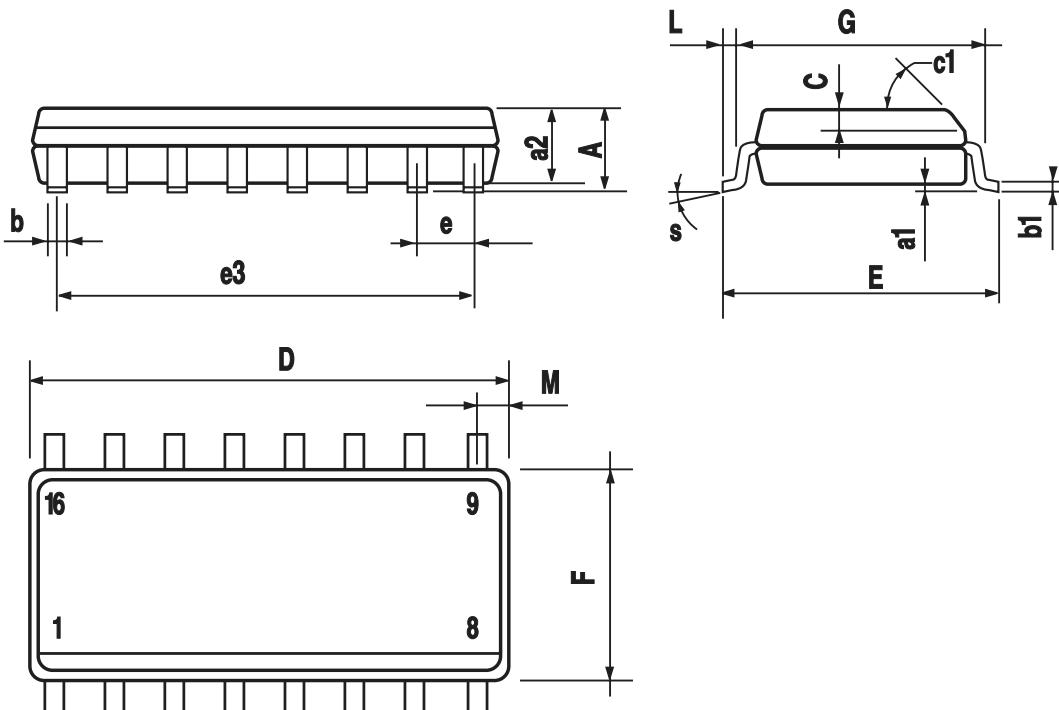

1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(\text{opt})} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC} \text{ Duty}/100 + I_c/2(\text{per monostable})$ (I_{cc} : Active Supply current) (Duty : %)

TEST CIRCUIT


$C_L = 50\text{pF}$ or equivalent (includes jig and probe capacitance)
 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

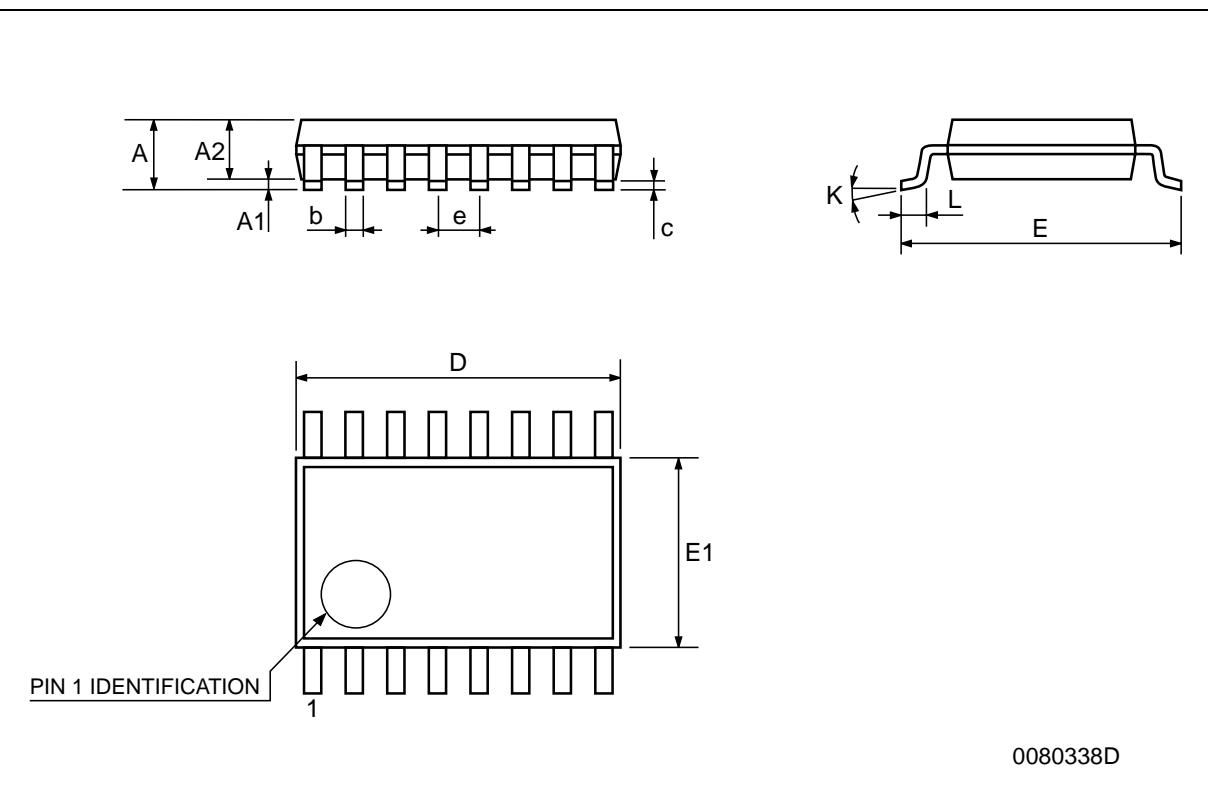
SWITCHING CHARACTERISTICS TEST WAVEFORM (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA


DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
e		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

P001C

SO-16 MECHANICAL DATA


DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1		45° (typ.)				
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S		8° (max.)				

PO13H

TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom

© <http://www.st.com>

