TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSVI-H)

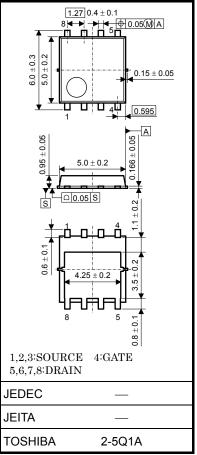
TPCA8047-H

Switching Regulator Applications Motor Drive Applications DC-DC Converter Applications

- Small footprint due to a small and thin package
- High-speed switching
- Small gate charge: Q_{SW} = 13 nC (typ.)
- Low drain-source ON-resistance: R_{DS} (ON) = 4.8 $m\Omega$ (typ.)
- High forward transfer admittance: $|Y_{fs}| = 92 S$ (typ.)
- Low leakage current: $I_{DSS} = 10 \mu A (max) (V_{DS} = 40 V)$
- Enhancement mode: $V_{th} = 1.3$ to 2.3 V ($V_{DS} = 10$ V, $I_D = 0.5$ mA)

Absolute Maximum Ratings (Ta = 25°C)

Characte	eristic	Symbol	Rating	Unit
Drain-source voltage		V_{DSS}	40	V
Drain-gate voltage (R	$k_{GS} = 20 \text{ k}\Omega$)	V_{DGR}	40	V
Gate-source voltage		V_{GSS}	±20	V
Drain current	DC (Note 1)	ΙD	32	Α
Drain current	Pulsed (Note 1)	I_{DP}	96	^
Drain power dissipati	on (Tc = 25°C)	P_{D}	45	W
Drain power dissipati	on (t = 10 s) (Note 2a)	P _D	2.8	W
Drain power dissipati	on (t = 10 s) (Note 2b)	P _D	1.6	W
Single-pulse avalance	ne energy (Note 3)	E _{AS}	95	mJ
Avalanche current		I _{AR}	32	Α
Repetitive avalanche	energy c = 25°C) (Note 4)	E _{AR}	3.95	mJ
Channel temperature		T _{ch}	150	°C
Storage temperature	range	T _{stg}	-55 to 150	°C


Note: For Notes 1 to 4, refer to the next page.

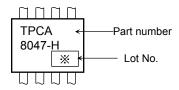
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the

reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).


This transistor is an electrostatic-sensitive device. Handle with care.

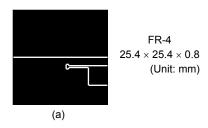
Unit: mm

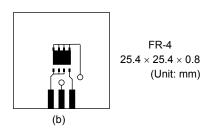
Weight: 0.069 g (typ.)


Circuit Configuration

Thermal Characteristics

Characteristic	Symbol	Max	Unit
Thermal resistance, channel to case (Tc = 25°C)	R _{th (ch-c)}	2.78	°C/W
Thermal resistance, channel to ambient $(t=10\;s) \eqno(Note\;2a)$	R _{th (ch-a)}	44.6	°C/W
Thermal resistance, channel to ambient $(t = 10 \text{ s})$ (Note 2b)	R _{th (ch-a)}	78.1	°C/W

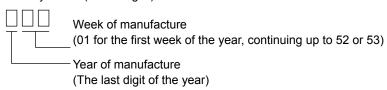

Marking (Note 5)



Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: (a) Device mounted on a glass-epoxy board (a)

(b) Device mounted on a glass-epoxy board (b)

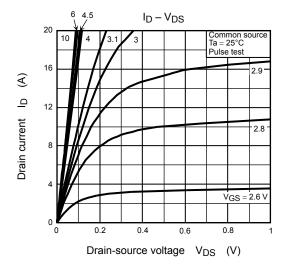


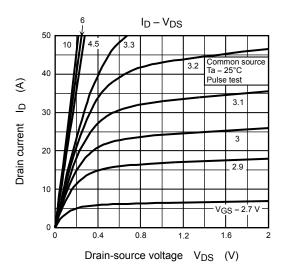
Note 3: V_{DD} = 24 V, T_{ch} = 25°C (initial), L = 100 μ H, R_G = 25 Ω , I_{AR} = 32 A

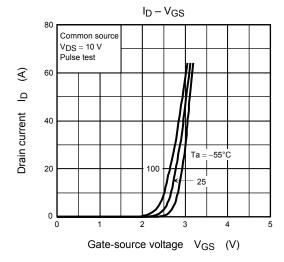
Note 4: Repetitive rating: pulse width limited by maximum channel temperature

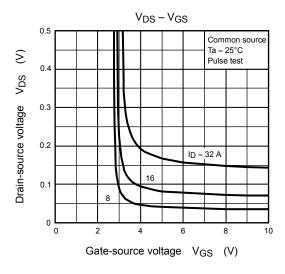
Note 5: * Weekly code: (Three digits)

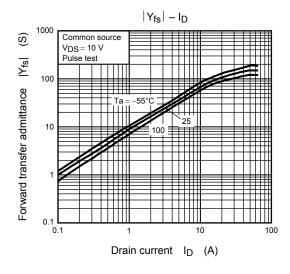
2

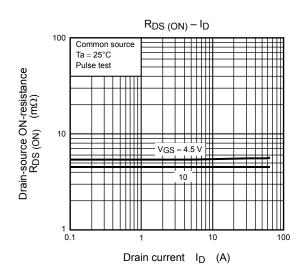

Electrical Characteristics (Ta = 25°C)

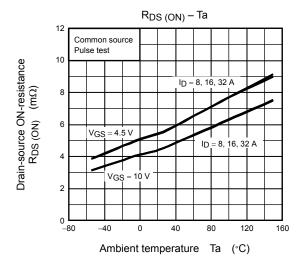

Ch	Characteristic Symbol T		Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±100	nA
Drain cutoff curre	nt	I _{DSS}	V _{DS} = 40 V, V _{GS} = 0 V	_	_	10	μА
Drain course broa	ce breakdown voltage		_	_	V		
Dialii-source brea	akdown voltage	V (BR) DSX	$I_D = 10$ mA, $V_{GS} = -20$ V	25	— — 10 40 — — 25 — — 1.3 — 2.3 — 6.0 8.5 — 4.8 7.3 46 92 — — 2590 3365 — 135 200 — 440 —	\ \ \	
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 \text{ V}, I_D = 0.5 \text{ mA}$	1.3	_	2.3	V
Drain-source ON-	resistance	Pro (ON)	$V_{GS} = 4.5 \text{ V}, I_D = 16 \text{ A}$		6.0	8.5	mΩ
Dialii-source Oil	-iesistarice	R _{DS} (ON)	V _{GS} = 10 V, I _D = 16 A	— — 10 40 — — 25 — — 1.3 — 2.3 — 6.0 8.5 — 4.8 7.3 46 92 — — 2590 3365 — 135 200 — 440 — — 1.0 1.5 — 4.8 — — 13 — — 9.9 — — 43 — — 43 —	11152		
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 16 A	46	92	_	S
Input capacitance)	C _{iss}			2590	3365	pF
Reverse transfer	capacitance	C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	135	200	
Output capacitance		Coss		_	440	_	
Gate resistance		rg	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	1.0	1.5	Ω
Switching time	Rise time	t _r	ACS 0 A D S O A O D S O A O D S O A O D S O A O D S O A O D D S O D D	_	4.8	_	ns
	Turn-on time	t _{on}		_	13	_	
	Fall time	t _f		_	9.9	_	
	Turn-off time	t _{off}	$V_{DD} \approx 20 \text{ V}$ Duty \leq 1%, $t_W = 10 \mu\text{s}$	_	43	_	
Total gate charge	otal gate charge		$V_{DD} \approx 32 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 32 \text{ A}$	_	43	_	
(gate-source plus	gate-drain)	Qg	$V_{DD} \approx 32 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 32 \text{ A}$	_	_ 23		
Gate-source charge 1		Q _{gs1}	$V_{DD} \approx 32 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 32 \text{ A}$	_	7.9	_	nC
Gate-drain ("Miller") charge		Q _{gd}			8.4	_	
Gate switch charg	де	Q _{SW}		_	13	_	

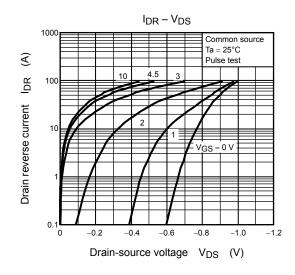

Source-Drain Ratings and Characteristics (Ta = 25°C)

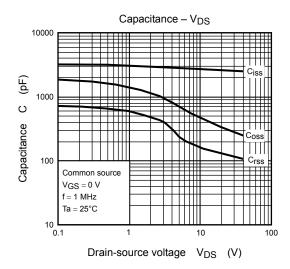

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit	
Drain reverse current	Pulse	(Note 1)	I _{DRP}	_	_	_	96	Α
Forward voltage (diode)			V_{DSF}	$I_{DR} = 32 \text{ A}, V_{GS} = 0 \text{ V}$		_	-1.2	V

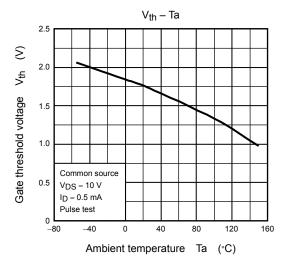

3 2013-11-01

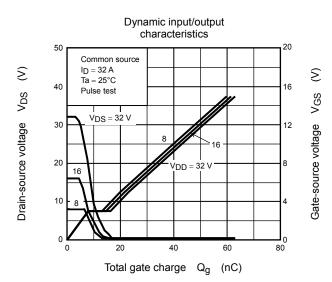


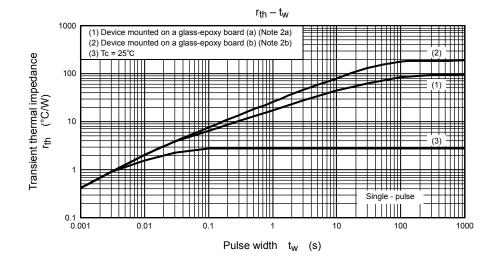


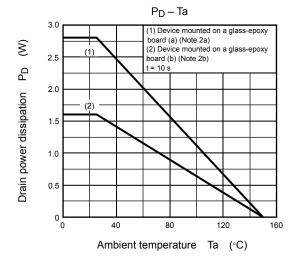


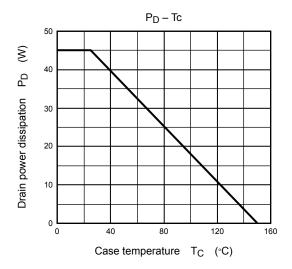


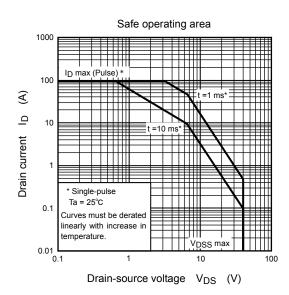












5 2013-11-01

6 2013-11-01

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- . Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.