

## **ZR431L**

# Adjustable precision shunt regulator

## **Summary**

## **Description**

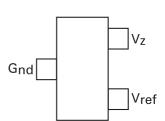
The ZR431L is a three terminal adjustable shunt regulator offering excellent temperature stability and output current handling capability up to 25mA. The output voltage may be set to any chosen voltage between 1.24 and 10 volts by selection of two external divider resistors.

The devices can be used as a replacement for zener diodes in many applications requiring an improvement in zener performance.

The ZR431L is particularly used in the feedback control loop of switch mode power supplies. In this application the device 1.24 volt reference enables the generation of low voltage supplies, typically 3.3 volts or 3 volts.



### **Features**


- 2.5% and 1% tolerance
- Max. temperature coefficient 50 ppm/°C
- Temperature compensated for operation over -40 to 85°C
- · 100mA to 25mA current sink capability
- Surface mount SOT23 package

## **Applications**

- · Switch mode power supplies
- Shunt regulator
- · Series regulator
- · Voltage monitor
- Over voltage / under voltage protection



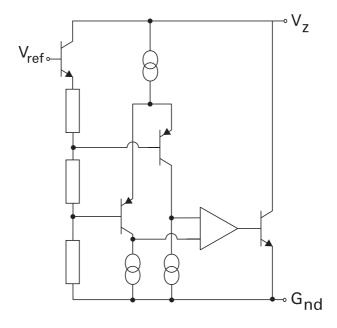
| Device        | Pack  | Part mark | Status   | Quantity per reel | Reel size<br>(inches) | TOL % |
|---------------|-------|-----------|----------|-------------------|-----------------------|-------|
| ZR431LF01TA   | SOT23 | 43M       | Active   | 3000              | 7                     | 1     |
| ZR431LF02TA   | SOT23 | 43L       | Active   | 3000              | 7                     | 2.5   |
| ZR431LC01STOB | TO92  | ZR431L01  | Obsolete | 1500              |                       | 1     |
| ZR431LC02STOB | TO92  | ZR431L02  | Obsolete | 1500              |                       | 2.5   |
| ZR431LC01L    | TO92  | ZR431L01  | Obsolete |                   | Loose                 | 1     |
| ZR431LC02L    | TO92  | ZR431L02  | Obsolete |                   | Loose                 | 2.5   |



# **ZR431L**

# **Absolute maximum ratings**

| Parameter            | Symbol    | Limit      | Unit |
|----------------------|-----------|------------|------|
| Cathode voltage      | $V_{Z}$   | 10         | V    |
| Cathode current      |           | 50         | mA   |
| Storage temperature  | $T_{STG}$ | -55 to 105 | °C   |
| Junction temperature | $T_J$     | -40 to 125 | °C   |


# **Power dissipation** (at $T_{amb} = 25$ °C unless otherwise stated)

| Package | Value | Unit |
|---------|-------|------|
| SOT23   | 330   | mW   |

## **Recommended operating conditions**

| Parameter             | Min.      | Max. |
|-----------------------|-----------|------|
| Cathode voltage       | $V_{REF}$ | 10V  |
| Cathode current       | 100μΑ     | 25mA |
| Operating temperature | -40°C     | 85°C |

## **Block diagram**



Vmin
Vdev = Vmax - Vmin

T1 Temperature T2

Deviation of reference input voltage, V<sub>dev</sub>, is defined as the maximum variation of the reference input voltage over the full temperature range.

The average temperature coefficient of the reference input voltage,  $\,V_{ref}\,$  is defined as:

$$Vref(ppmIC) = \frac{V_{dev}x1000000}{V_{ref}(T1-T2)}$$

The dynamic output impedance, R<sub>z</sub>, is defined as:

$$R_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

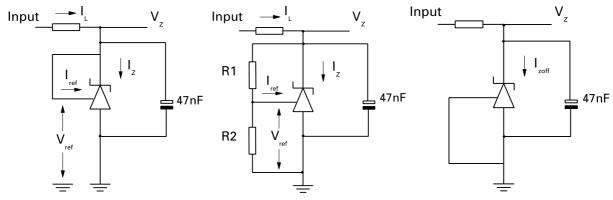
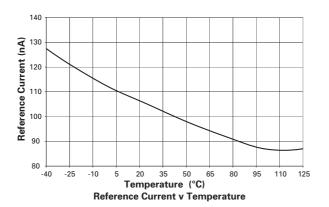
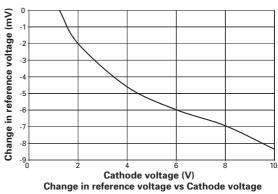
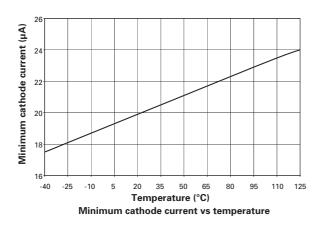
When the device is programmed with two external resistors, R1 and R2, (fig 2), the dynamic output impedance of the overall circuit, R', is defined as:

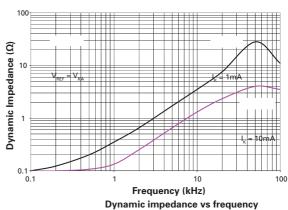
$$R' = R_Z (1 + \frac{R1}{R2})$$

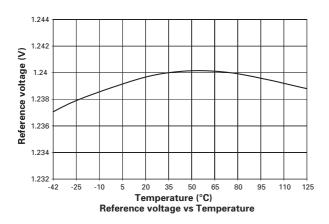
# **Electrical characteristics** (at $T_{amb} = 25$ °C unless otherwise stated)

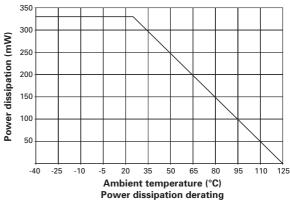
| Parameter                                                                           | Symbol                               | Min.           | Тур.         | Max.           | Unit   | Conditions                                                        |
|-------------------------------------------------------------------------------------|--------------------------------------|----------------|--------------|----------------|--------|-------------------------------------------------------------------|
| Reference Voltage 2.5% 1.0%                                                         | V <sub>ref</sub><br>V <sub>ref</sub> | 1.209<br>1.228 | 1.24<br>1.24 | 1.271<br>1.252 | V<br>V | $I_L = 10$ mA (Fig1), $V_Z = V_{ref}$                             |
| Deviation of Reference<br>Input Voltage over<br>Temperature                         | V <sub>dev</sub>                     |                | 4.0          | 8.0            | mV     | $I_L = 10$ mA, $V_Z = V_{ref}$<br>$T_a = $ full range (Fig 1)     |
| Ratio of the change in<br>Reference Voltage to the<br>change in Cathode<br>Voltage) | $rac{\Delta V_{ref}}{\Delta V_{Z}}$ |                | 0.5          | 2.0            | mV/V   | $V_Z$ from $V_{ref}$ to 10V<br>$I_Z$ = 10mA (Fig2)                |
| Reference Input Current                                                             | I <sub>ref</sub>                     | 0.02           | 0.11         | 0.4            | μΑ     | R1 = 10k, R2 = O/C,<br>I <sub>L</sub> = 10mA (fig2)               |
| Deviation of Reference<br>Input Current over<br>Temperature                         | $\Delta I_{ref}$                     |                | 0.02         | 0.2            | μΑ     | R1 = 10k, $R2 = O/C$ ,<br>$I_L = 10mA T_a = full$<br>range (Fig2) |
| Minimum Cathode<br>Current for Regulation                                           | I <sub>Zmin</sub>                    |                | 30           | 100            | μΑ     |                                                                   |
| Off-state Current                                                                   | I <sub>Zoff</sub>                    |                | 10           | 30             | μΑ     | $V_Z = 10V, V_{ref} = 0V$ (Fig3)                                  |
| Dynamic Output<br>Impedance                                                         | R <sub>Z</sub>                       |                | 0.25         | 2              | Ω      | $V_Z = V_{ref}(Fig1), f = 0Hz,$<br>$I_L = 10mA$                   |

## DC Test circuits

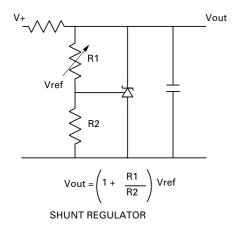





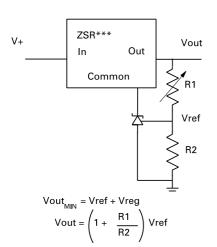


Fig 1 - Test Circuit for  $V_Z = V_{ref}$  Fig 2 - Test Circuit for  $V_Z > V_{ref}$  Fig 3 - Test Circuit for Off State current


## **Typical characteristics**





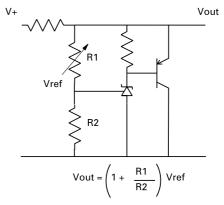



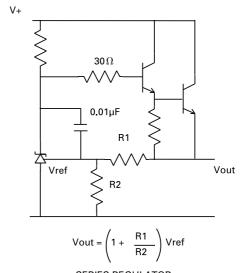




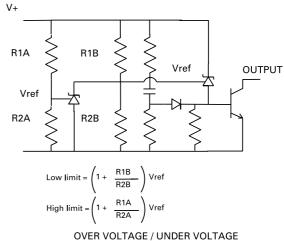

## **Application circuits**





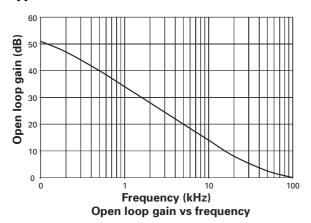


OUTPUT CONTROL OF A THREE TERMINAL FIXED REGULATOR

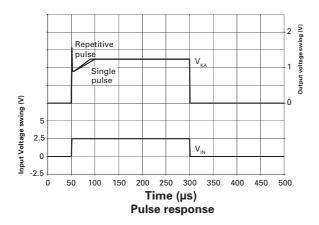


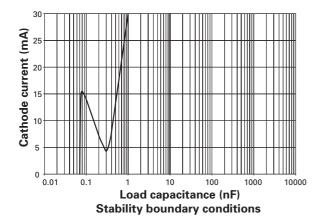

SINGLE SUPPLY COMPARATOR WITH TEMPERATURE COMPENSATED THRESHOLD

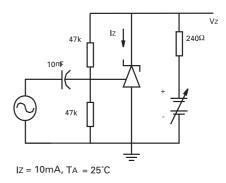


HIGHER CURRENT SHUNT REGULATOR

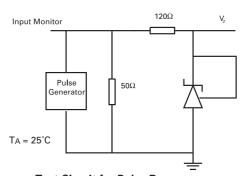




SERIES REGULATOR

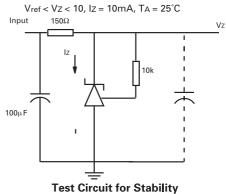




OVER VOLTAGE / UNDER VOLTAGE PROTECTION CIRCUIT

## **Typical characteristics**

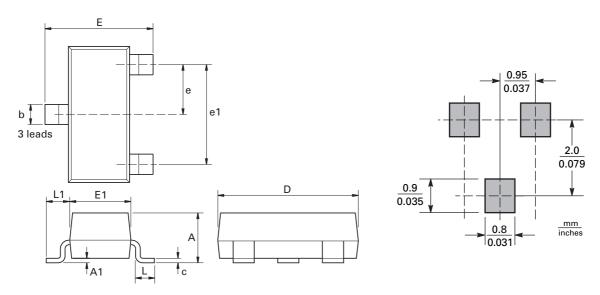






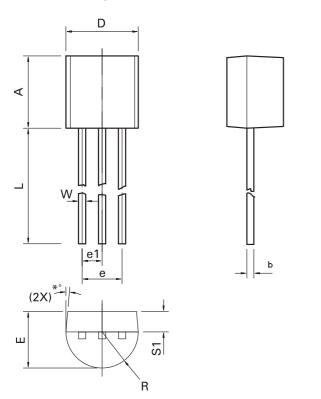

**Test Circuit for Open Loop Voltage Gain** 




**Test Circuit for Pulse Response** 



Boundary Conditions







| Dim. | Millin | neters | Inc    | hes   | Dim. | Millimeters |      | Inches |        |
|------|--------|--------|--------|-------|------|-------------|------|--------|--------|
|      | Min.   | Max.   | Min.   | Max.  |      | Min.        | Max. | Min.   | Max.   |
| Α    | -      | 1.12   | -      | 0.044 | e1   | 1.90        | NOM  | 0.075  | NOM    |
| A1   | 0.01   | 0.10   | 0.0004 | 0.004 | E    | 2.10        | 2.64 | 0.083  | 0.104  |
| b    | 0.30   | 0.50   | 0.012  | 0.020 | E1   | 1.20        | 1.40 | 0.047  | 0.055  |
| С    | 0.085  | 0.20   | 0.003  | 0.008 | L    | 0.25        | 0.60 | 0.0098 | 0.0236 |
| D    | 2.80   | 3.04   | 0.110  | 0.120 | L1   | 0.45        | 0.62 | 0.018  | 0.024  |
| е    | 0.95   | NOM    | 0.037  | NOM   | -    | -           | -    | -      | -      |

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches.

# **TO92 Package outline**





| Dim. | Millimeters |       | Inc   | hes   |
|------|-------------|-------|-------|-------|
|      | Min.        | Max.  | Min.  | Max.  |
| Α    | 4.32        | 4.95  | 0.170 | 0.195 |
| b    | 0.36        | 0.51  | 0.014 | 0.020 |
| Е    | 3.30        | 3.94  | 0.130 | 0.155 |
| е    | 2.41        | 2.67  | 0.095 | 0.105 |
| e1   | 1.14        | 1.40  | 0.045 | 0.055 |
| L    | 12.70       | 15.49 | 0.500 | 0.610 |
| R    | 2.16        | 2.41  | 0.085 | 0.095 |
| S1   | 1.14        | 1.52  | 0.045 | 0.060 |
| W    | 0.41        | 0.56  | 0.016 | 0.022 |
| D    | 4.45        | 4.95  | 0.175 | 0.195 |
| *0   | 4°          | 6°    | 4°    | 6°    |

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

#### **Definitions**

#### Product change

Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

#### Applications disclaimer

The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:

- A. Life support devices or systems are devices or systems which:
  - 1. are intended to implant into the body

- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

#### **Terms and Conditions**

All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office.

#### **Quality of product**

Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.

To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork

Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

## ESD (Electrostatic discharge)

Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

### Green compliance

Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

| Product status key:         |                                                                                                                                                                                                             |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Preview"                   | Future device intended for production at some point. Samples may be available                                                                                                                               |
| "Active"                    | Product status recommended for new designs                                                                                                                                                                  |
| "Last time buy (LTB)"       | Device will be discontinued and last time buy period and delivery is in effect                                                                                                                              |
| "Not recommended for new de | esigns" Device is still in production to support existing designs and production                                                                                                                            |
| "Obsolete"                  | Production has been discontinued                                                                                                                                                                            |
| Datasheet status key:       |                                                                                                                                                                                                             |
| "Draft version"             | This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice.                                                                |
| "Provisional version"       | This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice. |
| "Issue"                     | This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.                                                    |

#### Zetex sales offices

| Europe                      | Americas                      | Asia Pacific               | Corporate Headquarters            |
|-----------------------------|-------------------------------|----------------------------|-----------------------------------|
| Zetex GmbH                  | Zetex Inc                     | Zetex (Asia Ltd)           | Zetex Semiconductors plc          |
| Kustermann-park             | 700 Veterans Memorial Highway | 3701-04 Metroplaza Tower 1 | Zetex Technology Park, Chadderton |
| Balanstraße 59              | Hauppauge, NY 11788           | Hing Fong Road, Kwai Fong  | Oldham, OL9 9LL                   |
| D-81541 München             | USA                           | Hong Kong                  | United Kingdom                    |
| Germany                     |                               |                            | •                                 |
| Telefon: (49) 89 45 49 49 0 | Telephone: (1) 631 360 2222   | Telephone: (852) 26100 611 | Telephone: (44) 161 622 4444      |
| Fax: (49) 89 45 49 49 49    | Fax: (1) 631 360 8222         | Fax: (852) 24250 494       | Fax: (44) 161 622 4446            |
| europe.sales@zetex.com      | usa.sales@zetex.com           | asia.sales@zetex.com       | hq@zetex.com                      |
| 0.0000 B 1 11 1 1 7 1       |                               |                            |                                   |

© 2008 Published by Zetex Semiconductors plc

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# **Diodes Incorporated:**

ZR431LC01STZ ZR431LC02L ZR431LF02TC ZR431LC02STZ ZR431LC01STOB ZR431LC02STOB ZR431LF01TC