

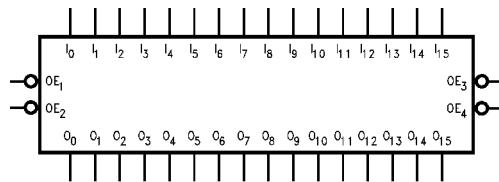
74ABT162244

16-Bit Buffer/Line Driver with 25Ω Series Resistors in the Outputs

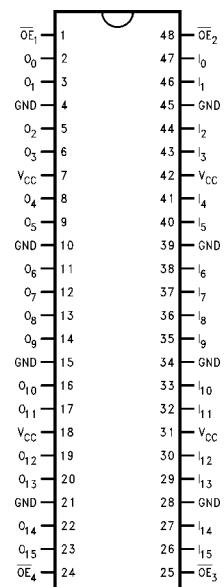
General Description

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual 3-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.


Features

- Separate control logic for each nibble
- 16-bit version of the ABT2244
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability


Ordering Code:

Order Number	Package Number	Package Description
74ABT162244CSSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ABT162244CSSX	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ABT162244CMTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74ABT162244MTDX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Logic Symbol

Connection Diagram

Pin Descriptions

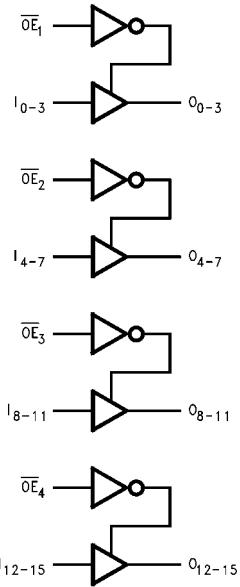
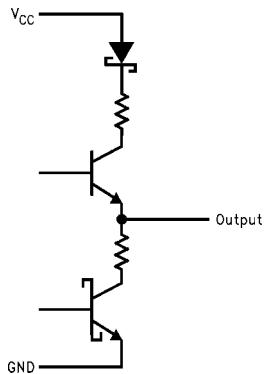
Pin Names	Description
OE _n	Output Enable Input (Active LOW)
I ₀ -I ₁₅	Inputs
O ₀ -O ₁₅	Outputs

Truth Tables

Inputs		Outputs
\overline{OE}_1	I_0-I_3	O_0-O_3
L	L	L
L	H	H
H	X	Z

Inputs		Outputs
\overline{OE}_3	I_8-I_{11}	O_8-O_{11}
L	L	L
L	H	H
H	X	Z

Inputs		Outputs
\overline{OE}_2	I_4-I_7	O_4-O_7
L	L	L
L	H	H
H	X	Z

Inputs		Outputs
\overline{OE}_4	$I_{12}-I_{15}$	$O_{12}-O_{15}$
L	L	L
L	H	H
H	X	Z

H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Immortal
 Z = High Impedance

Functional Description

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Logic Diagram**Schematic of each Output**

Absolute Maximum Ratings (Note 1)		Recommended Operating Conditions				
Storage Temperature	-65°C to +150°C					
Ambient Temperature under Bias	-55°C to +125°C					
Junction Temperature under Bias	-55°C to +150°C					
V_{CC} Pin Potential to Ground Pin	-0.5V to +7.0V					
Input Voltage (Note 2)	-0.5V to +7.0V					
Input Current (Note 2)	-30 mA to +5.0 mA					
Voltage Applied to Any Output in the Disabled or Power-Off State	-0.5V to 5.5V					
in the HIGH State	-0.5V to V_{CC}					
Current Applied to Output in LOW State (Max)	twice the rated I_{OL} (mA)					
DC Latchup Source Current	-500 mA					
Over Voltage Latchup (I/O)	10V					
		Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.				
		Note 2: Either voltage limit or current limit is sufficient to protect inputs.				
DC Electrical Characteristics						
Symbol	Parameter	Min	Typ	Max	Units	V_{CC}
V_{IH}	Input HIGH Voltage	2.0			V	
V_{IL}	Input LOW Voltage		0.8		V	
V_{CD}	Input Clamp Diode Voltage		-1.2		V	Min $I_{IN} = -18$ mA
V_{OH}	Output HIGH Voltage	2.5			V	Min $I_{OH} = -3$ mA
			2.0		V	Min $I_{OH} = -32$ mA
V_{OL}	Output LOW Voltage		0.8		V	Min $I_{OL} = 12$ mA
I_{IH}	Input HIGH Current		1		μ A	$V_{IN} = 2.7$ V (Note 3) $V_{IN} = V_{CC}$
			1			
I_{BVI}	Input HIGH Current Breakdown Test		7		μ A	$V_{IN} = 7.0$ V
I_{IL}	Input LOW Current		-1		μ A	$V_{IN} = 0.5$ V (Note 3) $V_{IN} = 0.0$ V
			-1			
V_{ID}	Input Leakage Test	4.75			V	0.0 $I_{ID} = 1.9$ μ A All Other Pins Grounded
I_{OZH}	Output Leakage Current		10		μ A	0 - 5.5V $V_{OUT} = 2.7$ V; $\overline{OE}_n = 2.0$ V
I_{OZL}	Output Leakage Current		-10		μ A	0 - 5.5V $V_{OUT} = 0.5$ V; $\overline{OE}_n = 2.0$ V
I_{OS}	Output Short-Circuit Current	-100	-275		mA	Max $V_{OUT} = 0.0$ V
I_{CEX}	Output High Leakage Current		50		μ A	Max $V_{OUT} = V_{CC}$
I_{zz}	Bus Drainage Test		100		μ A	0.0 $V_{OUT} = 5.5$ V; All Others GND
I_{CCH}	Power Supply Current		2.0		mA	Max All Outputs HIGH
I_{CCL}	Power Supply Current		60		mA	Max All Outputs LOW
I_{CCZ}	Power Supply Current		2.0		mA	Max $\overline{OE}_n = V_{CC}$ All Others at V_{CC} or GND
I_{CCT}	Additional I_{CC} /Input Outputs Enabled		3.0		mA	$V_I = V_{CC} - 2.1$ V
	Outputs 3-STATE		3.0		mA	Enable Input $V_I = V_{CC} - 2.1$ V
	Outputs 3-STATE		50		μ A	Data Input $V_I = V_{CC} - 2.1$ V All Others at V_{CC} or GND
I_{CCD}	Dynamic I_{CC} No Load (Note 3)		0.1		mA/ MHz	Outputs OPEN $\overline{OE}_n = GND$ One Bit Toggling, 50% Duty Cycle
Note 3: Guaranteed, but not tested.						

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^\circ C$			$T_A = -40^\circ C$ to $+85^\circ C$		Units
		Min	Typ	Max	Min	Max	
t_{PLH}	Propagation	1.0	2.4	3.9	1.0	3.9	ns
t_{PHL}	Delay Data to Outputs	1.0	3.2	4.7	1.0	4.7	ns
t_{PZH}	Output	1.5	3.5	6.3	1.5	6.3	ns
t_{PZL}	Enable Time	1.5	4.2	6.9	1.5	6.9	ns
t_{PHZ}	Output	1.0	4.2	6.7	1.0	6.7	ns
t_{PLZ}	Disable Time	1.0	3.8	6.7	1.0	6.7	ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions $T_A = 25^\circ C$
C_{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0.0V$
C_{OUT} (Note 4)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 4: C_{OUT} is measured at frequency $f = 1$ MHz per MIL-STD-883, Method 3012.

AC Loading

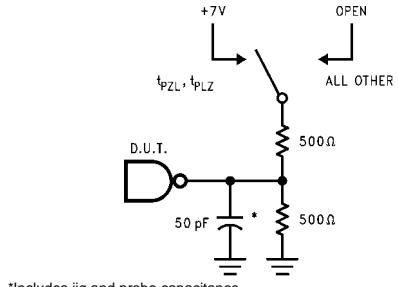


FIGURE 1. Standard AC Test Load

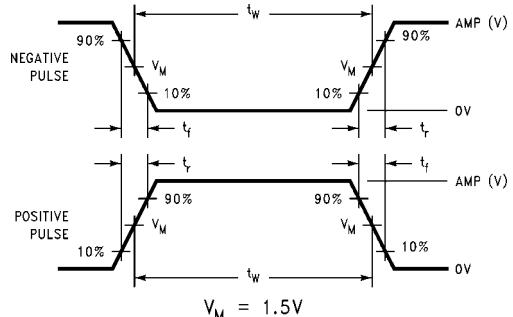


FIGURE 2. Input Pulse Requirements

Amplitude	Rep. Rate	t_W	t_r	t_f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

AC Waveforms

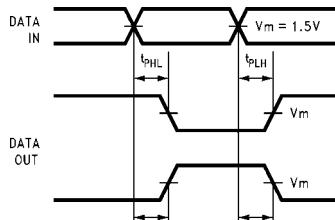


FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

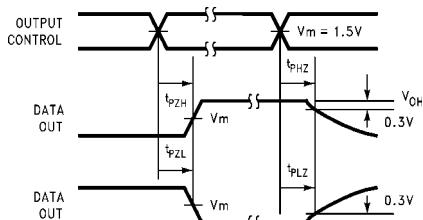


FIGURE 6. 3-STATE Output HIGH and LOW Enable and Disable Times

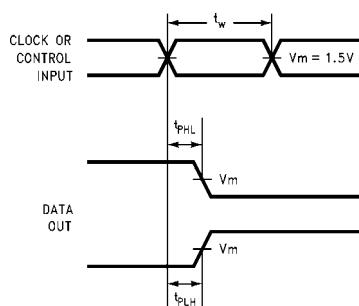
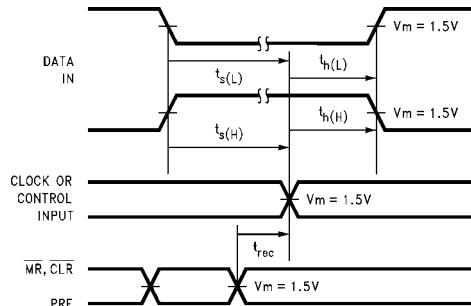
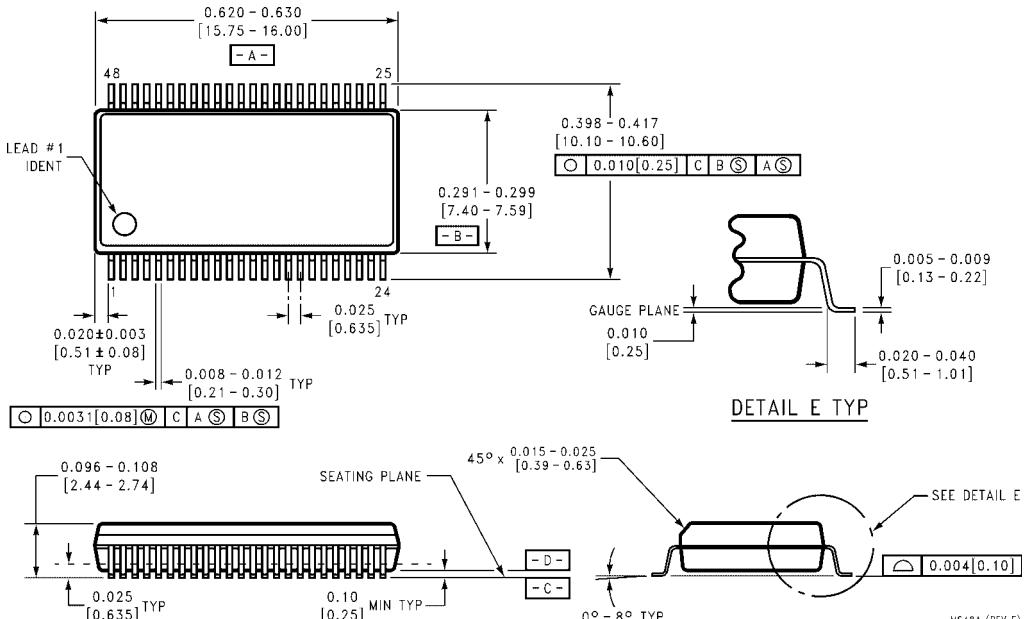
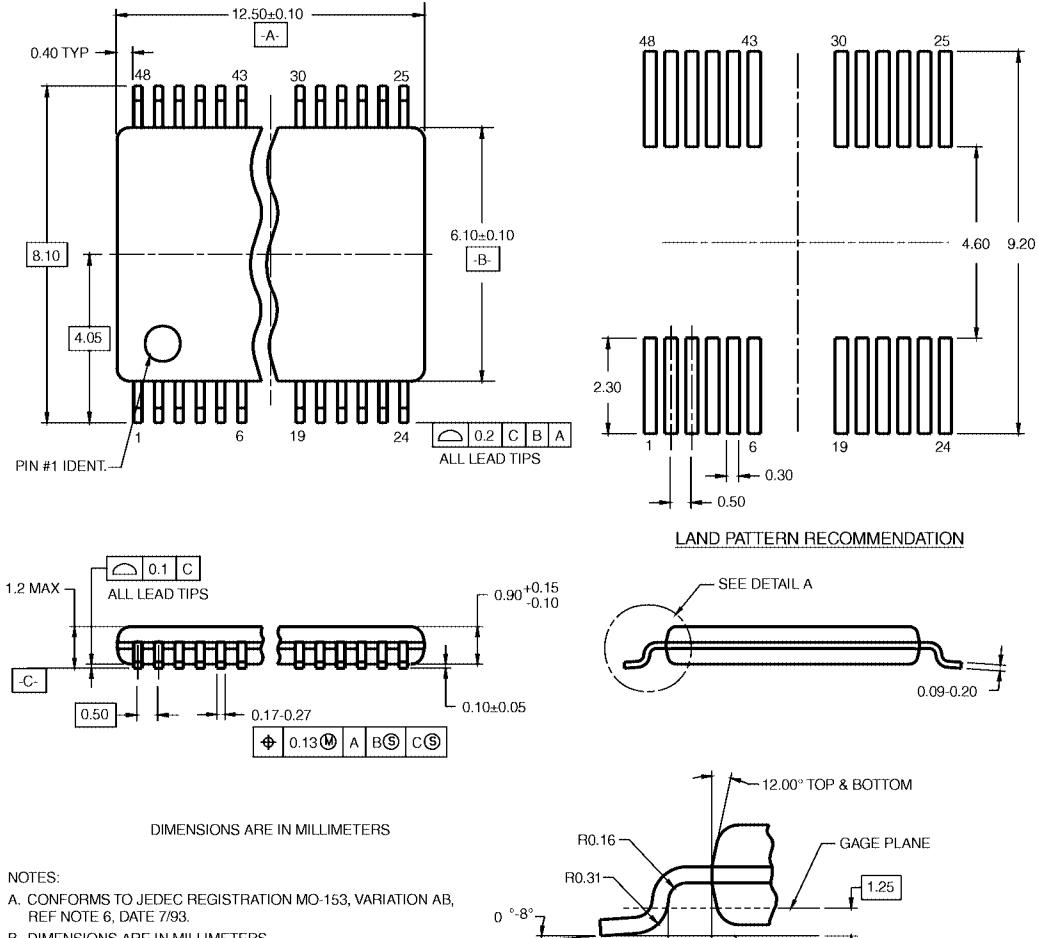


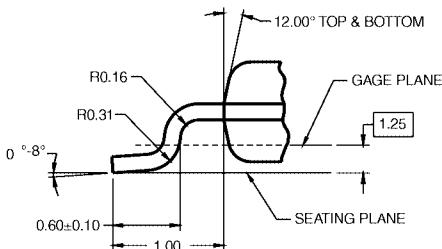
FIGURE 5. Propagation Delay, Pulse Width Waveforms


FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

**48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
Package Number MS48A**


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTD48RevB1

DETAIL A

**48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Package Number MTD48**

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com