

MSDL (Mobile Shrink Data Link) Transceivers for Mobile Phones

Data rate 1350Mbps RGB Interface

BU7964GUW No.10058EAT04

Description

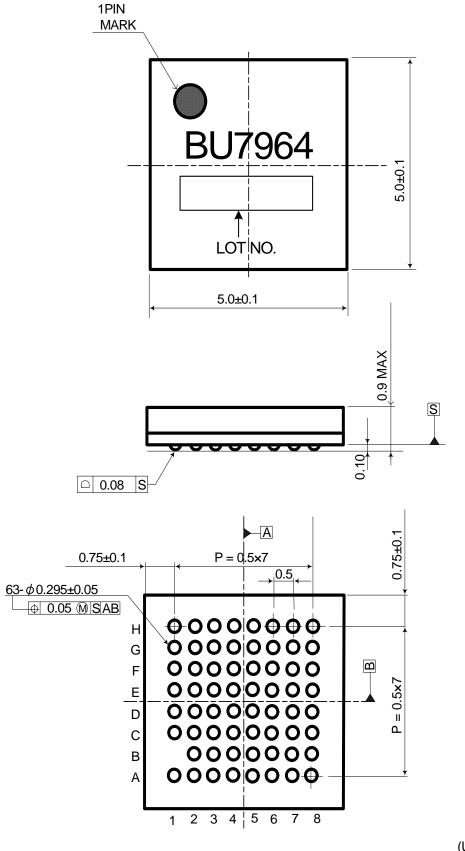
BU7964GUW is a differential serial interface connecting mobile phone LCD modules to the host CPU. Unique technology is utilized for lower power consumption and EMI. MSDL minimizes the number of wires required - an important consideration in hinge phones - resulting in greater reliability and design flexibility.

Features

- 1) MSDL3 high-speed differential interface with a maximum transfer rate of 1350 Mbps.
- 2) Compatible with 24-bit RGB video mode for LCD controller-to-LCD interface.
- 3) Pixel clock frequency range from 4 to 45MHz.
- 4) Depending on the data transfer rate, either, two or three differential data channels can be selected.

Applications

Serial Interface for LCD Display Interface of Mobile Devices Application.


●Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Remarks
Dower Supply Voltage	DVDD	-0.3 ~ +2.5	V	-
Power Supply Voltage	MSVDD	-0.3 ~ +2.5	V	-
Input Valtage	VIN	-0.3 ~ MSVDD+0.3	V	I/O terminals of MSVDD line
Input Voltage	VIIN	-0.3 ~ DVDD+0.3	V	I/O terminals of DVDD line
Output Voltage	VOUT	-0.3 ~ MSVDD+0.3	V	I/O terminals of MSVDD line
Output Voltage	VO01	-0.3 ~ DVDD+0.3	V	I/O terminals of DVDD line
Input Current	IIN	-10 ~ +10	mA	-
Output Current	IOUT	-70 ~ + 70	mA	-
Preservation Temperature	Tstg	-55 ~ +125	°C	-

Operating Conditions

Parameter	Symbol	Ratings			Unit	Conditions	
Farameter	Symbol	Min	Тур	Max	Offic	Conditions	
Supply Voltage for DVDD	V_{DVDD}	1.65	1.80	1.95	V	V	
Supply Voltage for MSVDD	V_{MSVDD}	1.65	1.80	1.95	V	$V_{DVDD} = V_{MSVDD}$	
Data Transmission Rate	DR	120	-	450	Mbps/ch	-	
Operating Temperature Range	T _{opr}	-30	25	85	°C	-	

●Package View

(UNIT:mm)

Fig.1. Package View (VBGA063W50)

Block Diagram

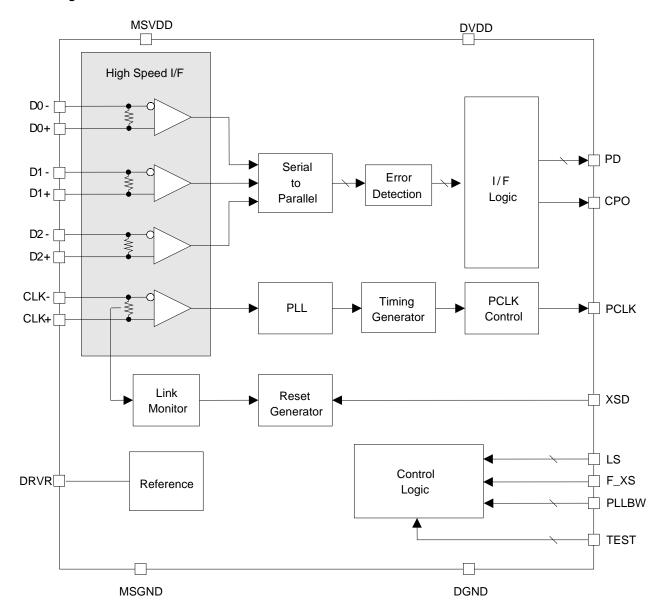


Fig.2. Block Diagram

Technical Note

●Pin Layout

	1	2	3	4	5	6	7	8
А	TEST0	PD19	PD17	PD16	PD14	PD13	PD10	СРО
В		PCLK	PD18	PD15	PD12	PD11	PD9	PD8
С	PD22	PD20	PLL_BW0	DVDD	N.C.	F_XS	PD7	PD6
D	PD23	PD21	N.C.	DGND	DGND	DVDD	PD4	PD5
E	PD25	PD24	DVDD	DGND	MSGND	N.C.	PD1	PD3
F	PD26	LS0	MSVDD	MSGND	MSVDD	N.C.	XSD	PD2
G	LS1	PLL_BW1	D2-	D1-	CLK-	D0-	N.C.	PD0
Н	N.C.	N.C.	D2+	D1+	CLK+	D0+	DRVR	TEST1

Fig.3. Pin Layout (Top View)

Pin Functions

Table 1. Power Supply and Ground

	Table 1.1 ower Supply and Ground							
Power Supp	Power Supply / Ground: 10-pin							
Name	Width	Functions						
DVDD	3	Logic core, CMOS I/O power supply.						
MSVDD	2	Analog core power supply.						
DGND	3	CMOS I/O and logic core ground.						
MSGND	2	Analog core ground.						

Table 2. MSDL3

High-Speed	High-Speed Serial Interface: 8-pin									
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic				
CLK+	1	Analog	I	CLK+pin.	Pull Down	D				
CLK-	1	Analog	I	CLK-pin.	Pull Down	D				
D0+	1	Analog	I	D0+pin.	Pull Down	D				
D0-	1	Analog	I	D0-pin.	Pull Down	D				
D1+	1	Analog	I	D1+pin.	Pull Down	D				
D1-	1	Analog	I	D1-pin.	Pull Down	D				
D2+	1	Analog	I	D2+pin.	Pull Down	D				
D2-	1	Analog	I	D2-pin.	Pull Down	D				

Table 3. Analog

Analog: 1-pi	Analog: 1-pin										
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic					
DRVR	1	Analog	-	$10k\Omega \pm 5\%$ register should be connected between DRVR and MSGND.	-	D					

Table 4. Parallel Data Interface

Parallel Data	Parallel Data Interface: 29-pin									
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic				
PCLK	1	CMOS	0	PCLK interface.	'L'	С				
PD[26:0]	27	CMOS	0	Parallel data interface.	'L'	С				
СРО	1	CMOS	0	Parity error toggled output, normally 'L,' output is toggled during one PCLK period when a parity error is detected	'L'	С				

Table 5. Control

Control: 8-pin									
Name	Width	Level	I/O	Functions	Shutdown	Equivalent Schematic			
XSD	1	CMOS	I	Shutdown pin. 'L': shutdown. 'H': normal operation.	Input	А			
LS0	1	CMOS		Selection of the number of data channel and the data format. Refer to section 0.	Input	A			
LS1	1	CIVIOS	•	* Set the same number of data channel bet wean the TX device and the RX device.	прис	Λ			
F_XS	1	CMOS	ı	Selection of CMOS output rising and falling slope 'L': slow 'H': fast	Input	А			
PLL_BW0	1	CMOS	1	Selection of PLL bandwidth.	Input	A			
PLL_BW1	1	CIVIOS	1	Selection of PLL bandwidth.	Input	A			
TEST0	Pull down			Test mode pins. 'L': normal mode.	Input	В			
TEST1			ı	'H': test mode. Must be open or 'L.'	Input	В			

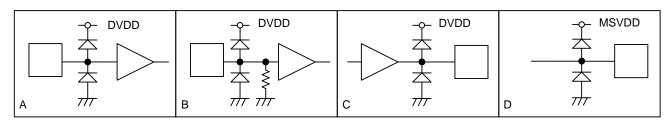


Fig.4. Equivalent Schematics

Operation Control

MSDL3 Channel Count Selection

Pins LS0 and LS1 are used to control the high-speed data channel count and data format. High-speed data channel count, data format should be the same between the transmitting and receiving devices (the BU7963GUW and BU7964GUW, respectively). Table 6 shows and Receipt Data rate ranges for the LS pin settings.

Table 6. The Range of The Receipt Data rate

LS1	LS0	The Number of Data Channel The Range of PCLK Input Frequency [MHz]		The Range of The Data Receipt Rate [Mbits/sec]
'L'	'L'	1-channel (27-bit format).	4.0-15.0	120-450
'L'	'H'	2-channel (27-bit format).	8.0-30.0	240-900
'H'	'L'	3-channel (27-bit format).	12.0-45.0	360-1350

CMOS Output Drivability Selection

F_XS determines output drivability of the parallel data interface. Table 7 shows output drivability.

Table 7. Output Drivability

F_XS	Output Drivability
'L'	1mA Type
'H'	3mA Type

PLL Bandwidth Selection

BU7964GUW controls the range of the CLK+ / CLK- input frequency (= PCLK output frequency) by the setting of the data format (LS1, and LS0) of the high-speed data channel and the bandwidth setting of PLL_BW0 and PLL_BW1.

Table 8. PLL Bandwidth Selection

LS1	LS0	PLL_BW1	1 PLL_BW0	CLK+/CLK- Frequency Range [M (PCLK Input Frequency)		
				Min	Max	
'L'	'L'	Ľ	'L'	4	7	
'L'	'L'	'L'	'H'	6	11	
'L'	'L'	'H'	'L'	10	15	
'L'	'H'	'L'	'L'	8	14	
'L'	'H'	ſĽ	'H'	12	22	
'L'	'H'	'H'	'L'	20	30	
'H'	'L'	'L'	'L'	12	21	
'H'	'L'	"L'	'H'	18	33	
'H'	'L'	'H'	'L'	30	45	

●Power Modes

BU7964UW has three power modes.

1) Shutdown Mode

BU7964GUW goes to Shutdown Mode when XSD = 'L.' All logic circuits are initialized in the Shutdown Mode. All high-speed signaling are pulled down to MSGND. All parallel data interface output 'L'.

2) Standby Mode

BU796 4 GUW goes to a Standby Mode when XSD = 'H' and CLK+ / CLK- is Hi-Z. All high-speed signaling inputs sink DC current in order to pull the pins down to MSGND. BU7964GUW is monitoring V_{CM} of CLK+ / CLK-. When TX device starts driving high-speed signaling outputs, BU7964GUW detects its V_{CM} and switches to Active Mode. In Standby Mode, All parallel data interface output 'L'.

3) Active Mode

BU7964UW goes to Active Mode when XSD = 'H' and VCM is running.

Table 9. Power Modes

	Input		Operation			
Power Mode	XSD Vcm of CLK+/CLK		Functions	MSDL3 Terminals	Parallel output	
Shutdown	'L'	MSGND	Initialized	Disabled(Pull-down)	Initial value	
Standby	'H'	MSGND	MSDL3 Vcm detection	MSDL3 Vcm detection (Pull-down)	Initial value	
Active	'H'	Clock input is active	MSDL3 V _{CM} monitor. Normal operation. (S2P conv)	MSDL3 V _{CM} monitor. Enabled.	Normal operation	

4) Power Modes Transition

Fig.5.shows the Transition of power modes.

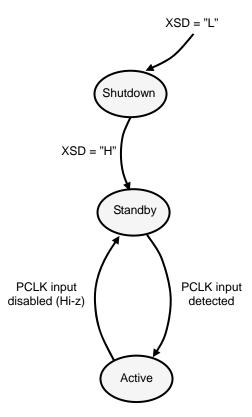


Fig.5. Power Modes Transition

Link Error Detection

Detection of Parity Error

BU7964GUW counts the number of 'H' bits in PD[26:0] and CP in every pixel information received and detects parity error as follows:

- There is no parity error occurred if the number of 'H' bits in PD[26:0] and CP is odd.
- There is parity error occurred if the number of 'H' bits in PD[26:0] and CP is even.

If parity error is detected, BU7964GUW outputs the previous error-free pixel information and discards the invalid pixel information. At the same time, BU7964GUW toggles CPO during one PCLK period. BU7964GUW outputs initial value, if the parity error is detected when there is no previous pixel information. Otherwise, BU7964GUW outputs the received pixel information from the high-speed data channel(s) and CPO keeps 'L.' Error correction is not supported in BU7964GUW.

● High-Speed Data Channel Protocols

Fig.6 Fig.7 and Fig.8 show high-speed data channel protocols.

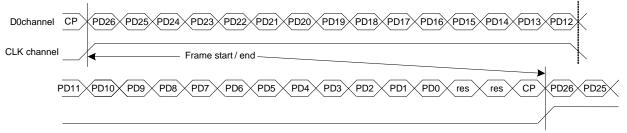


Fig.6. MSDL3 Protocol for 1-channel Data (27-bit)

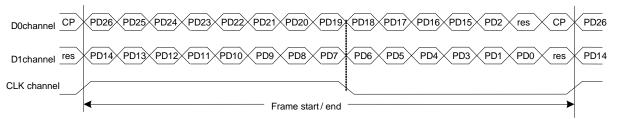


Fig.7. MSDL3 Protocol for 2-channel Data (27-bit)

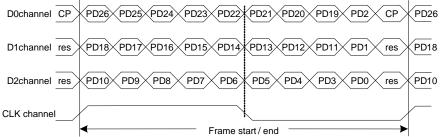


Fig.8. MSDL3 Protocol for 3-channel Data (27-bit)

CP is the parity bit of data payload.

BU7964GUW adds an odd parity on CP of the high-speed channel data.

- · When the number of 'H' bits in parallel data is even, CP bit is 'H.'
- When the number of 'H' bits in parallel data is odd, CP bit is 'L.'

[&]quot;res" is reserved bit for the future use, the default state of those is '0.'

Technical Note

Electrical Characteristics

1) DC Characteristics

Table 10. Digital Input / Output DC Characteristics

Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Parameter	Symbol		Limits		Unit	Conditions	
Parameter	Symbol	Min	Тур	Max	Onit	Conditions	
'L' Input Voltage 1	VIL1	DGND	-	0.3 x DVDD	V	XSD, F_XS PLL_BW[1:0], LS[1:0]Pin	
'H' Input Voltage 1	VIH1	0.7 x DVDD	-	DVDD	V	XSD, F_XS PLL_BW[1:0], LS[1:0]Pin	
Output 'L' Voltage1	VOL1	DGND	-	0.3 x DVDD	V	F_XS='L', IO = 1mA, PCLK, CPO, PD[26:0]Pin	
Output 'H' Voltage1	VOH1	0.7 x DVDD	-	DVDD	V	F_XS='L', IO = -1mA, PCLK, CPO, PD[26:0]Pin	
Output 'L' Voltage2	VOL2	DGND	-	0.3 x DVDD	V	F_XS='H', IO = 3mA, PCLK, CPO, PD[26:0]Pin	
Output 'H' Voltage2	VOH2	0.7 x DVDD	-	DVDD	V	F_XS='H', IO = -3mA, PCLK, CPO, PD[26:0]Pin	
Output 'L' Voltage3	VOL3	DGND	-	0.15 x DVDD	V	IO = 100µA, PCLK, CPO, PD[26:0]Pin	
Output 'H' Voltage3	VOH3	0.85 x DVDD	-	DVDD	V	IO = -100μA, PCLK, CPO, PD[26:0]Pin	

Table 11. Current Consumption Ta=25°C. DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Ta=25°C, DVDD=MSVDD=1.80V an	Symbol	Limits			Unit	Conditions	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Shutdown Current	I _{op_sht_rx}	-	0.2	10	μA	XSD = 'L', IDVDD + IMSVDD	
Standby Current	I _{op_stb_rx}	•	41.8	90	μA	XSD = 'H', IDVDD + IMSVDD	
Active Current 1-channel / 27-bit Format	I _{op_act_rx1}	-	17.6	24.0	mA	LS[1:0] = "LL", PLL_BW[1:0] = "HL", DVDD = MSVDD, PCLK = 15MHz, XSD = 'H', CL = 10pF, Total operating current (IDVDD + IMSVDD) with PD[26:0] outputs toggling 0x2AAAAAA and 0x5555555	
Active Current 2-channel / 27-bit Format	I _{op_act_rx2}	-	28.0	36.8	mA	LS[1:0] = "LH", PLL_BW[1:0] = "HL", DVDD = MSVDD, PCLK = 30MHz, XSD = 'H', CL = 10pF, Total operating current (IDVDD + IMSVDD) with PD[26:0] outputs toggling 0x2AAAAAA and 0x5555555	
Active Current 3-channel / 27- bit Format	I _{op_act_rx3}	-	36.0	48.6	mA	LS[1:0] = "HL", PLL_BW[1:0] = "HL", DVDD = MSVDD, PCLK = 45MHz, XSD = 'H', CL = 10pF, Total operating current (IDVDD + IMSVDD) with PD[26:0] outputs toggling 0x2AAAAAA and 0x5555555	

2) AC Characteristics

Parallel Data Output Timing

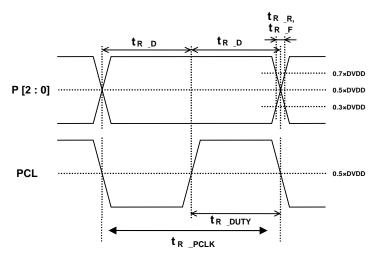


Fig.9. Parallel Data Output Timing

Table 12. Parallel Data Output AC Timing Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Doromotor	Cymphol		Limits		Unit	Conditions
Parameter	Symbol	Min	Тур	Max	Offic	
PCLK Output Duty Cycle	t _{RX_DUTY}	45	50	55	%	CL=10pF
Output Data Setup Time	t _{RX_DS}	0.41X t _{Rx PCLK}	-	-	ns	CL=10pF
Output Data Hold Time	t _{RX_DH}	0.41X t _{Rx_PCLK}	-	-	ns	CL=10pF
Output Data Disa Time/Fall time	t _{RX R}	-	9	-	ns	F_XS=0, CL=10pF
Output Data Rise Time/Fall time	t _{RX_F}	-	3	-	ns	F_XS=1, CL=10pF

3) Power-On / Off Sequence Power-On Sequence

Fig.10 shows power-on sequence of BU7964GUW.

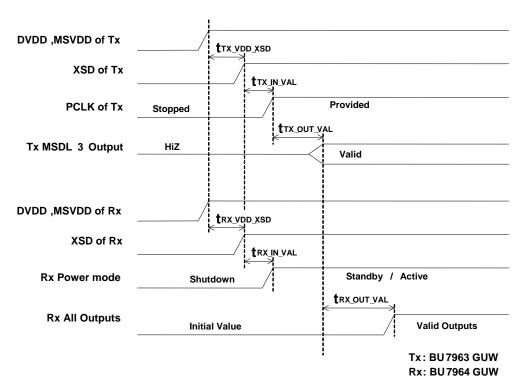


Fig.10. Power-On Sequence

Table 13. Power-On Sequence Timing

Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Ta=25 C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.							
Parameter	Cumbal		Limits		Unit	Conditions	
Parameter	Symbol	Min	Тур	Max		Conditions	
Reset Valid After Power Supplied	t _{RX_VDD_XSD}	10	-	-	μs		
PCLK Valid After XSD Released	t _{RX_IN_VAL}	-	-	10	μs		
Parallel Data Valid After TX High- Speed Signals Valid	t _{RX_OUT_VAL}	-	-	2	ms		

Rx: BU7964 GUW

Power-Off Sequence

Fig.11 shows the power-off sequence of BU7964GUW.

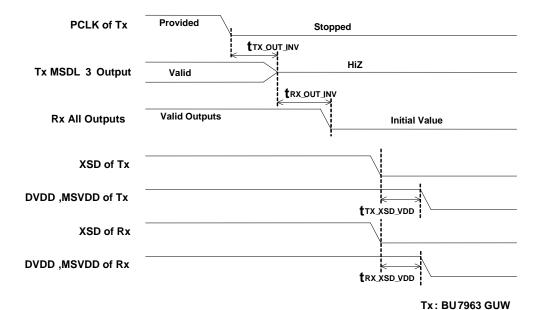
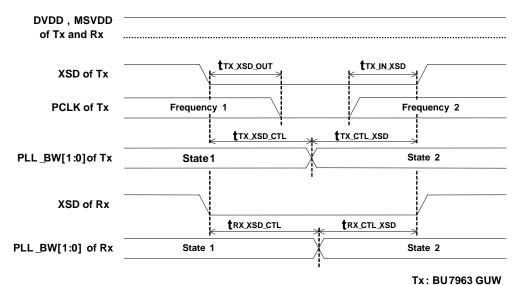


Fig.11. Power-Off Sequence Timing

Table 14. Power-Off Sequence Timing


Ta=25°C, DVDD=MSVDD=1.80V, DGND=MSGND=0.00V, unless otherwise noted.

Dorometer	Cymphol		Limits		Unit	Conditions
Parameter	Symbol	Min	Тур	Max		
Parallel output delay time	t _{RX_OUT_INV}	-	-	100	μs	
XSD hold time	t _{RX_XSD_VDD}	10	-	-	μs	

Technical Note

● Frequency Change Sequence

Fig.12 shows the frequency change sequence of BU7964GUW.

Rx: BU7964 GUW

Fig.12. Frequency Change Sequence

Table 15. Frequency Change Sequence Timing

Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Davamatav	Cumbal		Limits		Unit	Conditions
Parameter	Symbol	Min	Тур	Max		
Control Signal Hold Time	t _{RX_XSD_CTL}	2.0	-	-	μs	
Control Signal Setup Time	trx ctl xsd	2.0	-	-	μs	

● High-Speed Channel Characteristic

Table 16. High-speed channel characteristic Ta=25°C, DVDD=MSVDD=1.80V and DGND=MSGND=0.00V, unless otherwise noted.

Darameter	Symbol		Limits		Unit	Conditions
Parameter		Min	Тур	Max		
Differential Voltage Range	V_{diff_rx}	70	100	200	mVpp	
LOW-level threshold voltage	V_{thl}	-40	-	-	mV	
HIGH-level threshold voltage	V_{thh}	-	-	40	mV	
Common Mode Voltage Range	V _{cm_rx}	0.6	0.9	1.2	V	
Internal termination resistance	R_rx	75	100	125	Ω	
Operating Frequency	f _{opr_rx}	1	-	225	MHz	
RX sink current	I _{PULL_RX}	12	30	90	μA	
Link detection threshold voltage	V_{LINK_RX}	0.2	0.3	0.4	V	

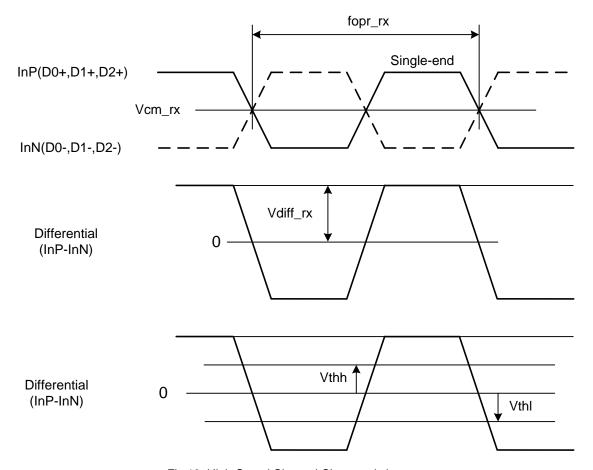


Fig.13. High-Speed Channel Characteristic

Fig.14 shows high-speed channel equivalent schematic.

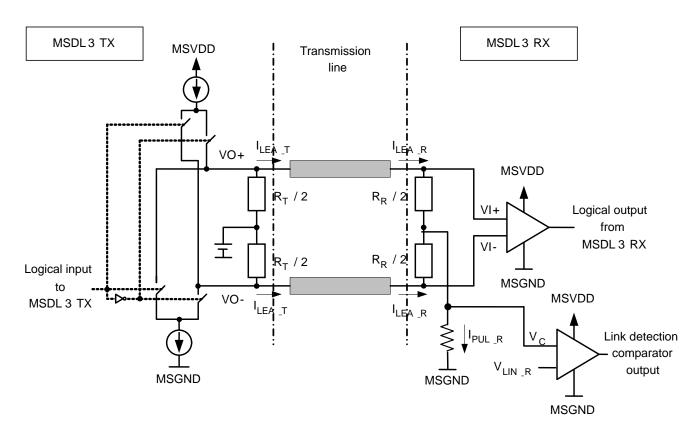
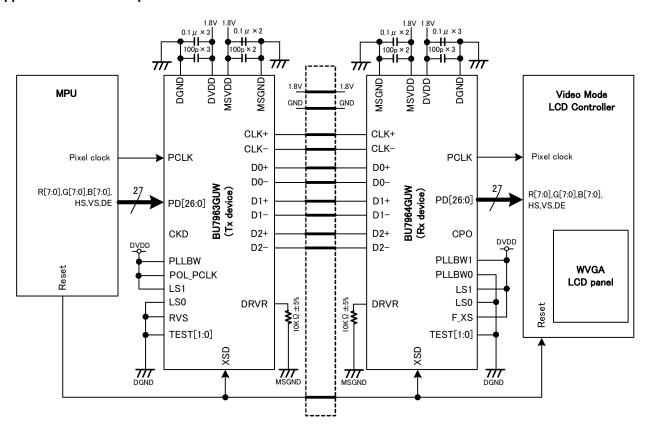
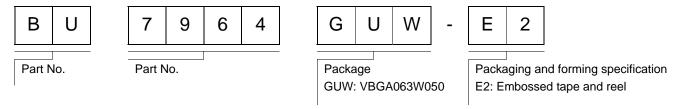
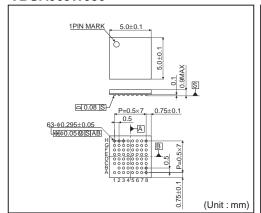
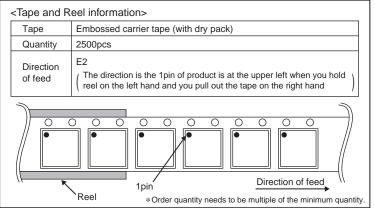


Fig.14. High-Speed Channel Equivalent Schematic.

● Application Circuit Example


Fig.15. Application Circuit

Ordering Part Number

VBGA063W050

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA	
CLASSⅢ	CLASSⅢ	CLASS II b	CLASSIII	
CLASSIV	CLASSIII	CLASSⅢ	CLASSIII	

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001