Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

PRELIMINARY

Notice: This is not a final specification.

Notice: This is not a final specification to change.

Some parametric limits are subject to change.

MITSUBISHI MICROCOMPUTERS

M37754M6C-XXXGP M37754M6C-XXXHP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37754M6C-XXXGP and M37754M6C-XXXHP are single-chip microcomputers designed with high-performance CMOS silicon gate technology. This is housed in a 100-pin plastic molded QFP.

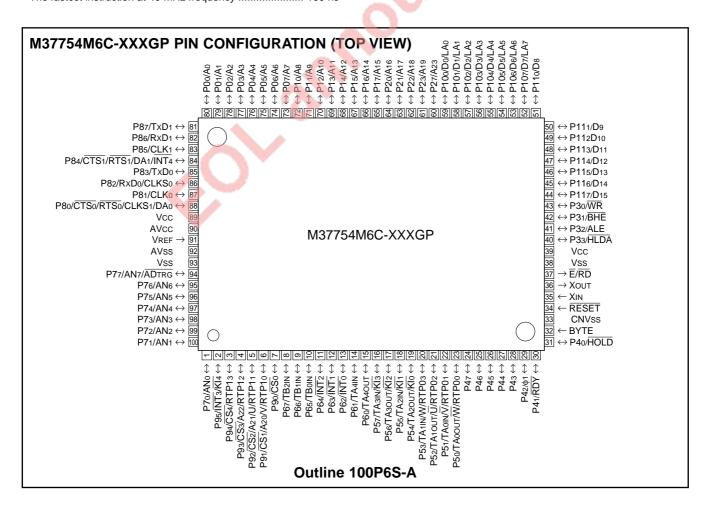
This microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing, and the bus interface unit enhances the memory access efficiency to execute instructions fast.

In addition to the 7700 Family basic instructions, the M37754M6C-XXXGP and M37754M6C-XXXHP has 6 special instructions which contain instructions for signed multiplication/division; these added instructions improve the servo arithmetic performance to control hard disk drives and so on.

This microcomputer also include the ROM, RAM, multiple-function timers, motor control function, serial I/O, A-D converter, D-A converter, and so on.

DISTINCTIVE FEATURES

Number of basic machine instructions						
(103 basic in	(103 basic instructions of 7700 Family + 6 special instructions)					
Memory size	ROM	48 Kbytes				
	RAM	2048 bytes				
 ■ Instruction execution time 						
The fastest instruction at 40 MHz frequency						

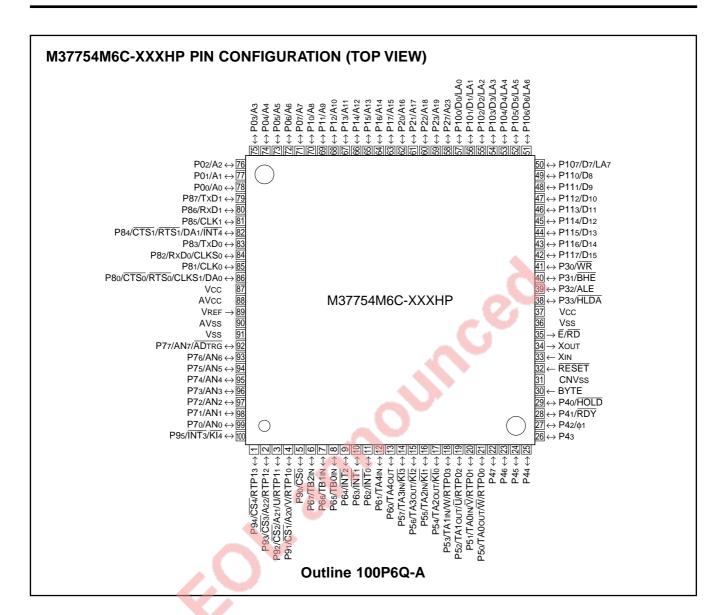

• Single power supply
● Low power dissipation (at 40 MHz frequency) 125 mW (Typ.)
• Interrupts21 types, 7 levels
• Multiple-function 16-bit timer 5+3
(three-phase motor drive waveform or pulse motor control wave-
form output)
● Serial I/O (UART or clock synchronous)
● 10-bit A-D converter 8-channel inputs
● 8-bit D-A converter 2-channel outputs
● 12-bit watchdog timer
◆ Programmable input/output
(ports P0—P11) 87
● Small package [M37754M6C-XXXHP]

APPLICATION

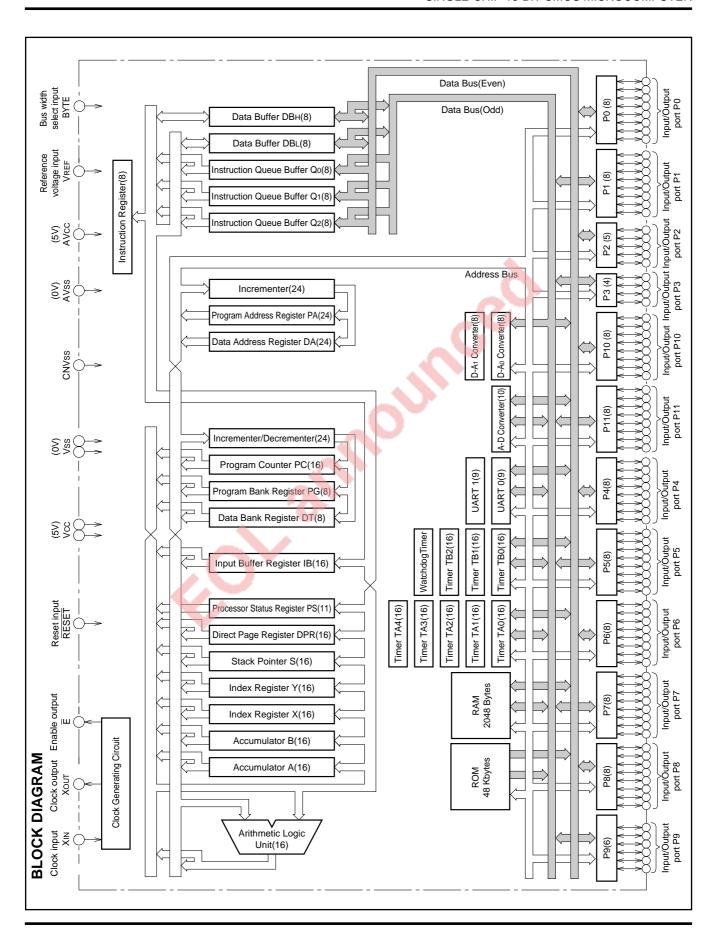
measuring instruments

Control devices for personal computer peripheral equipment such as CD-ROM drives, hard disk drives, high density FDD, printers Control devices for office equipment such as copiers and facsimiles Control devices for industrial equipment such as communication and

Control devices for equipment required for motor control such as inverter air conditioner and general purpose inverter



SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER


Differences between M37754M6C-XXXGP and M37754M6C-XXXHP

Product	Package	
M37754M6C-XXXGP	100-pin QFP (100P6S-A)	
M37754M6C-XXXHP	100-pin fine pitch QFP	
	(100P6Q-A)	

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37754M6C-XXXGP

	Parameter	Functions		
Number of basic machine inst	ructions	109		
Instruction execution time		100 ns (the fastest instruction at external clock 40 MHz frequency)		
M	ROM	48 Kbytes		
Memory size	RAM	2048 bytes		
	P0, P1, P4–P8, P10, P11	8-bit × 9		
Land 1/Octobrilla and	P2	5-bit × 1		
Input/Output ports	P3	4-bit × 1		
	P9	6-bit × 1		
Maddala Garatian Caran	TA0, TA1, TA2, TA3, TA4	16-bit × 5		
Multiple-function timers	TB0, TB1, TB2	16-bit × 3		
Serial I/O	•	(UART or clock synchronous serial I/O) × 2		
A-D converter		10-bit × 1 (8 channels)		
D-A converter		8-bit × 2		
Watchdog timer		12-bit × 1		
Dead-time timer		8-bit × 3		
Interrupts		5 external types, 16 internal types (Each interrupt can be set to priority levels 0–7.)		
Clock generating circuit		Built-in (externally connected to a ceramic resonator or quartz crystal resonator)		
Supply voltage		5 V±10 %		
Power dissipation		125 mW(at external clock 40 MHz frequency)		
Lancet Octavit all and at a vietic	Input/Output withstand voltage	5 V		
Input/Output characteristic	Output current	5 mA		
Memory expansion		Maximum 16 Mbytes		
Operating temperature range	- 4	−20 to 85 °C		
Device structure		CMOS high-performance silicon gate process		
Package	4	100-pin plastic molded QFP		
	60,0			

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION (MICROCOMPUTER MODE)

Pin	Name	Input/ Output	Functions
Vcc, Vss	Power supply		Supply 5 V±10 % to Vcc and 0 V to Vss.
CNVss	CNVss input	Input	This pin controls the processor mode. Connect to Vss for single-chip mode or memory expansion mode. Connect to Vcc for microprocessor mode.
RESET	Reset input	Input	This is reset input pin. The microcomputer is reset when supplying "L" level to this pin.
XIN	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz-crystal resonator between XIN and XOUT. When an external clock is used, the clock
XOUT	Clock output	Output	source should be connected to the XIN pin and the XOUT pin should be left open.
Ē	Enable output	Output	This pin outputs enable signal \overline{E} , which indicates access state of data bus for single-chip mode. This pin outputs \overline{RD} signal for memory expansion mode or microprocessor mode.
BYTE (Note)	Bus width select input	Input	This pin determines whether the external data bus is 8-bit width or 16-bit width for memory expansion mode or microprocessor mode. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AVCC, AVSS	Analog supply input		Power supply for the A-D converter and the D-A converter. Connect AVcc to Vcc and AVss to Vss externally.
VREF	Reference voltage input	Input	This is reference voltage input pin for the A-D converter and the D-A converter.
P00-P07	I/O port P0	I/O	In single-chip mode, port P0 is an 8-bit I/O port. This port has an I/O direction register and each pin can be programmed for input or output. These ports are in the input mode when reset. Address (A0–A7) is output in memory expansion mode or microprocessor mode.
P10-P17	I/O port P1	I/O	In single-chip mode, these pins have the same functions as port P0. Address (A8–A15) is output in memory expansion mode or microprocessor mode.
P20-P23, P27	I/O port P2	I/O	In single-chip mode, these pins have the same functions as port P0. Address (A16–A19, A23) is output in memory expansion mode or microprocessor mode.
P30-P33	I/O port P3	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, WR, BHE, ALE, and HLDA signals are output.
P40-P47	I/O port P4	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, P40, P41, and P42 become $\overline{\text{HOLD}}$ and $\overline{\text{RDY}}$ input pins, and clock ϕ_1 output pin respectively. Functions of other pins are the same as in single-chip mode. In memory expansion mode, P42 can be programmed as I/O port.
P50-P57	I/O port P5	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A0, timer A1, timer A2, timer A3, output pins for motor drive waveform, and input pins for key input interrupt.
P60-P67	I/O port P6	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A4, input pins for external interrupt input INTo, INT1, and INT2, and input pins for timer B0, timer B1, and timer B2.
P70-P77	I/O port P7	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as input pins for A-D converter.
P80-P87	I/O port P8	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for UART0, UART1, output pins for D-A converter, and input pin for $\overline{\text{INT4}}$.
P90-P95	I/O port P9	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as input pin for INT3, output pins for motor drive waveform. In memory expansion mode and microprocessor mode, these pins can be programmed as address (A20–A22) or output pins for CSo–CS4.

Note: It is impossible to change the input level of the BYTE pin in each bus cycle. In other words, bus width cannot be switched dynamically. Fix the input level of the BYTE pin to "H" or "L" according to the bus width used.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Pin	Name	Input/ Output	Functions
P100 – P107	I/O port P10	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, these pins become data I/O pins and operate as follows:
			(1) When using 16-bit width as external data bus width:
			 Accessing external memory When reading> Pins' value is input into low-order internal data bus (DBo to DB7). When writing> Value of low-order internal data bus (DBo to DB7) is output to these pins. Accessing internal memory When reading> These pins become high impedance. When writing> Value of internal data bus is output to these pins.
			(2) When using 8-bit width as external data bus width:
		-	 Accessing external memory <when reading=""> Pins' value is input into internal data bus. The value is input into low-order internal data bus (DBo to DB7) when accessing an even address; it is input into high-order internal data bus (DBs to DB15) when accessing an odd address. <when writing=""> Value of internal data bus is output to these pins. The value of low-order internal data bus (DBo to DB7) is output when accessing an even address; the value of high-order internal data bus (DBs to DB15) is output when accessing an odd address. </when></when> Accessing internal memory <when reading=""> These pins become high impedance. <when writing=""> Value of internal data bus is output to these pins. When the external bus width is 8 bits, the mode where low-order address (LA0 to LA7) is output when RD or WR output is "H" and data (Do to D7) is input/output when RD or WR output is "L" can be selected in specified external memory area access cycle. </when></when>
P110 – P117	I/O port P11	I/O	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, these pins operate as follows: (1) When using 16-bit width as external data bus width • Accessing external memory <when reading=""> The value is input into high-order internal data bus (DBs to DB15) when accessing an odd address; these pins enter high impedance state when not accessing an odd address. <when writing=""> Value of high-order internal data bus (DBs to DB15) is output to these pins. • Accessing internal memory <when reading=""> These pins enter high impedance state. <when writing=""> Value of internal data bus is output to these pins. (2) When using 8-bit width as external data bus width These pins become I/O port P110 — P117.</when></when></when></when>

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37754M6C-XXXGP and M37754M6C-XXXHP has the same functions as the M37754M8C-XXXGP and M37754M8C-XXXHP except for the following :

- (1) The ROM size is different.
- (2) The function of ROM area modification is not available. Therefore, refer to the section on the M37754M8C-XXXGP.

MEMORY

The memory map is shown in Figure 1. The address space is 16 Mbytes from addresses 016 to FFFFFF16. The address space is divided into 64-Kbyte units called banks. The banks are numbered from 016 to FF16.

Internal ROM, internal RAM, and control registers for internal peripheral devices are assigned to bank 016.

The 48-Kbyte area from addresses 400016 to FFFF16 is the internal ROM.

Addresses FFD216 to FFFF16 are the RESET and interrupt vector addresses and contain the interrupt vectors. Refer to the section on interrupts for details.

The 2048-byte area from addresses 8016 to 87F16 contains the internal RAM. In addition to storing data, the RAM is used as stack during a subroutine call, or interrupts.

Assigned to addresses 016 to 7F16 are peripheral devices such as I/O ports, A-D converter, D-A converter, UART, timer, and interrupt control registers.

A 256-byte direct page area can be allocated anywhere in bank 016 using the direct page register DPR. In direct page addressing mode, the memory in the direct page area can be accessed with two words thus reducing program steps.

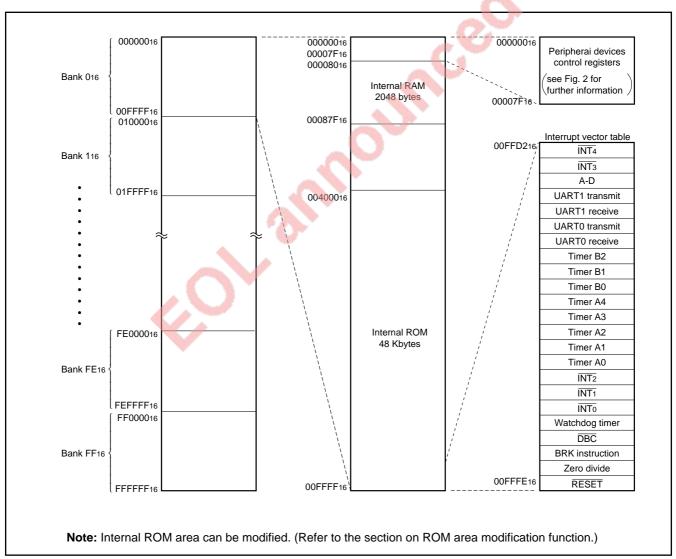


Fig. 1 Memory map

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

dress (Hexa	decimal notation)	Address (Hexad	decimal notation)
000000		000040	Count start register
000001		000041	
000002	Port P0 register	000042	One-shot start register
000003	Port P1 register	000043	
000004	Port P0 direction register	000044	Up-down register
000005	Port P1 direction register	000045	Timer A write register
000006	Port P2 register	000046	Timer A0 register
000007	Port P3 register	000047	Timer 7 to register
800000	Port P2 direction register	000048	Timer A1 register
000009	Port P3 direction register	000049	
A00000	Port P4 register	00004A	Timer A2 register
00000B	Port P5 register	00004B	
00000C	Port P4 direction register	00004C	Timer A3 register
00000D	Port P5 direction register	00004D	
00000E	Port P6 register Port P7 register	00004E	Timer A4 register
00000F	Port P6 direction register	00004F	
000010 000011	Port P7 direction register	000050 000051	Timer B0 register
000011	Port P8 register	-	
000012	Port P9 register	000052 000053	Timer B1 register
000013	Port P8 direction register	000053	57.
000014	Port P9 direction register	000055	Timer B2 register
000013	Port P10 register	000056	Timer A0 mode register
000017	Port P11 register	000057	Timer A1 mode register
000017	Port P10 direction register	000058	Timer A2 mode register
000019	Port P11 direction register	000059	Timer A3 mode register
00001A	Waveform output mode register	00005A	Timer A4 mode register
00001B	Dead-time timer	00005B	Timer B0 mode register
00001C	Pulse output data register 1	00005C	Timer B1 mode register
00001D	Pulse output data register 0	00005D	Timer B2 mode register
00001E	A-D control register 0	00005E	Processor mode register 0
00001F	A-D control register 1	00005F	Processor mode register 1
000020	A-D register 0	000060	Watchdog timer register
000021	A-D register 0	000061	Watchdog timer frequency select register
000022	A-D register 1	000062	Chip select control register
000023	71 D Togistor 1	000063	Chip select area register
000024	A-D register 2	000064	Comparator function select register
000025	7. B Togistor 2	000065	Reserved area (Note)
000026	A-D register 3	000066	Comparator result register
000027		000067	Reserved area (Note)
000028	A-D register 4	000068	D-A register 0
000029		000069	D.A. va vistan 4
00002A	A-D register 5	00006A	D-A register 1
00002B	-	00006B	Darticular function as last register C
00002C	A-D register 6	00006C	Particular function select register 0
00002D		00006D	Particular function select register 1 INT4 interrupt control register
00002E	A-D register 7	00006E	INT3 interrupt control register
00002F	UART0 transmit/receive mode register	00006F	A-D interrupt control register
000030 000031	UARTO transmit/receive mode register	000070 000071	UART0 trasmit interrupt control register
000031		000071	UARTO trasmit interrupt control register
000032	UART0 transmit buffer register	000072	UART1 trasmit interrupt control register
000033	UART0 transmit/receive control register 0	000073	UART1 trasfilit interrupt control register
000034	UART0 transmit/receive control register 1	000074	Timer A0 interrupt control register
000035	- v	000075	Timer A1 interrupt control register
000036	UART0 receive buffer register	000076	Timer A2 interrupt control register
000037	UART1 transmit/receive mode register	000077	Timer A3 interrupt control register
000038	UART1 transmitteceive mode register	000078	Timer A4 interrupt control register
000039 00003A		000079 00007A	Timer B0 interrupt control register
00003A 00003B	UART1 transmit buffer register	00007A 00007B	Timer B0 interrupt control register Timer B1 interrupt control register
00003B	UART1 transmit/receive control register 0	00007B 00007C	Timer B2 interrupt control register
00003C	UART1 transmit/receive control register 1	00007C 00007D	INTo interrupt control register
00003E		00007B 00007E	INT1 interrupt control register
00003E	UART1 receive buffer register	00007E	INT2 interrupt control register

Fig. 2 Location of peripheral devices and interrupt control registers

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS

The M37754M6C-XXXGP and M37754M6C-XXXHP have the same function as the M37754M8C-XXXGP and M37754M8C-XXXHP in the following :

- (1) ABSOLUTE MAXIMUM RATINGS
- (2) RECOMMENDED OPERATING CONDITIONS
- (3) ELECTRICAL CHARACTERISTICS
- (4) PERIPHERAL DEVICE INPUT/OUTPUT TIMING
- (5) TIMING REQUIREMENTS
- (6) SWITCHING CHARACTERISTICS

Therefore, refer to the correponding section on the M37754M8C-XXXGP.

ADDRESSING MODES AND INSTRUCTION SET

The M37754M6C-XXXGP and M37754M6C-XXXHP have 29 powerful addressing modes; 1 addressing mode is added to the basis of the 7700 series. Refer to the "7751 Series Software Manual" for the details.

INSTRUCTION SET

The M37754M6C-XXXGP and M37754M6C-XXXHP have the extended instruction set; 6 instructions are added to the instruction set of 7700 series. The object code of this extended instruction set is upwards compatible to that of 7700 series instruction set.

Refer to the "7751 Series Software Manual" for the details.

SHORTENING NUMBER OF INSTRUCTION EXECUTION CYCLES

Shortening number of instruction execution cycles is realized in the M37754M6C-XXXGP and M37754M6C-XXXHP owing to modifications of the instruction execution algorithm and the CPU circuit, and others.

Refer to the "7751 Series Software Manual" about the number of instruction execution cycles.

DATA REQUIRED FOR MASK ROM ORDERING

Please send the following data for mask orders: <M37754M6C-XXXGP>

- (1) M37754M6C-XXXGP mask ROM order confirmation form
- (2) 100P6S mark specification form
- (3) ROM data (EPROM 3 sets)

<M37754M6C-XXXHP>

- (1) M37754M6C-XXXHP mask ROM order confirmation form
- (2) 100P6Q mark specification form
- (3) ROM data (EPROM 3 sets)

GZZ-SH00-84B<85A0>

7700 FAMILY MASK ROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37754M6C-XXXGP M37754M6C-XXXHP MITSUBISHI ELECTRIC

Mask ROM number				
	Date: Section head			
Receipt	signature	signature		

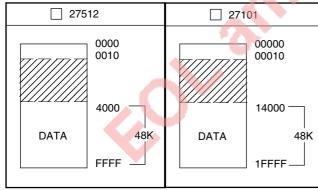
Note: Please fill	in	all	items	marked	•
-------------------	----	-----	-------	--------	---

		Company	TEL		es es	Responsible officer	Supervisor
*	Customer	name	()	ance ature		
		Date issued	Date:		Issua		

%1. Confirmation

Specify the name of the product being ordered.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).


If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data.

We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data.

Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM areas (hexadecimal notation)

EPROM Type:

- (1) Set "FF16" in the shaded area.
- (2) Address 016 to 1016 are the area for storing the data on model designation and options. This area must be written with the data shown below.

Details for option data are given next in the section describing the STP instruction option.

Address and data are written in hexadecimal notation.

	Address		Address		Address
4D	0	43	8	Option data	10
33	1	2D	9		
37	2	FF	Α		
37	3	FF	В		
35	4	FF	С		
34	5	FF	D		
4D	6	FF	E		
36	7	FF	F		

%2. STP instruction option

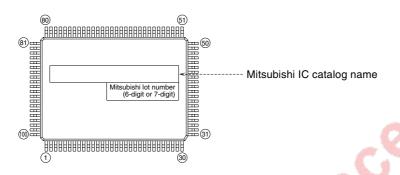
One of the following sets of data should be written to the option data address (10₁₆) of the EPROM you have ordered. Check @ in the appropriate box.

STP instruction enable
STP instruction disable
O016
Address 1016
Address 1016

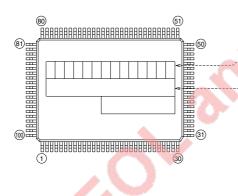
%3. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 100P6S Mark Specification Form (for M37754M6C-XXXGP), 100P6Q Mark Specification Form (for M37754M6C-XXXHP) and attach to the Mask ROM Order Confirmation Form.

*4. Comments



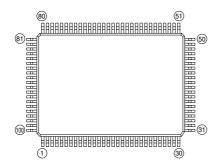
100P6S (100-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi catalog name


Customer's Parts Number

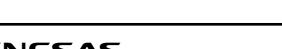
Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's Parts Number can be up to 14 characters : Only 0 \sim 9, A \sim Z, +, -, /, (,), &, \odot , (periods), (commas) are usable.

C. Special Mark Required

Note1: If the Special Mark is to be Printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.


Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the Special Mark, check the box below.

Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Missubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- contamined in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
- Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor growth at a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
- If these products or continue and a continue and a continue and approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

M37754M6C-XXXGP/HP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	971114
1.01	The following are added:	980528
	•MASK ROM ORDER CONFIRMATION FORM	
	•MARK SPECIFICATION FORM	
2.00	(1) For the "timer A write flag (address 45 ₁₆)", it's name is corrected:	990428
	New register name: timer A write register Related page: page 8	