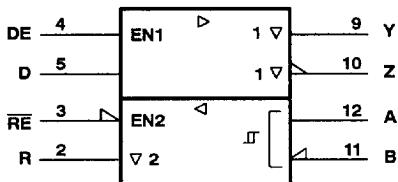


- Meets EIA Standards RS-422-A, RS-485, and CCITT Recommendations V.11 and X.27
- Low Supply Current Requirements
30 mA Max
- Driver Output Capacity . . . ± 60 mA
- Thermal Shutdown Protection
- Driver Common-Mode Output Voltage Range of -7 V to 12 V
- Receiver Input Impedance . . . 12 k Ω Min
- Receiver Input Sensitivity . . . ± 200 mV
- Receiver Input Hysteresis . . . 60 mV Typ
- Receiver Common-Mode Input Voltage Range of ± 12 V
- Operates From Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection


description

The SN75ALS181 differential driver and receiver pair are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. The design provides for balanced transmission lines and meets EIA Standards RS-422-A and RS-485, and CCITT recommendations V.10, V.11, X.26, and X.27.

The SN75ALS181 combines a 3-state differential line driver and a differential input line receiver that operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected to separate pins for greater flexibility and are designed to offer minimum loading to the bus when the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage changes making the device suitable for party-line applications.

The SN75ALS181 is characterized for operation from 0°C to 70°C.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

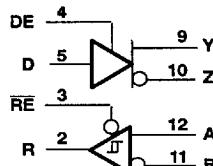
N OR NS[†] PACKAGE (TOP VIEW)

NC - No internal connection

[†] The NS package is only available in lead-end taped and reeled (order device SN75ALS181NSLE).

Function Tables

EACH DRIVER


INPUT D	ENABLE DE	OUTPUTS Y Z
H	H	H L
L	H	L H
X	L	Z Z

EACH RECEIVER

DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R
$V_{ID} \geq 0.2$ V	L	H
$-0.2 \text{ V} < V_{ID} < 0.2 \text{ V}$	L	?
$V_{ID} \leq -0.2$ V	L	L
X	H	Z

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

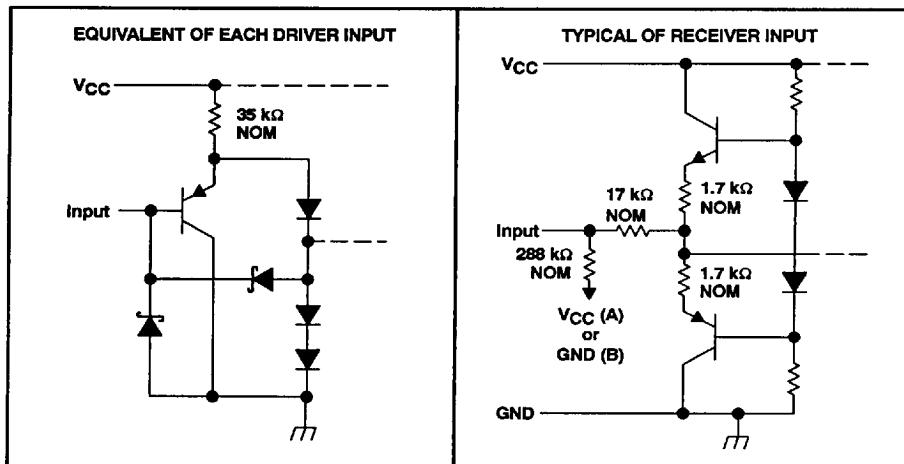
logic diagram (positive logic)

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

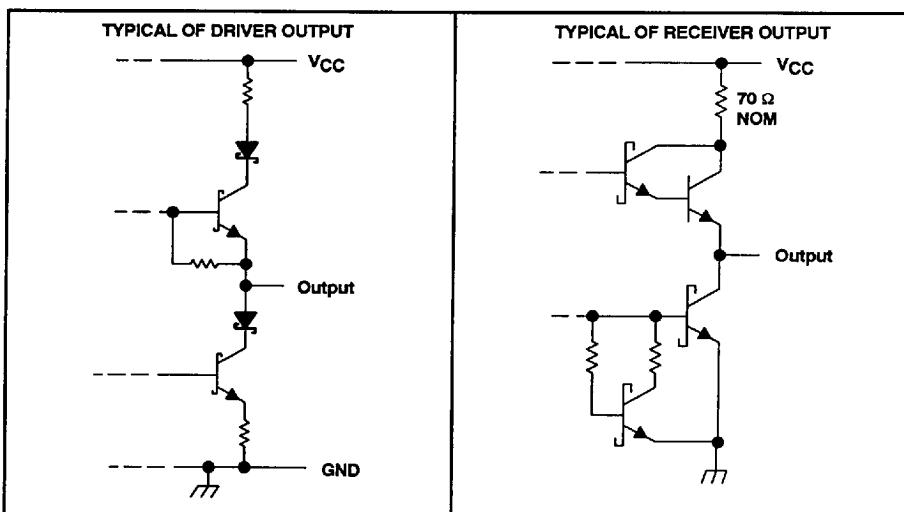
Copyright © 1992, Texas Instruments Incorporated

**TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


2-687

■ 8961724 0090889 LT7 ■


SN75ALS181 DIFFERENTIAL DRIVER AND RECEIVER PAIR

SLLS152-D4060, DECEMBER 1992

schematics of inputs

schematics of outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage, DE, \bar{RE} , and D inputs	7 V
Output voltage range, driver	-9 V to 14 V
Input voltage range, receiver	-14 V to 14 V
Receiver differential input voltage range (see Note 2)	-14 V to 14 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T_A	0°C to 70°C
Storage temperature range	-65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.
2. Differential input voltage is measured at the noninverting terminal with respect to the inverting terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_A \leq 25^\circ\text{C}$ POWER RATING	OPERATING FACTOR ABOVE $T_A = 25^\circ\text{C}$	$T_A = 70^\circ\text{C}$ POWER RATING
N	1150 mW	9.2 mW/°C	736 mW
NS	625 mW	4.0 mW/°C	445 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
Common-mode output voltage, V_{OC} (see Note 3)	Driver	-7	12	12	V
Common-mode input voltage, V_{IC} (see Note 3)	Receiver	-12	12	12	V
High-level input current, V_{IH}	D, DE, and \bar{RE}	2			V
Low-level input current, V_{IL}	D, DE, and \bar{RE}			0.8	V
Differential input voltage, V_{ID}				±12	V
High-level output current, I_{OH}	Driver	-60			mA
	Receiver		-400		μA
Low-level output current, I_{OL}	Driver		60		mA
	Receiver		8		mA
Operating free-air temperature, T_A		0	70		°C

NOTE 3: The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this table for common-mode output voltage level only.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-689

■ 8961724 0090891 255 ■

SN75ALS181

DIFFERENTIAL DRIVER AND RECEIVER PAIR

SLLS152 - D4060, DECEMBER 1992

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYPT [†]	MAX	UNIT
V_{IK} Input clamp voltage	$I_I = -18 \text{ mA}$				-1.5	V
V_O Output voltage	$I_O = 0$		0		6	V
$ V_{OD1} $ Differential output voltage	$I_O = 0$		1.5		6	V
$ V_{OD2} $ Differential output voltage	$V_{CC} = 5 \text{ V}$, $R_L = 100 \Omega$		See Figure 1	1/2 $ V_{OD1} $		V
	$R_L = 54 \Omega$			2		
$ V_{OD3} $ Differential output voltage	$V_{test} = -7 \text{ V to } 12 \text{ V}$, See Figure 2		1.5	2.3	5	V
$\Delta V_{OD} $ Change in magnitude of differential output voltage (see Note 4)					± 0.2	V
V_{OC} Common-mode output voltage	$R_L = 54 \Omega$ or 100Ω , See Figure 1				3	V
					-1	V
$\Delta V_{OC} $ Change in magnitude of common-mode output voltage (see Note 4)					± 0.2	V
I_{OZ} High-impedance-state output current	$V_O = -7 \text{ V to } 12 \text{ V}$, See Note 5				± 100	μA
I_{IH} High-level input current	$V_{IH} = 2.4 \text{ V}$				20	μA
I_{IL} Low-level input current	$V_{IL} = 0.4 \text{ V}$				-100	μA
I_{OS} Short-circuit output current	$V_O = -7 \text{ V}$				-250	mA
	$V_O = V_{CC}$				250	
	$V_O = 12 \text{ V}$				250	
	$V_O = 0 \text{ V}$				-150	
I_{CC} Supply current (total package)	No load		Outputs enabled	21	30	mA
			Outputs disabled	14	21	

NOTES: 4. $\Delta|V_{OD}|$ and $\Delta|V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

5. This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYPT [†]	MAX	UNIT
t_{dD} Differential output delay time, t_{dDH} or t_{dDL}	$R_L = 54 \Omega$, $C_L = 50 \text{ pF}$, See Figure 3		9	13	20	ns
$t_{sk(p)}$ Pulse skew ($ t_{dDH} - t_{dDL} $)			1	8		
t_t Differential output transition time			3	10	16	
t_{PZH} Output enable time to high level	$R_L = 110 \Omega$, See Figure 4			36	53	ns
t_{PZL} Output enable time to low level	$R_L = 110 \Omega$, See Figure 5			39	56	ns
t_{PHZ} Output disable time from high level	$R_L = 110 \Omega$, See Figure 4			20	31	ns
t_{PLZ} Output disable time from low level	$R_L = 110 \Omega$, See Figure 5			9	20	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^\circ\text{C}$.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-690

■ 8961724 0090892 191 ■

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage, common-mode input voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP†	MAX	UNIT
V_{T+}	$V_O = 2.7 \text{ V}$, $I_O = -0.4 \text{ mA}$			0.2		V
V_{T-}	$V_O = 0.5 \text{ V}$, $I_O = 8 \text{ mA}$		See Note 8	-0.2		V
V_{hys}	$(V_{T+} - V_{T-})$			60		mV
V_{IK}	$I_I = -18 \text{ mA}$			-1.5		V
V_{OH}	$V_{ID} = 200 \text{ mV}$, $I_{OH} = -400 \mu\text{A}$, See Figure 6			2.7		V
V_{OL}	$V_{ID} = -200 \text{ mV}$, $I_{OL} = 8 \text{ mA}$, See Figure 6			0.45		V
I_{OZ}	$V_O = 0.4 \text{ V}$ to 2.4 V				± 20	μA
I_I	Line input current See Note 5	$V_I = 12 \text{ V}$		1		mA
I_{IH}		$V_I = -7 \text{ V}$		-0.8		
I_{IL}	$V_I = 2.7 \text{ V}$			20		μA
r_I	$V_I = 0.4 \text{ V}$			-100		μA
I_{OS}	$V_{ID} = 200 \text{ mV}$, $V_O = 0 \text{ V}$			-15	-85	mA
I_{CC}	Supply current (total package) No load	Outputs enabled		21	30	mA
		Outputs disabled		14	21	

NOTE 5: This applies for both power on and power off. Refer to EIA Standards RS-485 for exact conditions.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 7)

PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
t_{PHL}	$V_{ID} = -1.5 \text{ V}$ to 1.5 V	10	16	25	ns
t_{PLH}	$V_{ID} = -1.5 \text{ V}$ to 1.5 V	10	16	25	ns
$t_{SK(p)}$	$V_{ID} = -1.5 \text{ V}$ to 1.5 V	1	8	ns	
t_{PZH}	Output enable time to high level		7	15	ns
t_{PZL}	Output enable time to low level		9	19	ns
t_{PHZ}	Output disable time from high level		18	27	ns
t_{PLZ}	Output disable time from low level		10	15	ns

† All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^\circ\text{C}$.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-691

8961724 0090893 028

SN75ALS181 DIFFERENTIAL DRIVER AND RECEIVER PAIR

SILS152 - D4060, DECEMBER 1992

PARAMETER MEASUREMENT INFORMATION

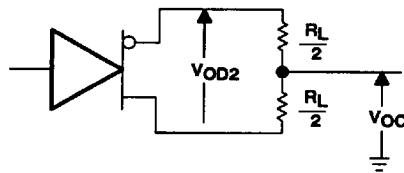


Figure 1. Driver Test Circuit, V_{OD} and V_{OC}

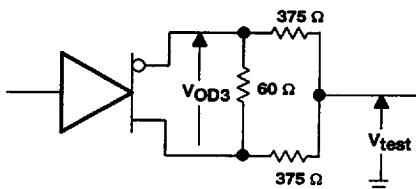


Figure 2. Driver Circuit, V_{OD3}

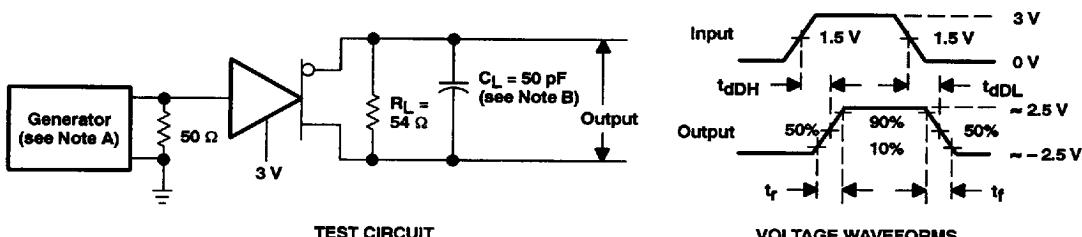


Figure 3. Driver Differential-Output Delay and Transition Times

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_0 = 50 \Omega$.
B. C_L includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION

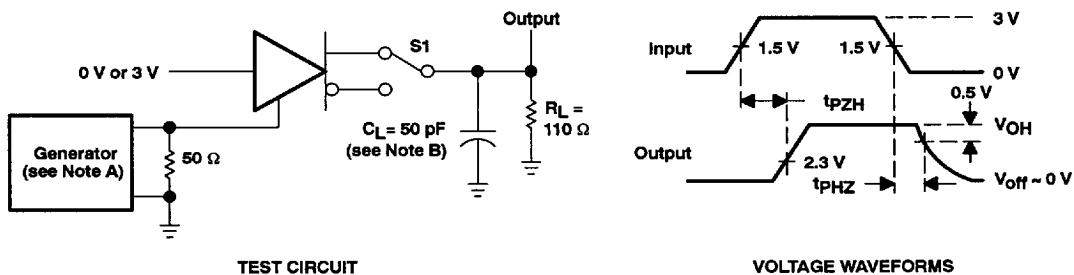


Figure 4. Driver Enable and Disable Times

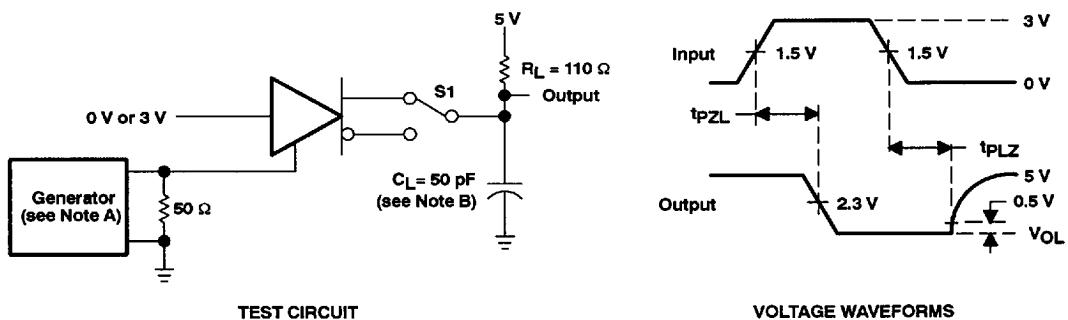


Figure 5. Driver Enable and Disable Times

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_O = 50 \Omega$.
B. C_L includes probe and jig capacitance.

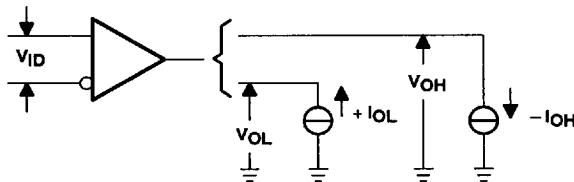
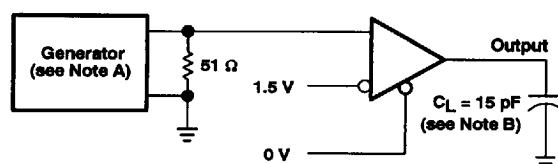
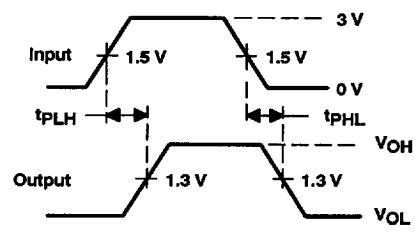
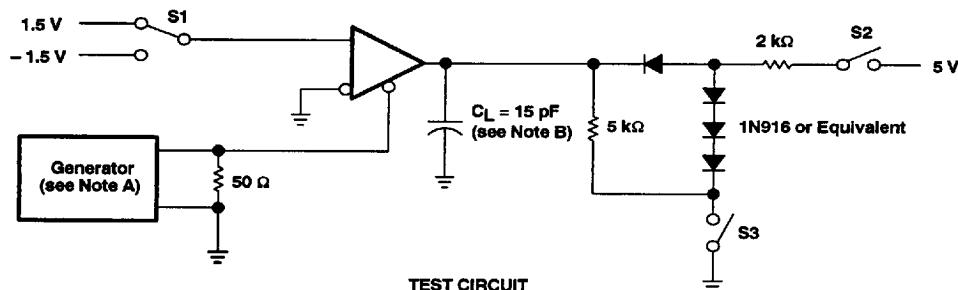



Figure 6. Receiver, V_{OH} and V_{OL}

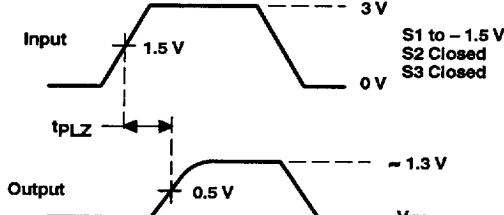
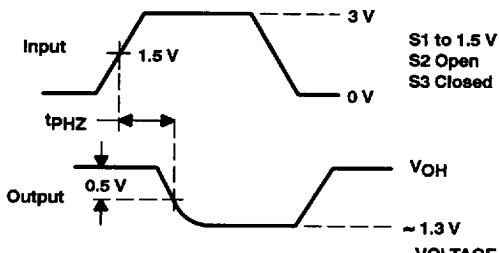
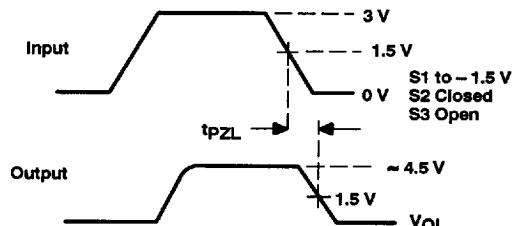
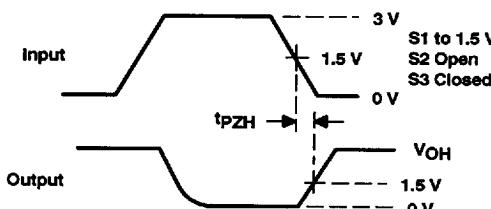

SN75ALS181 DIFFERENTIAL DRIVER AND RECEIVER PAIR

SILS152 - D4060, DECEMBER 1992

PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT

VOLTAGE WAVEFORMS

Figure 7. Receiver Propagation Delay Times

TEST CIRCUIT

VOLTAGE WAVEFORMS

Figure 8. Receiver Output Enable and Disable Times

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_0 = 50 \Omega$.
B. C_L includes probe and jig capacitance.

TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265