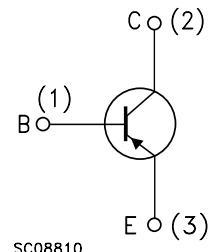

GENERAL PURPOSE TRANSISTOR

PRELIMINARY DATA


DESCRIPTION

The BC161-16 is a silicon Planar Epitaxial PNP transistor in Jedec TO-39 metal case. It is particularly designed for audio amplifiers and switching application up to 1A.

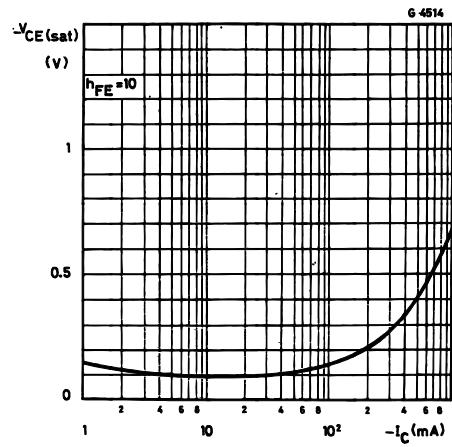
The complementary NPN type is the BC141-16.

INTERNAL SCHEMATIC DIAGRAM

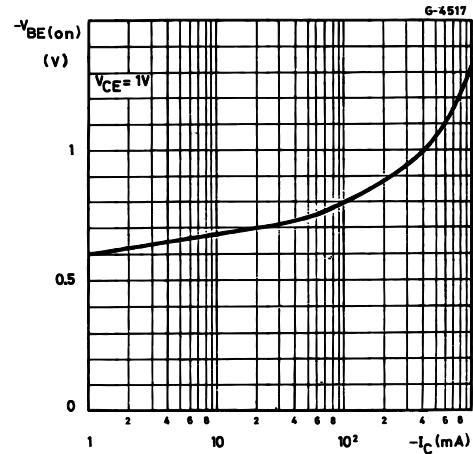
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage ($I_E = 0$)	-60	V
V_{CEO}	Collector-Emitter Voltage ($I_B = 0$)	-60	V
V_{EBO}	Emitter-Base Voltage ($I_C = 0$)	-5	V
I_C	Collector Current	-1	A
I_B	Base Current	-0.1	A
P_{tot}	Total Dissipation at $T_{amb} \leq 25^\circ C$ at $T_C \leq 25^\circ C$	0.65 3.7	W W
T_{stg}	Storage Temperature	-55 to 175	°C
T_j	Max. Operating Junction Temperature	175	°C

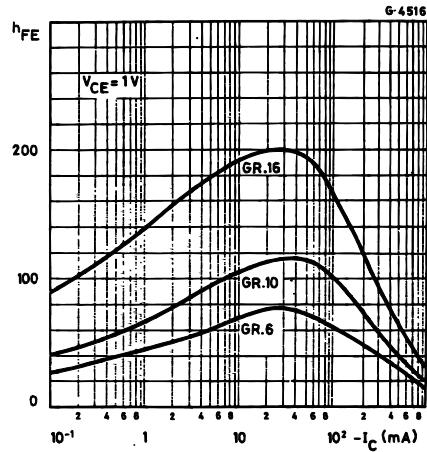
THERMAL DATA

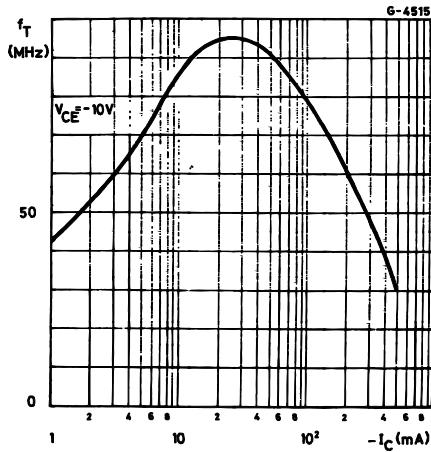

$R_{thj-case}$	Thermal Resistance Junction-Case	Max	35	$^{\circ}\text{C}/\text{W}$
$R_{thj-amb}$	Thermal Resistance Junction-Ambient	Max	200	$^{\circ}\text{C}/\text{W}$

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}\text{C}$ unless otherwise specified)

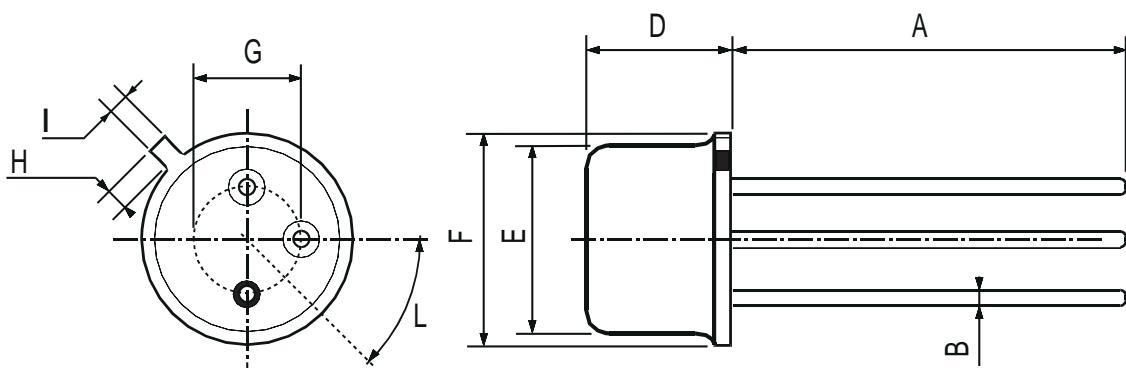

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{CES}	Collector Cut-off Current ($V_{BE} = 0$)	$V_{CE} = -60\text{ V}$ $V_{CE} = -60\text{ V}$ $T_{amb} = 150^{\circ}\text{C}$			-100 -100	nA μA
$V_{(BR)CBO}^*$	Collector-Base Breakdown Voltage ($I_E = 0$)	$I_C = -100\text{ }\mu\text{A}$	-60			V
$V_{(BR)CEO}^*$	Collector-Emitter Breakdown Voltage ($I_B = 0$)	$I_C = -10\text{ mA}$	-60			V
$V_{(BR)EBO}^*$	Emitter-Base Breakdown Voltage ($I_C = 0$)	$I_E = -100\text{ }\mu\text{A}$	-5			V
$V_{CE(sat)}^*$	Collector-Emitter Saturation Voltage	$I_C = -100\text{ mA}$ $I_B = -10\text{ mA}$ $I_C = -500\text{ mA}$ $I_B = -50\text{ mA}$ $I_C = -1\text{ A}$ $I_B = -100\text{ mA}$		-0.1 -0.35 -0.6	-1	V V V
$V_{BE(on)}^*$	Base-Emitter On Voltage	$I_C = -1\text{ A}$ $V_{CE} = -1\text{ V}$		-1	-1.7	V
h_{FE}^*	DC Current Gain	$I_C = -100\text{ }\mu\text{A}$ $V_{CE} = -1\text{ V}$ $I_C = -100\text{ mA}$ $V_{CE} = -1\text{ V}$ $I_C = -1\text{ A}$ $V_{CE} = -1\text{ V}$	100	120 160 30	250	
f_T	Transition Frequency	$I_C = -50\text{ mA}$ $V_{CE} = -10\text{ V}$	50			MHz
C_{CBO}	Collector-Base Capacitance	$I_E = 0$ $V_{CB} = -20\text{ V}$ $f = 1\text{MHz}$		15	30	pF
C_{EBO}	Emitter-Base Capacitance	$I_C = 0$ $V_{CB} = -0.5\text{ V}$ $f = 1\text{MHz}$			180	pF
t_{on}	Turn-on Time	$I_C = -100\text{ mA}$ $I_{B1} = -5\text{ mA}$			500	ns
t_{off}	Turn-off Time	$I_C = -100\text{ mA}$ $I_{B1} = I_{B2} = -5\text{ mA}$			650	ns

* Pulsed: Pulse duration = 300 μs , duty cycle $\leq 1\%$


Collector-emitter Saturation Voltage.


Base-emitter Voltage.

DC Current Gain.



Transition Frequency.

TO-39 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	12.7			0.500		
B			0.49			0.019
D			6.6			0.260
E			8.5			0.334
F			9.4			0.370
G	5.08			0.200		
H			1.2			0.047
I			0.9			0.035
L	45° (typ.)					

P008B

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

<http://www.st.com>

