

Interactive Catalog Replaces Catalog Pages

Honeywell Sensing and Control has replaced the PDF product catalog with the new **Interactive Catalog**. The **Interactive Catalog** is a power search tool that makes it easier to find product information. It includes more installation, application, and technical information than ever before.

**Click this icon to try the new
Interactive Catalog.**

Sensing and Control

Honeywell Inc.

11 West Spring Street

Freeport, Illinois 61032

Temperature Sensors

Platinum RTDs

HEL-776/HEL-777

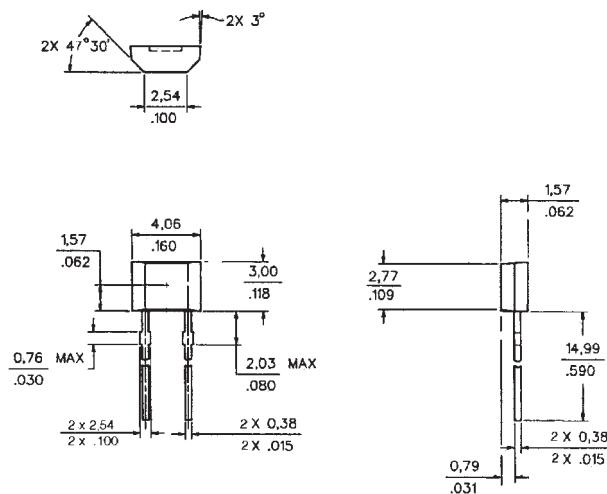
FEATURES

- Linear resistance vs temperature
- Accurate and Interchangeable
- Excellent stability
- Small size
- Printed circuit mountable
- Ceramic SIP package

TYPICAL APPLICATIONS

- HVAC – room, duct and refrigerant equipment
- Instrument and probe assemblies
- Electronic assemblies – temperature compensation
- Process control – temperature regulation

HEL-776 and HEL-777 platinum RTDs are designed to measure temperatures from -55° to $+150^{\circ}\text{C}$ (-67° to 302°F) in printed circuit boards, temperature probes, or other lower temperature applications. Solderable leads in 0.050" or 0.100" spacing provide strong connections for wires or printed circuits.


The 1000 Ω , 375 alpha version, provides 10x greater sensitivity and signal-to-noise. Both are ideal for air temperature sensing.

ORDER GUIDE

HEL-776-A	Molded SIP pkg. 0.100" lead spacing
HEL-777-A	Molded SIP pkg. 0.100" lead spacing
-U	1000 Ω , 0.00375 $\Omega/\Omega/\text{C}$
-T	100 Ω , 0.00385 $\Omega/\Omega/\text{C}$
-0	$\pm 0.2\%$ Resistance Trim (Standard)
-1	$\pm 0.1\%$ Resistance Trim (Optional)

MOUNTING DIMENSIONS (for reference only) mm/in.

HEL-776-A

HEL-777-A

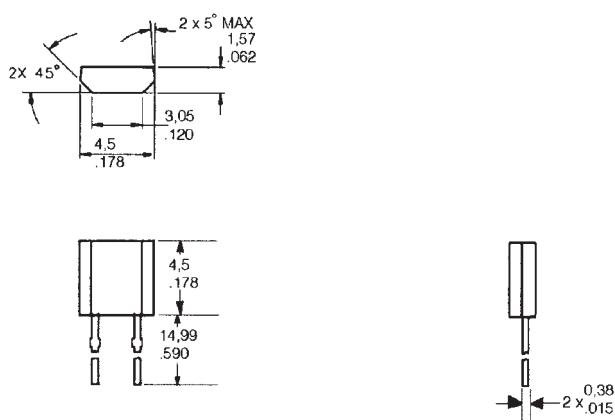


Fig. 1: Wheatstone Bridge 2-Wire Interface

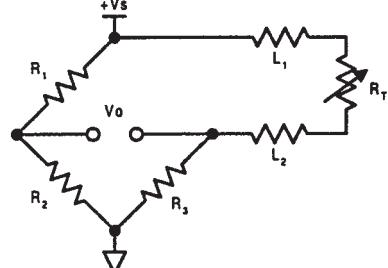


Fig. 2: Linear Output Voltage

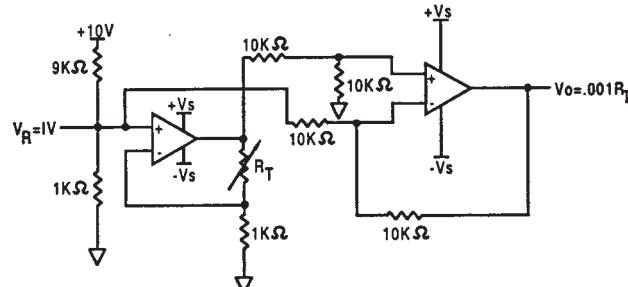
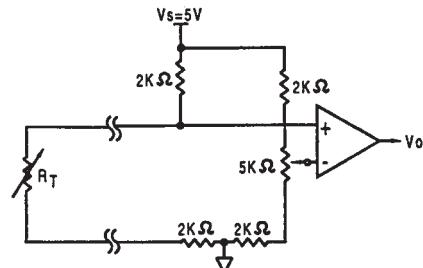



Fig. 3: Adjustable Point (Comparator) Interface

Temperature

CAUTION PRODUCT DAMAGE

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take normal ESD precautions when handling this product.

Temperature Sensors

Platinum RTDs

HEL-776/HEL-777

FUNCTIONAL BEHAVIOR

$$R_T = R_0(1+AT+BT^2-100CT^3+CT^4)$$

RT = Resistance (Ω) at temperature T ($^{\circ}\text{C}$)

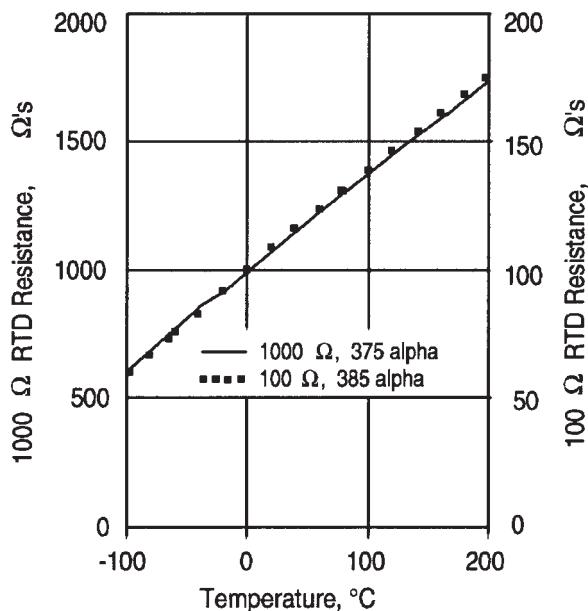
R_0 = Resistance (Ω) at 0°C

T = Temperature in $^{\circ}\text{C}$

$$A = \alpha + \frac{\alpha \delta}{100} \quad B = \frac{-\alpha \delta}{100^2} \quad C_{T<0} = \frac{-\alpha \beta}{100^4}$$

CONSTANTS

Alpha, α ($^{\circ}\text{C}^{-1}$)	0.00375 ± 0.000029	0.003850 ± 0.000010
Delta, δ ($^{\circ}\text{C}$)	1.605 ± 0.009	1.4999 ± 0.007
Beta, β ($^{\circ}\text{C}$)	0.16	0.10863
A ($^{\circ}\text{C}^{-1}$)	3.81×10^{-3}	3.908×10^{-3}
B ($^{\circ}\text{C}^2$)	-6.02×10^{-7}	-5.775×10^{-7}
C ($^{\circ}\text{C}^4$)	-6.0×10^{-12}	-4.183×10^{-12}


Both $\beta = 0$ and $C = 0$ for $T > 0^{\circ}\text{C}$

ACCURACY VS TEMPERATURE

Tolerance	Standard $\pm 0.2\%$	Optional $\pm 0.1\%$		
Temperature ($^{\circ}\text{C}$)	$\pm \Delta R^*$ (Ω)	$\pm \Delta T$ ($^{\circ}\text{C}$)	$\pm \Delta R^*$ (Ω)	$\pm \Delta T$ ($^{\circ}\text{C}$)
-200	6.8	1.6	5.1	1.2
-100	2.9	0.8	2.4	0.6
0	2.0	0.5	1.0	0.3
100	2.9	0.8	2.2	0.6
200	5.6	1.6	4.3	1.2
300	8.2	2.4	6.2	1.8
400	11.0	3.2	8.3	2.5
500	12.5	4.0	9.6	3.0
600	15.1	4.8	10.4	3.3

* 1000Ω RTD. Divide ΔR by 10 for 100Ω RTD.

RESISTANCE VS TEMPERATURE CURVE

SPECIFICATIONS

Sensor Type	Thin film platinum RTD: $R_0 = 1000 \Omega$ @ 0°C ; alpha = $0.00375 \Omega/\Omega^{\circ}\text{C}$ $R_0 = 100 \Omega$ @ 0°C ; alpha = $0.00385 \Omega/\Omega^{\circ}\text{C}$
Temperature Range	-55° to +150°C (-76° to +302°F)
Temperature Accuracy	$\pm 0.5^{\circ}\text{C}$ or 0.8% of temperature $^{\circ}\text{C}$ ($R_0 \pm 0.2\%$ trim), whichever is greater $\pm 0.3^{\circ}\text{C}$ or 0.6% of temperature $^{\circ}\text{C}$ ($R_0 \pm 0.1\%$ trim), whichever is greater (optional)
Base Resistance and Interchangeability, $R_0 \pm \Delta R_0$	$1000 \pm 2 \Omega$ ($\pm 0.2\%$) @ 0°C or $100 \pm 0.2 \Omega$ ($\pm 0.2\%$) @ 0°C $1000 \pm 1 \Omega$ ($\pm 0.1\%$) @ 0°C or $100 \pm 0.1 \Omega$ ($\pm 0.1\%$) @ 0°C (optional)
Linearity	$\pm 0.1\%$ of full scale for temperatures spanning -40° to 125°C
Time Constant	<10 seconds in air at 10 ft/sec
Operating Current	2 mA maximum for self heating errors of <1°C; 1 mA recommended
Stability	<0.25°C/year; 0.05°C per 5 years in occupied environments
Self Heating	<15mW/°C typical
Insulation Resistance	>50 MΩ @ 50 VDC @ 25°C
Construction	Plastic case, PLASKON 3300SH
Lead Material	Copper alloy 194 solder dipped tin silver