

Standard Application

Pin-Out Information

Pin	Function	Pin	Function	Pin	Function
1	VID0	10	V _{in}	19	GND
2	VID1	11	V _{in}	20	V _{out}
3	VID2	12	Remote Sense Gnd (4)	21	V _{out}
4	VID3	13	GND	22	V _{out}
5	STBY* - Stand-by	14	GND	23	V _{out}
6	VID4	15	GND	24	V _{out}
7	V _{in}	16	GND	25	V _{out}
8	V _{in}	17	GND	26	Remote Sense V _{out}
9	V _{in}	18	GND	27	Sync Out

Specifications

Characteristics ($T_a = 25^\circ\text{C}$ unless noted)		Conditions		PT7709 SERIES			
	Symbols			Min	Typ	Max	Units
Output Current	I_o	$T_a = +60^\circ\text{C}$, 200 LFM, pkg N $T_a = +25^\circ\text{C}$, natural convection	0.1(l) 0.1(l)	— —	20 20	— —	A A
Input Voltage Range	V_{in}	$0.1\text{A} \leq I_o \leq 20\text{A}$	4.5	—	5.5	—	V
Output Voltage Tolerance	ΔV_o	$V_{in} = +5\text{V}$, $I_o = 20\text{A}$ $0^\circ\text{C} \leq T_a \leq +65^\circ\text{C}$	$V_o-0.03$	—	$V_o+0.03$	—	V
Line Regulation	Reg_{line}	$4.5\text{V} \leq V_{in} \leq 5.5\text{V}$, $I_o = 20\text{A}$	—	± 10	—	—	mV
Load Regulation	Reg_{load}	$V_{in} = +5\text{V}$, $0.1 \leq I_o \leq 20\text{A}$	—	± 10	—	—	mV
V_o Ripple/Noise	V_n	$V_{in} = +5\text{V}$, $I_o = 20\text{A}$	—	50	—	—	mV
Transient Response with $C_{out} = 330\mu\text{F}$	t_{tr} V_{os}	I_o step between 10A and 20A V_o over/undershoot	— —	50 100	— —	— —	μSec mV
Efficiency	η	$V_{in} = +5\text{V}$, $I_o = 10\text{A}$	$V_o = 3.3\text{V}$ $V_o = 2.5\text{V}$ $V_o = 1.8\text{V}$	— — —	92 90 87	— — —	% % %
		$V_{in} = +5\text{V}$, $I_o = 20\text{A}$	$V_o = 3.3\text{V}$ $V_o = 2.5\text{V}$ $V_o = 1.8\text{V}$	— — —	90 87 82	— — —	% % %
Switching Frequency	f_o	$4.5\text{V} \leq V_{in} \leq 5.5\text{V}$ $0.1\text{A} \leq I_o \leq 20\text{A}$	300	350	400	—	kHz
Absolute Maximum Operating Temperature Range	T_a	Over V_{in} and I_o Ranges	-40 (2)	—	+85 (3)	—	°C
Storage Temperature	T_s	—	-40	—	+125	—	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3 1 msec, Half Sine, mounted to a fixture	—	500	—	—	G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, Soldered in a PC board	—	10	—	—	G's
Weight	—	Vertical/Horizontal	—	31/41	—	—	grams

Notes: (1) ISR-will operate down to no load with reduced specifications

(2) For operation below 0°C, C_{in} and C_{out} must have stable characteristics. Use either low ESR tantalum or Oscon® capacitors.

(2) For operation below 0°C, C_{in} and C_{out} must have stable characteristics. Use either

(3) See Safe Operating Area curves or contact the factory for the appropriate derating.

(4) If the Remote Sense Ground is not used, pin 12 must be connected to pin 13 for optimum output voltage accuracy.

External Capacitors: The PT7709 requires a minimum output capacitance of $330\mu\text{F}$ for proper operation. The PT7709 also requires an input capacitance of $1500\mu\text{F}$, which must be rated for a minimum of 1.4Arms of ripple current. For transient or dynamic load applications, additional capacitance may be required. For more information refer to the application note regarding capacitor selection for this product.

Input Filter: An input filter inductor is optional for most applications. The inductor must be sized to handle 20ADC with a typical value of 1uH.

**20 Amp Programmable
Next Generation "Big Hammer"**
Features

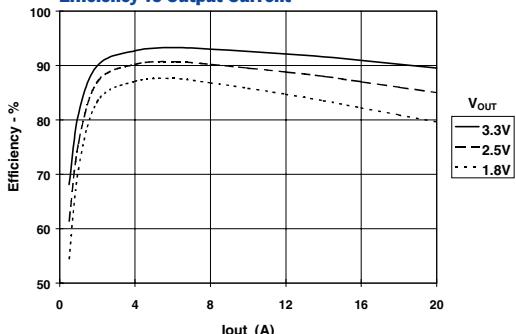
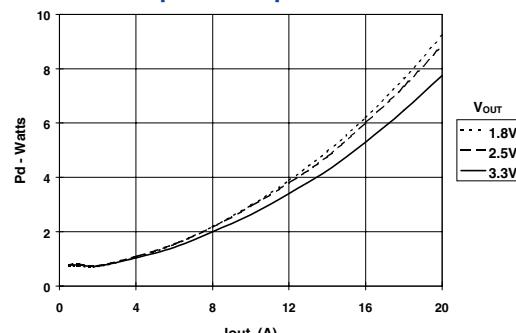
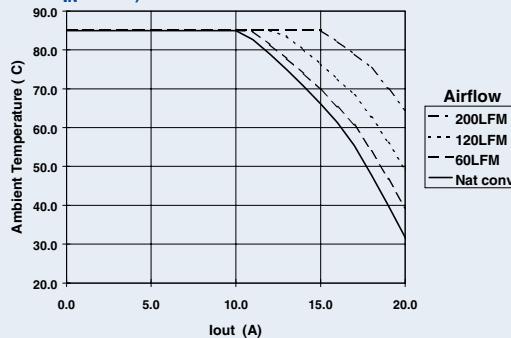
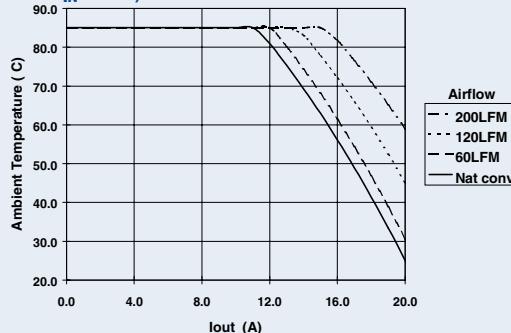
- Single-Device: +5V input
- 5-bit Programmable: 1.3V to 3.5V@20A
- High Efficiency
- Differential Remote Sense
- Short-Circuit Protection
- Parallelable with PT7743 20A "Current Booster"

Programming Information

VID3	VID2	VID1	VID0	VID4=1 Vout	VID4=0 Vout
1	1	1	1	2.0V	1.30V
1	1	1	0	2.1V	1.35V
1	1	0	1	2.2V	1.40V
1	1	0	0	2.3V	1.45V
1	0	1	1	2.4V	1.50V
1	0	1	0	2.5V	1.55V
1	0	0	1	2.6V	1.60V
1	0	0	0	2.7V	1.65V
0	1	1	1	2.8V	1.70V
0	1	1	0	2.9V	1.75V
0	1	0	1	3.0V	1.80V
0	1	0	0	3.1V	1.85V
0	0	1	1	3.2V	1.90V
0	0	1	0	3.3V	1.95V
0	0	0	1	3.4V	2.00V
0	0	0	0	3.5V	2.05V

Logic 0 = Pin 12 potential (remote sense gnd)

Logic 1 = Open circuit (no pull-up resistors)





VID3 and VID4 may not be changed while the unit is operating.

Ordering Information

PT7709□ = 1.3 to 3.5 Volts

(For dimensions and PC board layout,
see Package Styles 800 and 810.)**PT Series Suffix (PT1234X)****Case/Pin
Configuration**

Vertical Through-Hole	N
Horizontal Through-Hole	A
Horizontal Surface Mount	C

T Y P I C A L C H A R A C T E R I S T I C S**PT7709 Performance, $V_o = 3.3$ VDC** (See Note A)**Efficiency vs Output Current****Ripple vs Output Current****Power Dissipation vs Output Current****Safe Operating Area Curves** (See Note B) **$V_{IN} = 5.0V, V_o = 3.3$ VDC** **$V_{IN} = 5.0V, V_o = 1.8$ VDC**

Note A: All data in the above graphs has been developed from actual products tested at 25°C. The data is considered typical for the ISR.
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer's maximum rated operating temperatures.

Capacitor Recommendations for the PT7708/09 Regulators and PT7742/43 Current Boosters

Input Capacitors

The recommended input capacitance is determined by 1.4 ampere minimum ripple current rating and 1500 μ F minimum capacitance. Capacitors listed below must be rated for a minimum of 2x the input voltage with +5V operation. Ripple current and \leq 100m Ω Equivalent Series Resistance (ESR) values are the major considerations along with temperature when selecting the proper capacitor.

Output Capacitors

The minimum required output capacitance is 330 μ F with a maximum ESR less than or equal to 100m Ω . Failure to observe this requirement may lead to regulator instability or oscillation. Electrolytic capacitors have poor ripple performance at frequencies greater than 400kHz, but excellent low frequency transient response. Above the ripple frequency ceramic decoupling capacitors are necessary to improve the transient response and reduce any microprocessor high frequency noise components apparent during higher current excursions. Preferred low ESR type capacitor part numbers are identified in the Table 1 below.

Table 1 Capacitors Characteristic Data

Capacitor Vendor/ Series	Capacitor Characteristics					Quantity		Vendor Number
	Working Voltage	Value(μ F)	(ESR) Equivalent Series Resistance	105°C Maximum Ripple Current(l _{rms})	Physical Size(mm)	Input Bus	Output Bus	
Panasonic FC Surface Mtg FA	16V 35V	2200 330	0.038 Ω 0.065 Ω	2000mA 1205mA	18x16.5 12.5x16.5	1	1	EEVFC1C222N EEVFC1V331LQ
	10V 16V	680 1800	0.090 Ω 0.032 Ω	755mA 2000mA	10x12.5 18x15	1	1	EEUFA1A681 EEUFA1C182A
United Chemi -Con LFV Series	25V 16V 16V	330 2200 470	0.084 Ω 0.038 Ω 0.084 Ω /2-042 Ω	825mA 1630mA 825mA x2	10x16 16x20 10x16	1	1 1	LXV25VB331M10X16LL LXV16VB222M16X20LL LXV16VB471M10X16LL
Nichicon PL Series PM Series	10V 10V 25V	680 1800 330	0.090 Ω 0.044 Ω 0.095 Ω	770mA 1420mA 750mA	10x15 16x15 10x15	1	1 1	UPL1A681MHH6 UPL1A182MHH6 UPL1E331MPH6
Oscon SS SV	10V 10V	330 330	0.025W/4=0.006 Ω 0.020/4=0.005 Ω	>9800mA >9800mA	10x10.5 10.3x12.6	4 4	N/R (Note)	10SS330M 10SV330M(Sufvace Mtg)
AVX Tantalum TPS- Series	10V 10V	330 330	0.100/5=20 Ω 0.060 Ω	3500mA 1826mA	7.3Lx 4.3Wx 4.1H	5 5	1	TPSV337M010R0100 TPSV337M010R0060
Sprague Tantalum 595D/594D	10V 10V	330 680	0.045W/4=0.011 Ω 0.090 Ω	>4500mA >1660mA	7.3L x 5.7W x 4.0H	5 2	1	594D337X0010R2T Surface Mount 595D687X0010R2T
Kemet Tantalum T510/T495 Series	10V 10V	330 220	0.035 Ω 0.070 Ω /2=0.035 Ω	2000mA >2000mA	4.3Wx7.3L x4.0H	5 6	1 2	510X337M010AS T495X227M010AS Surface Mount
Sanyo Poscap TPB	10V	220	0.040 Ω	3000mA	7.2L x 4.3W x 3.1H	6	2	10TPB220M Surface Mount

Note: (N/R) is not recommended for this application, due to extremely low Equivalent Series Resistance (ESR)

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
PT7709A	NRND	SIP MODULE	EHA	27		TBD	Call TI	Call TI	Samples Not Available
PT7709C	NRND	SIP MODULE	EHC	27		TBD	Call TI	Call TI	Samples Not Available
PT7709N	NRND	SIP MODULE	EHD	27	10	TBD	Call TI	Level-1-215C-UNLIM	Samples Not Available

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
Amplifiers amplifier.ti.com	Audio www.ti.com/audio
Data Converters dataconverter.ti.com	Automotive www.ti.com/automotive
DLP® Products www.dlp.com	Communications and Telecom www.ti.com/communications
DSP dsp.ti.com	Computers and Peripherals www.ti.com/computers
Clocks and Timers www.ti.com/clocks	Consumer Electronics www.ti.com/consumer-apps
Interface interface.ti.com	Energy www.ti.com/energy
Logic logic.ti.com	Industrial www.ti.com/industrial
Power Mgmt power.ti.com	Medical www.ti.com/medical
Microcontrollers microcontroller.ti.com	Security www.ti.com/security
RFID www.ti-rfid.com	Space, Avionics & Defense www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf	Video and Imaging www.ti.com/video
	Wireless www.ti.com/wireless-apps