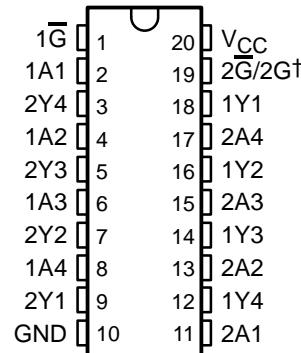
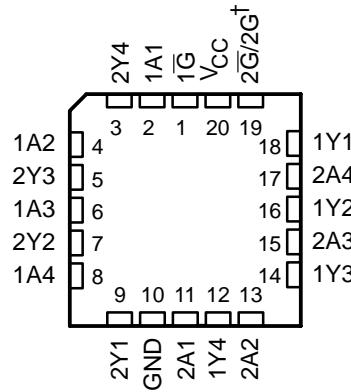


SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS


SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce DC Loading
- Hysteresis at Inputs Improves Noise Margins

description


These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical, active-low output-control (G) inputs, and complementary output-control (G and \bar{G}) inputs. These devices feature high fan-out, improved fan-in, and 400-mV noise margin. The SN74LS' and SN74S' devices can be used to drive terminated lines down to 133 Ω .

SN54LS', SN54S' . . . J OR W PACKAGE
SN74LS240, SN74LS244 . . . DB, DW, N, OR NS PACKAGE
SN74LS241 . . . DW, N, OR NS PACKAGE
SN74S' . . . DW OR N PACKAGE
(TOP VIEW)

† 2G for 'LS241 and 'S241 or 2 \bar{G} for all other drivers.

SN54LS', SN54S' . . . FK PACKAGE
(TOP VIEW)

† 2G for 'LS241 and 'S241 or 2 \bar{G} for all other drivers.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

**TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 2002, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	PDIP – N	Tube	SN74LS240N	SN74LS240N
			SN74LS241N	SN74LS241N
			SN74LS244N	SN74LS244N
			SN74S240N	SN74S240N
			SN74S241N	SN74S241N
			SN74S244N	SN74S244N
	SOIC – DW	Tube	SN74LS240DW	LS240
		Tape and reel	SN74LS240DWR	
		Tube	SN74LS241DW	LS241
		Tape and reel	SN74LS241DWR	
		Tube	SN74LS244DW	LS244
		Tape and reel	SN74LS244DWR	
		Tube	SN74S240DW	S240
		Tape and reel	SN74S240DWR	
		Tube	SN74S241DW	S241
		Tape and reel	SN74S241DWR	
	SOP – NS	Tube	SN74S244DW	S244
		Tape and reel	SN74S244DWR	
	SSOP – DB	Tape and reel	SN74LS240NSR	74LS240
			SN74LS241NSR	74LS241
			SN74LS244NSR	74LS244
			SN74LS240DBR	LS240
			SN74LS244DBR	LS244

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

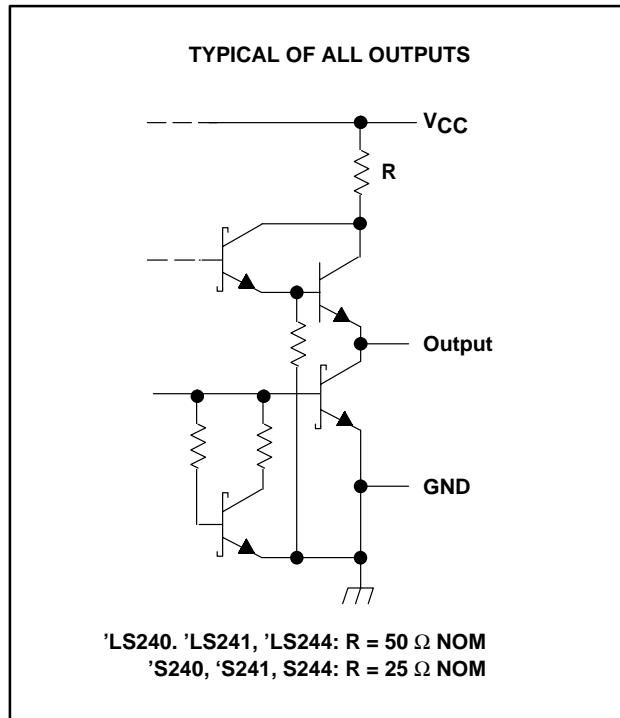
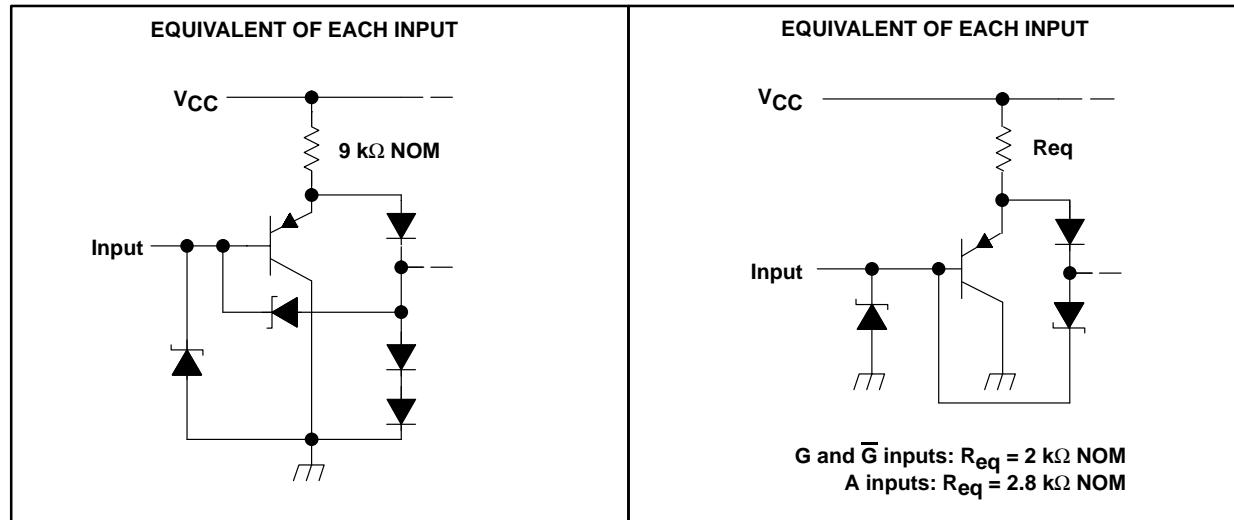
**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

ORDERING INFORMATION (CONTINUED)

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-55°C to 125°C	CDIP – J	Tube	SN54LS240J	SN54LS240J
			SNJ54LS240J	SNJ54LS240J
			SN54LS241J	SN54LS241J
			SNJ54LS241J	SNJ54LS241J
			SN54LS244J	SN54LS244J
			SNJ54LS244J	SNJ54LS244J
			SN54S240J	SN54S240J
			SNJ54S240J	SNJ54S240J
			SN54S241J	SN54S241J
			SNJ54S241J	SNJ54S241J
	CFP – W	Tube	SN54S244J	SN54S244J
			SNJ54S244J	SNJ54S244J
			SNJ54LS240W	SNJ54LS240W
			SNJ54LS241W	SNJ54LS241W
			SNJ54LS244W	SNJ54LS244W
	LCCC – FK	Tube	SNJ54S240W	SNJ54S240W
			SNJ54S241W	SNJ54S241W
			SNJ54S244W	SNJ54S244W
			SNJ54LS240FK	SNJ54LS240FK
			SNJ54LS241FK	SNJ54LS241FK
			SNJ54LS244FK	SNJ54LS244FK
			SNJ54S240FK	SNJ54S240FK
			SNJ54S241FK	SNJ54S241FK
			SNJ54S244FK	SNJ54S244FK

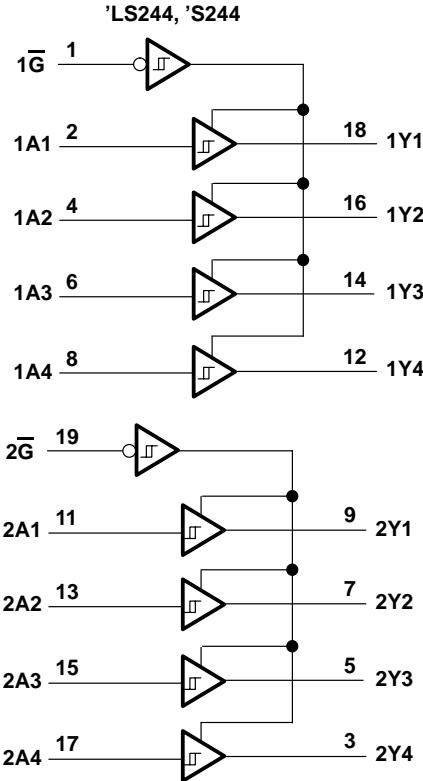
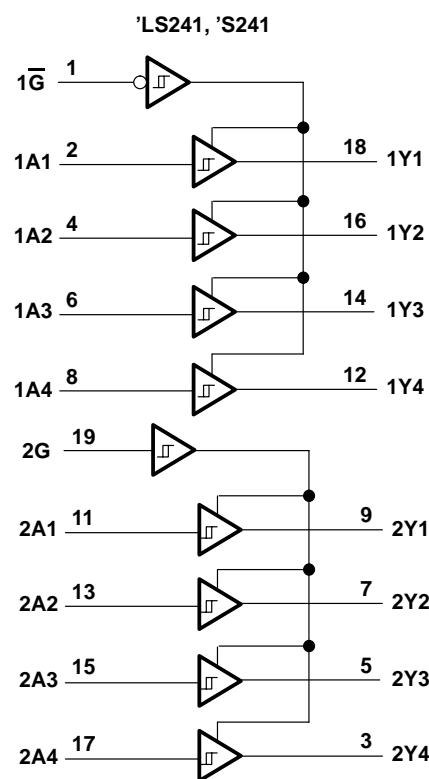
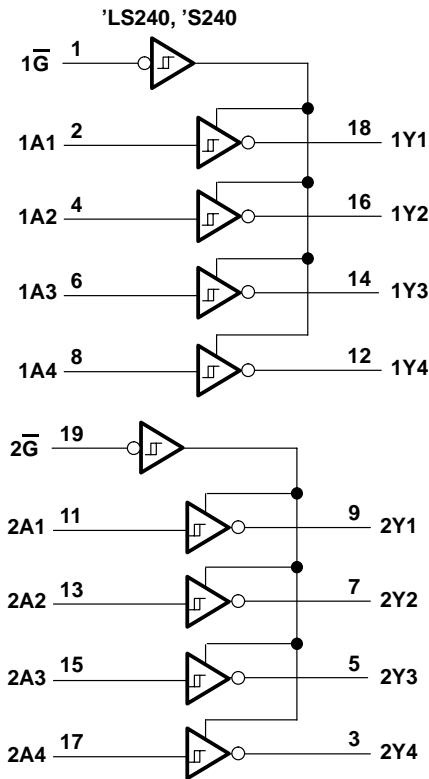
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

schematics of inputs and outputs

'LS240, 'LS241, 'LS244




'S240, 'S241, 'S244

**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

logic diagram

Pin numbers shown are for DB, DW, J, N, NS, and W packages.

SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		SN54LS'			SN74LS'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High-level input voltage		2			2		V
V _{IL}	Low-level input voltage			0.7			0.8	V
I _{OH}	High-level output current			-12			-15	mA
I _{OL}	Low-level output current			12			24	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54LS'			SN74LS'			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V_{IK}	$V_{CC} = \text{MIN}$, $I_I = -18 \text{ mA}$			-1.5			-1.5	V
Hysteresis ($V_{T+} - V_{T-}$)	$V_{CC} = \text{MIN}$	0.2	0.4		0.2	0.4		V
V_{OH}	$V_{CC} = \text{MIN}$, $I_{OH} = -3 \text{ mA}$	$V_{IH} = 2 \text{ V}$, $V_{IL} = \text{MAX}$,	2.4	3.4	2.4	3.4		V
	$V_{CC} = \text{MIN}$, $I_{OH} = \text{MAX}$	$V_{IH} = 2 \text{ V}$, $V_{IL} = 0.5 \text{ V}$,	2		2			
V_{OL}	$V_{CC} = \text{MIN}$, $V_{IL} = \text{MAX}$	$V_{IH} = 2 \text{ V}$	$I_{OL} = 12 \text{ mA}$		0.4		0.4	V
			$I_{OL} = 24 \text{ mA}$				0.5	
I_{OZH}	$V_{CC} = \text{MAX}$, $V_{IL} = \text{MAX}$	$V_{IH} = 2 \text{ V}$	$V_O = 2.7 \text{ V}$		20		20	μA
I_{OZL}	$V_{CC} = \text{MAX}$, $V_{IL} = \text{MAX}$	$V_{IH} = 2 \text{ V}$	$V_O = 0.4 \text{ V}$		-20		-20	μA
I_I	$V_{CC} = \text{MAX}$, $V_I = 7 \text{ V}$				0.1		0.1	mA
I_{IH}	$V_{CC} = \text{MAX}$, $V_I = 2.7 \text{ V}$				20		20	μA
I_{IL}	$V_{CC} = \text{MAX}$, $V_{IL} = 0.4 \text{ V}$				-0.2		-0.2	mA
$I_{OS}^§$	$V_{CC} = \text{MAX}$,			-40	-225	-40	-225	mA
I_{CC}	$V_{CC} = \text{MAX}$, Output open	Outputs high	All	17	27	17	27	mA
		Outputs low	'LS240	26	44	26	44	
			'LS241, 'LS244	27	46	27	46	
		Outputs disabled	'LS240	29	50	29	50	
			'LS241, 'LS244	32	54	32	54	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$ (see Figure 1)

PARAMETER	TEST CONDITIONS	'LS240			'LS241, 'LS244			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
t_{PLH}	$R_L = 667 \Omega$, $C_L = 45 \text{ pF}$		9	14		12	18	ns
			12	18		12	18	
t_{PHL}	$R_L = 667 \Omega$, $C_L = 45 \text{ pF}$		20	30		20	30	ns
			15	23		15	23	
t_{PZL}	$R_L = 667 \Omega$, $C_L = 5 \text{ pF}$		10	20		10	20	ns
			15	25		15	25	
t_{PZH}	$R_L = 667 \Omega$, $C_L = 5 \text{ pF}$							
t_{PLZ}	$R_L = 667 \Omega$, $C_L = 5 \text{ pF}$							ns
t_{PHZ}	$R_L = 667 \Omega$, $C_L = 5 \text{ pF}$							ns

**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

recommended operating conditions

		SN54S'			SN74S'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage		0.8			0.8		V
I _{OH}	High-level output current		-12			-15		mA
I _{OL}	Low-level output current		48			64		mA
	External resistance between any input and V _{CC} or ground		40			40		kΩ
T _A	Operating free-air temperature (see Note 3)	-55	125	0	0	70		°C

NOTES: 1. Voltage values are with respect to network ground terminal.

3. An SN54S241J operating at free-air temperature above 116°C requires a heat sink that provides a thermal resistance from case to free air, R_{θCA}, of not more than 40°C/W.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54S'			SN74S'			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V _{IK}	V _{CC} = MIN, I _I = -18 mA		-1.2			-1.2		V
Hysteresis (V _{T+} - V _{T-})	V _{CC} = MIN	0.2	0.4		0.2	0.4		V
V _{OH}	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -1 mA				2.7			V
	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -3 mA	2.4	3.4		2.4	3.4		
	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.5 V, I _{OH} = MAX	2			2			
V _{OL}	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = MAX		0.55			0.55		V
I _{OZH}	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = 0.8 V		50			50		μA
I _{OZL}	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = 0.8 V	V _O = 0.5 V		-50		-50		μA
I _I	V _{CC} = MAX, V _I = 5.5 V		1			1		mA
I _{IH}	V _{CC} = MAX, V _I = 2.7 V		50			50		μA
I _{IL}	V _{CC} = MAX, V _I = 0.5 V	Any A		-400		-400		μA
		Any G		-2		-2		mA
I _{OS[§]}	V _{CC} = MAX	-50	-225	-50	-225	-50	-225	mA
I _{CC}	V _{CC} = MAX, Output open	Outputs high	'S240	80	123	80	135	mA
			'S241, 'S244	95	147	95	160	
		Outputs low	'S240	100	145	100	150	
			'S241, 'S244	120	170	120	180	
		Outputs disabled	'S240	100	145	100	150	
			'S241, 'S244	120	170	120	180	

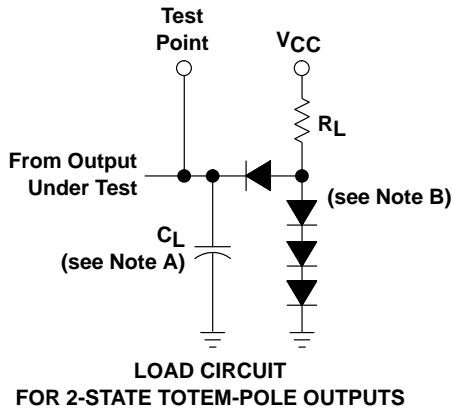
[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

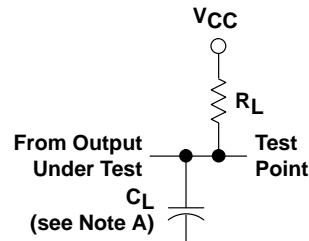
[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

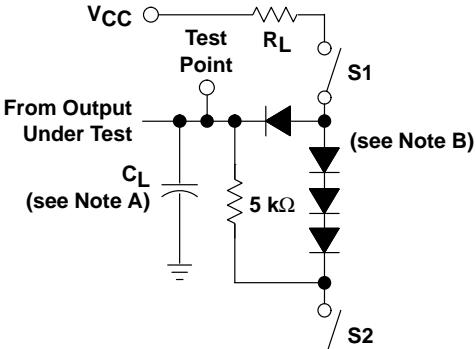
SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

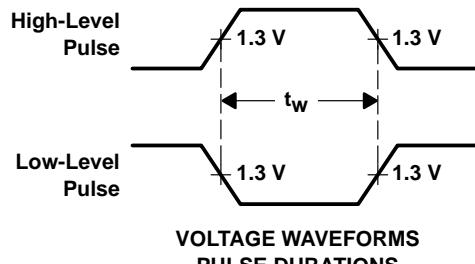

switching characteristics, $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$ (see Figure 2)

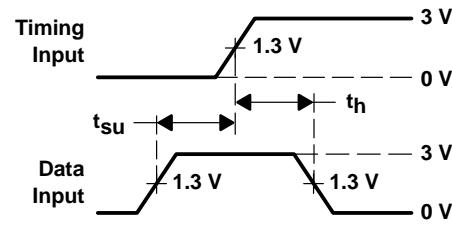
PARAMETER	TEST CONDITIONS	'S240			'S241, 'S244			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
t_{PLH}	$R_L = 90 \Omega$, $C_L = 50 \text{ pF}$	4.5	7		6	9		ns
t_{PHL}		4.5	7		6	9		
t_{PZL}	$R_L = 90 \Omega$, $C_L = 50 \text{ pF}$	10	15		10	15		ns
t_{PZH}		6.5	10		8	12		
t_{PLZ}	$R_L = 90 \Omega$, $C_L = 5 \text{ pF}$	10	15		10	15		ns
t_{PHZ}		6	9		6	9		

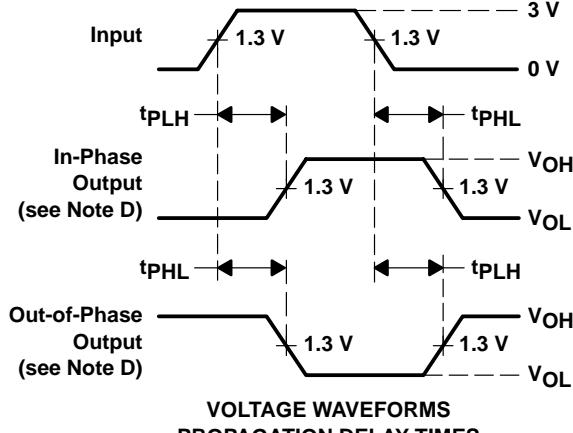

**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

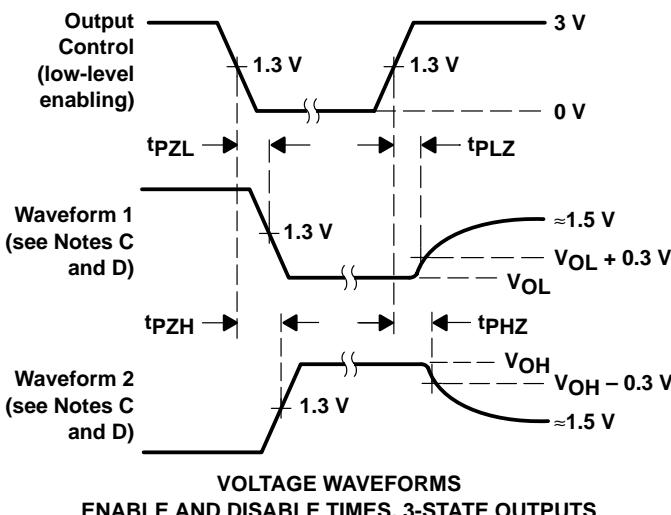
SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002


**PARAMETER MEASUREMENT INFORMATION
 SERIES 54LS/74LS DEVICES**


LOAD CIRCUIT
 FOR 2-STATE TOTEM-POLE OUTPUTS

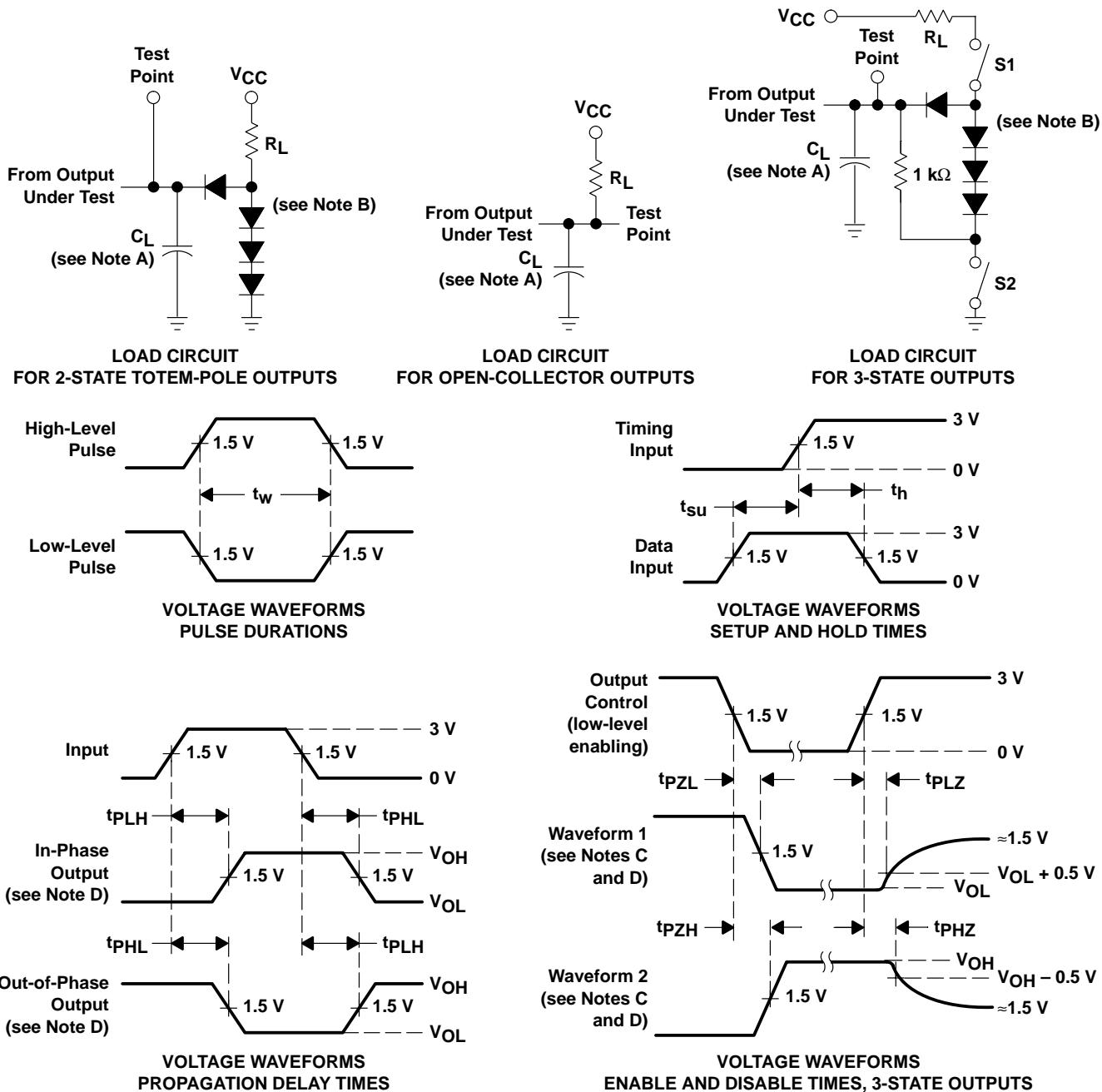

LOAD CIRCUIT
 FOR OPEN-COLLECTOR OUTPUTS


LOAD CIRCUIT
 FOR 3-STATE OUTPUTS


VOLTAGE WAVEFORMS
 PULSE DURATIONS

VOLTAGE WAVEFORMS
 SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
 PROPAGATION DELAY TIMES


VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES:

- C_L includes probe and jig capacitance.
- All diodes are 1N3064 or equivalent.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- S1 and S2 are closed for t_{PLH} , t_{PHL} , t_{PZH} , and t_{PLZ} ; S1 is open and S2 is closed for t_{PZH} ; S1 is closed and S2 is open for t_{PLZ} .
- Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- All input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}$, $Z_O \approx 50 \Omega$, $t_r \leq 15 \text{ ns}$, $t_f \leq 6 \text{ ns}$.
- The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION
 SERIES 54S/74S DEVICES

NOTES:

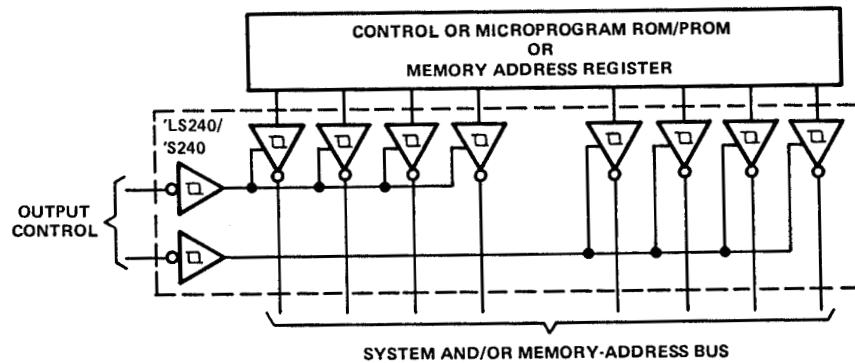
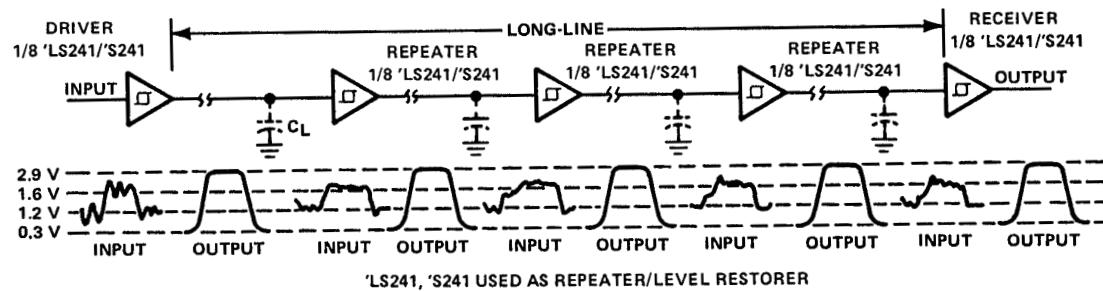
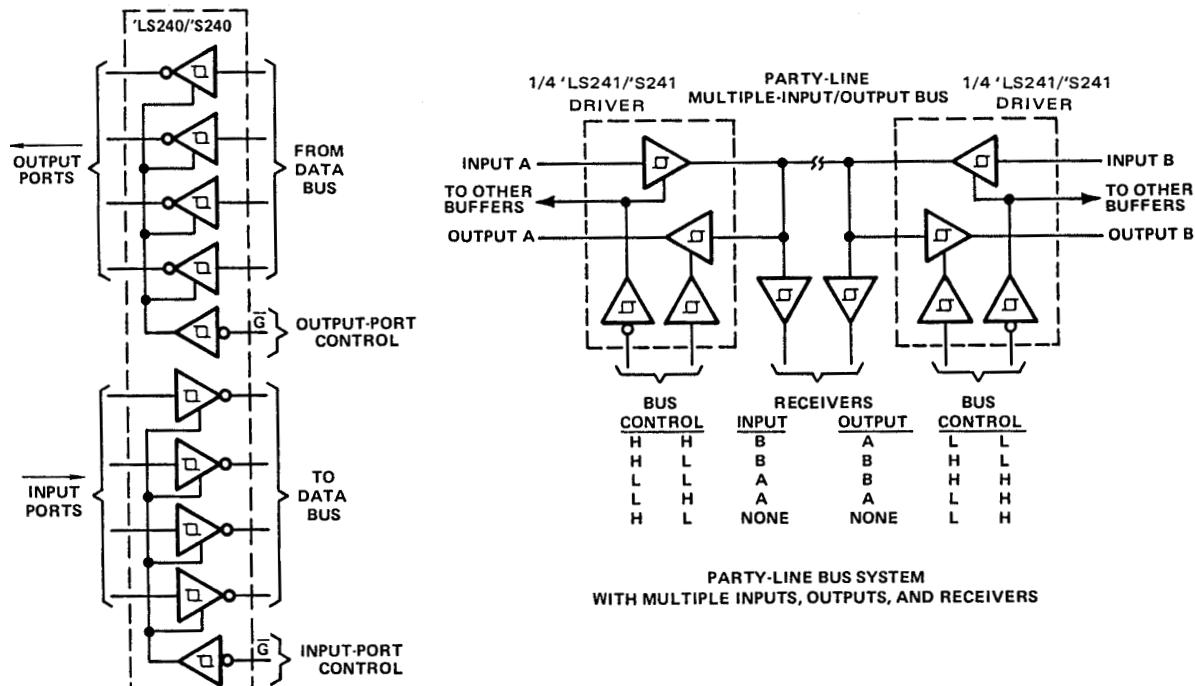


- A. C_L includes probe and jig capacitance.
- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for t_{PLH} , t_{PHL} , t_{PHZ} , and t_{PLZ} ; S1 is open and S2 is closed for t_{PZH} ; S1 is closed and S2 is open for t_{PZL} .
- E. All input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}$, $Z_O \approx 50 \Omega$; t_r and $t_f \leq 7 \text{ ns}$ for Series 54/74 devices and t_r and $t_f \leq 2.5 \text{ ns}$ for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms


**SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244
 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244
 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS**

SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

APPLICATION INFORMATION

'LS240/S240 USED AS SYSTEM AND/OR MEMORY BUS DRIVER—4-BIT
ORGANIZATION CAN BE APPLIED TO HANDLE BINARY OR BCD

INDEPENDENT 4-BIT BUS DRIVERS/RECEIVERS
IN A SINGLE PACKAGE

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265