
CY4636 Reference Design Kit Guide
Version 1.1 January 22, 2007

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com

Copyrights
Copyrights

Copyright © 2007 Cypress Semiconductor Corporation. All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress Semiconductor Corporation Incorporated. While reasonable precautions have been taken, Cypress Semiconductor
Corporation assumes no responsibility for any errors that may appear in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Cypress Semiconductor Corporation.

Cypress Semiconductor products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the
failure of the Cypress Semiconductor product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Cypress Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor and its officers, employees, subsidiaries, affiliates and distributors harmless
against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Cypress Semi-
conductor was negligent regarding the design or manufacture of the part.

The acceptance of this document will be construed as an acceptance of the foregoing conditions.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress
does not authorize its products for use as critical components in life-support systems where a malfunction or failure may rea-
sonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems appli-
cation implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
2 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Contents
1. Introduction 9
1.1 Scope...9
1.2 Overview..9
1.3 Definitions ..9

2. WirelessUSB 2-Way HID Protocol Overview 11
2.1 Radio Channel Management ...11
2.2 Pseudo-Noise Codes...11
2.3 Chip Error Correction...12
2.4 Automatic Acknowledgment ...12
2.5 Network ID ...12
2.6 Manufacturing ID ...12
2.7 Channel Selection Algorithm ...13
2.8 Protocol Modes..13

2.8.1 Ping Mode (Bridge Only)..13
2.8.2 Idle Mode (HID only) ..13
2.8.3 Reconnect Mode (HID only)...13
2.8.4 Bind Mode ..14

2.8.4.1 HID ..14
2.8.4.2 Bridge ..14

2.8.5 Data Mode..14
2.8.5.1 HID ..14
2.8.5.2 Bridge ..14

2.9 Packet Structures ..15
2.9.1 Bind Request Packet (HID) ...15
2.9.2 Bind Response Packet (Bridge) ..16
2.9.3 Connect Request (HID)..16
2.9.4 Connect Response Packet (Bridge)...16
2.9.5 Ping Packet (Bridge) ...17
2.9.6 Data Packet (Bridge and HID)..17

2.10 Bind and Reconnect Timing...17
2.11 Back Channel Support for NumLk/ScrLk/Caps Lock ...19
2.12 Signature Byte ...20
2.13 Encryption ...20

2.13.1 Key Management Over WirelessUSB ..21
2.13.2 Encryption and Power Consumption Trade Off..21

3. Mouse 23
3.1 Introduction ..23

3.1.1 Overview ..23
3.1.2 Design Features...23
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 3

Contents
3.2 Hardware Overview ...23
3.2.1 RDK Mouse Assembly ...23
3.2.2 Hardware Block Diagram...25
3.2.3 Schematics ...25
3.2.4 Hardware Considerations ...26

3.3 Firmware Architecture ...26
3.3.1 ROM/RAM Usage ..26
3.3.2 enCoRe™ III LV Device Configuration...26

3.3.2.1 Global Configuration..27
3.3.2.2 SPI Master User Module ...28
3.3.2.3 PWM User Module ..28
3.3.2.4 ADC User Module..28
3.3.2.5 Flash Security..28

3.3.3 Model ...29
3.3.4 Common Code...29

3.3.4.1 Generated Library Code ..29
3.3.4.2 Debounce Module ...30
3.3.4.3 SPI Module ..30
3.3.4.4 Radio Driver...30
3.3.4.5 Protocol Module...30
3.3.4.6 Flash Module ...30
3.3.4.7 Port Module ...31
3.3.4.8 Poll Module..31
3.3.4.9 Timer Module...31
3.3.4.10 ISR Module..31

3.3.5 Application Code..32
3.3.5.1 Mouse Module ...32
3.3.5.2 Optical Module...33
3.3.5.3 Battery Module ..33
3.3.5.4 Testmode Module..33
3.3.5.5 Buttons Module..34
3.3.5.6 Mfgtest Module ..34
3.3.5.7 Wheel Module..34

3.3.6 Configuration Options ..35
3.3.6.1 MOUSE_REPORT_IN_MS ...35
3.3.6.2 MOUSE_ACTIVE_MS ...35
3.3.6.3 MOUSE_DISCONNECTED_POLL_MS ..35
3.3.6.4 MOUSE_TX_TIMEOUT_MS ...35
3.3.6.5 PLATFORM_H ..35
3.3.6.6 MOUSE_800_NOT_400_CPI..36
3.3.6.7 MOUSE_BATTERY_STATUS...36
3.3.6.8 MOUSE_TEST_MODE ...36
3.3.6.9 MFG_TEST_CODE ...36
3.3.6.10 MFG_TX_MODES...36
3.3.6.11 DEVICE_TYPE..36
3.3.6.12 APP_TX_PACKET_SIZE ..36
3.3.6.13 APP_RX_PACKET_SIZE ..36

3.3.7 Platform and Architecture Portability..36
3.3.8 Initialization ..37
3.3.9 Wireless Protocol Data Payload ..37

3.3.9.1 Packet Format 1 ..37
3.3.9.2 Packet Format 2 ..37
3.3.9.3 Packet Format 3 ..37
4 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Contents
3.3.10 Interrupt Usage and Timing..38
3.3.11 Code Performance Analysis...38

3.4 Development Environment ..39
3.4.1 Tips and Tricks ...39

3.4.1.1 M8C Sleep ...39
3.4.1.2 Watchdog Timer...39

3.4.2 Critical Test Points..39

4. Keyboard 41
4.1 Introduction ..41

4.1.1 Design Features...41
4.2 Hardware Overview ...41

4.2.1 RDK Keyboard Assembly...42
4.2.2 Schematic ..44
4.2.3 Keyboard Matrix ...45
4.2.4 Hardware Considerations...45

4.3 Firmware Architecture..45
4.3.1 ROM/RAM Usage ..46
4.3.2 enCoRe II LV Device Configuration ...46

4.3.2.1 Global Configuration ..47
4.3.2.2 SPI Master User Module..48
4.3.2.3 Programmable Interval Timer User Module49
4.3.2.4 Flash Security ..49

4.3.3 Model ...49
4.3.4 Common Code ...50

4.3.4.1 Generated Library Code ..50
4.3.4.2 Radio Driver ...50
4.3.4.3 Protocol Module ...50
4.3.4.4 Flash Module ...50
4.3.4.5 ISR Module ..50
4.3.4.6 Timer Module ...50

4.3.5 Application Code ..50
4.3.5.1 Keyboard Module...51
4.3.5.2 Mfgtest Module ..51
4.3.5.3 Battery Module...51
4.3.5.4 Test Module ...52
4.3.5.5 Encrypt Module ..52

4.3.6 Configuration Options ..52
4.3.6.1 KEYBOARD_KEEP_ALIVE_TIMEOUT...52
4.3.6.2 KEY_DOWN_DELAY_SAMPLE_PERIOD53
4.3.6.3 KEYBOARD_DEBOUNCE_COUNT..53
4.3.6.4 KEYBOARD_MULTIMEDIA_SUPPORT ...53
4.3.6.5 KEYBOARD_TEST_MODES...53
4.3.6.6 KEYBOARD_TEST_MODE_PERIOD ...53
4.3.6.7 PANGRAM_TEST_MODE...53
4.3.6.8 KEYBOARD_BATTERY_VOLTAGE_SUPPORT............................53
4.3.6.9 LP_RDK_KEYBOARD_MATRIX ...53
4.3.6.10 KEYBOARD_FAST_SCAN..53
4.3.6.11 KEYBOARD_TX_TIMEOUT ..54
4.3.6.12 TIMER_CAL...54
4.3.6.13 ENCRYPT_DATA ..54
4.3.6.14 MFG_TEST_CODE ...54
4.3.6.15 MFG_ENTER_BY_PIN..54
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 5

Contents
4.3.6.16 MFG_TX_MODES...54
4.3.6.17 MOUSE_EMULATION_MODE..54
4.3.6.18 KEYBOARD_POWER_ON_BIND ...54
4.3.6.19 PLATFORM_H ..54

4.3.7 Platform and Architecture Portability..54
4.3.8 Initialization ..55
4.3.9 Wireless Protocol Data Payload ..55

4.3.9.1 Keyboard Application Report Formats...55
4.3.10 Ghost Key Detection..59
4.3.11 Interrupt Usage and Timing ...59
4.3.12 Code Performance Analysis ..60

4.4 Modifying the Keyboard Matrix or Adding New Keys ..60
4.4.1 Modifying the Keyboard Matrix ..60
4.4.2 Adding New Keys ..60

4.5 Development Environment ..61
4.5.1 Tools ..61
4.5.2 Tips and Tricks...62

4.5.2.1 M8C Sleep...62
4.5.2.2 Watchdog Timer ..62

4.5.3 Critical Test Points ...62

5. Bridge 63
5.1 Introduction..63

5.1.1 Design Features ..63
5.2 Hardware Overview ...63

5.2.1 Bridge Photographs ...63
5.2.1.1 In-System Programming..64

5.2.2 Schematics ..65
5.2.3 LED Usage ..65

5.3 Firmware Architecture ...66
5.3.1 ROM/RAM Usage ..66
5.3.2 enCoRe II Device Configuration ..66

5.3.2.1 Global Configuration..67
5.3.2.2 SPI Master User Module ...69
5.3.2.3 USB Device User Module..69
5.3.2.4 1 Millisecond Interval Timer User Module69
5.3.2.5 Flash Security..69

5.3.3 Model ...69
5.3.4 Common Code...70

5.3.4.1 PSoC Generated Library Code..70
5.3.4.2 Flash..70
5.3.4.3 Timer ...70
5.3.4.4 Radio Driver...70
5.3.4.5 Master Protocol ...70

5.3.5 Application Code..70
5.3.5.1 Bridge Module ...71
5.3.5.2 USB Module ..71
5.3.5.3 Mfgtest Module ..72
5.3.5.4 Encrypt Module..72

5.3.6 Configuration Options ..72
5.3.6.1 MFG_TEST_CODE ...72
5.3.6.2 MFG_TX_MODES...72
5.3.6.3 MFG_ENTER_BY_PIN..72
6 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Contents
5.3.6.4 MFG_ENTER_BY_BUTTON ...72
5.3.6.5 MFG_ENTER_BY_USBSE1..73
5.3.6.6 ENCRYPT_DATA ..73
5.3.6.7 GREEN_LED_ON_TIME ...73
5.3.6.8 DOWNKEY_TIME_OUT ..73

5.3.7 Platform and Architecture Portability ..73
5.3.8 Initialization ..73
5.3.9 Wireless Protocol Data Payload...73
5.3.10 Suspend and Remote Wake-up ...73
5.3.11 Interrupt Usage and Timing..74
5.3.12 Code Performance Analysis...74

5.4 USB Interface ..74
5.4.1 USB Descriptors...74

5.4.1.1 Device/Config Descriptors ...75
5.4.1.2 Keyboard HID Report Descriptor ...76
5.4.1.3 Mouse/Keyboard HID Report Descriptor ...77

5.4.2 Keyboard Report Format..80
5.4.3 Mouse Report Format ..81
5.4.4 Battery Level and Link Quality Reports..81

5.4.4.1 Requesting a New Battery Reading...82
5.4.4.2 Obtaining the RadioParams Report ...82

5.4.5 Example USB Bus Analyzer (CATC) Traces..83
5.5 Development and Debug Environment..86

5.5.1 Tools...86
5.5.2 Tips and Tricks ...86

6. Manufacturing Test Support, MTK 87
6.1 Introduction ..87
6.2 MTK Block Diagram...87
6.3 MTK Serial Protocol...87
6.4 MTK RF Protocol ...89
6.5 MTK DUT source Code Porting ...89
6.6 Accessing MTK in the DUT ...89

7. Regulatory Testing Results 91
7.1 Introduction ..91

8. Power Considerations 93
8.1 RDK Keyboard...93

8.1.1 Usage Model ..93
8.1.2 Current Measurements ..93
8.1.3 Battery Life Calculations ..94

8.2 RDK Mouse ...94
8.2.1 Usage Model ..94
8.2.2 Current Measurements ..95
8.2.3 Battery Life Calculations ..95
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 7

Contents
9. Software Users Guide 97
9.1 Introduction..97
9.2 Software Code Modules ..97

9.2.1 USB HID API module...97
9.2.1.1 CHidDevice Class Methods...98
9.2.1.2 CHidManager Class Methods..99

9.2.2 System Tray Module ..100
9.2.2.1 CCySysTray Class Methods..100

9.2.3 WirelessUSB System Tray Application Module ...101
9.2.3.1 CWirelessUSBTrayApp Class Methods ..101
9.2.3.2 CMainFrame Class Methods ...102
9.2.3.3 CWirelessUSBStatusPropertyPage Class Methods......................103
9.2.3.4 CWirelessUSBStatusPropertySheet Class Methods.....................103
9.2.3.5 CHidTrayDevice Class Methods..104
9.2.3.6 CHidTrayManager Class Methods ..104

9.3 Development Environment ..104

Appendix A.References 105

Index 107
8 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

1. Introduction
1.1 Scope
The audience for this document is intended to be firmware and hardware developers that want to
understand and make modifications to the WirelessUSBTM LP KBM Reference Design Kit (RDK).

1.2 Overview
This document provides a description of the hardware along with architecture and configuration
options for the WirelessUSB LP KBM RDK.

1.3 Definitions
Following are some definitions of acronyms and words found in this document. There may be other
meanings to these definitions outside of this document.

Bridge – The bridge is the receiving radio and USB hardware that connects to the PC and enumer-
ates as a Human Interface Device.

Device – The reference to device in this document means the keyboard or mouse device that is
sending radio packets to the bridge.

DVK – A development kit produced by Cypress Semiconductor for showcasing Cypress products
with a working development environment.

HID – Stands for Human Interface Device and is a product that allows an individual to interface with
a computer. A keyboard and mouse are HID devices.

RDK – A reference design kit produced by Cypress Semiconductor and used by 3rd parties to pro-
duce off-the-shelf products. Everything required to take a product to production is included in the kit.
This document is part of the CY4636 Mouse/RDK keyboard.

USB – The acronym for Universal Serial Bus, a well-known serial standard used in the computing
world.

WirelessUSB™ – a trademark name for Cypress 2.4 GHz radio products.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 9

Introduction
10 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

2. WirelessUSB 2-Way HID Protocol Overview
The WirelessUSB 2-way Human Interface Device (HID) protocol is designed for reliable 2-way com-
munication between a wireless bridge and target HID device in 1:1 (one HID and one bridge) or 2:1
(two HIDs and one bridge) systems. The WirelessUSB 2-way HID protocol allows HID applications
to establish a connection to the bridge and receive ACK and DATA packets from the bridge. The host
PC is not aware of the wireless connection, since the interface to the host acts like a normal wired
USB HID connection. Therefore, there is no special software required on the host PC in order to sup-
port WirelessUSB.

Figure 2-1. WirelessUSB 2-Way System

2.1 Radio Channel Management
WirelessUSB uses the unlicensed 2.4 GHz Industrial, Scientific, and Medical (ISM) band for wireless
connectivity. WirelessUSB uses 78 of the available channels and splits the 78 channels into 6 chan-
nel subsets consisting of 13 channels each. The channel subsets are used by each network to mini-
mize the probability of interference from other WirelessUSB systems (see the Channel Selection
Algorithm section for more details). A designated channel subset is used during Bind Mode (along
with an associated pseudo-noise code) in order to enable all WirelessUSB devices to effectively
communicate during this procedure.

2.2 Pseudo-Noise Codes
Pseudo-noise codes (PN codes) are the codes used to achieve the special matched filter character-
istics of DSSS communication. Certain codes referred to as ‘multiplicative codes’ are used for Wire-
lessUSB 2-way communication. These codes have minimal cross-correlation properties, meaning
they are less susceptible to interference caused by overlapping transmissions on the same channel.
The length of the PN code results in different communication characteristics. Higher data rates are

Host PC
or Laptop

WirelessUSB
Keyboard

(Transceiver)

WirelessUSB
Mouse

(Transceiver)WirelessUSB-LS
Bridge

(Transceiver)

USB

 -

CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 11

WirelessUSB 2-Way HID Protocol Overview
achieved with 32-chips/bit PN codes, while 64-chips/bit PN codes allow a longer range. The number
of frequency/code pairs is large enough to comfortably accommodate hundreds of WirelessUSB
devices in the same space. Each bridge/HID pair must use the same PN code and channel in order
to communicate.

2.3 Chip Error Correction
In the presence of interference (or near the limits of range), the transmitted PN code are often
received with some PN-code chips corrupted. DSSS receivers use a data correlator to decode the
incoming data stream. WirelessUSB LP supports a separate SOP and Data threshold. The RDK
uses an SOP threshold of ‘4’. The data threshold is set to the default value of ‘4’.

2.4 Automatic Acknowledgment
The WirelessUSB LP radio contains an automatic acknowledgment (AutoACK) feature that allows it
to automatically send an ACK to any valid packet that is received. The WirelessUSB LP radio also
uses the concept of transactions to allow the radio in the HID to automatically power down after
transmitting a packet and receiving an AutoACK, instead of waiting for the firmware to power the
radio down. This conserves power and reduces the firmware complexity of WirelessUSB applica-
tions.

2.5 Network ID
The Network ID contains the parameters for the Channel Selection Algorithm as well as the PN code
to be used. HIDs retrieve the Network ID information from the bridge during the Bind Procedure. A
special Network ID is reserved for Bind Mode, known as the Bind ID. The Bind ID gives a common
channel subset so that any two devices can communicate with each other during Bind Mode. The
Network ID is composed of the following fields:

PIN – This is a random number, between 2-5, that defines the Channel subset and is used in the
Channel Selection Algorithm.

Base Channel – This is the first channel to be used in the Channel Selection Algorithm, that deter-
mines which channels are contained in the channel subset.

PN Code – This is used as an index to select one of 10 used SOP PN codes, as noted in the radio
driver.

CRC Seed – This 8-bit value is used for the CRC calculation, that further diversifies transmissions
from different networks. All packets sent between non-bound devices use the default CRC seed of
0x0000. All packets sent between bound devices use a CRC seed that is common to all devices
bound to a particular bridge or network but unique from network to network.

2.6 Manufacturing ID
Each WirelessUSB radio contains a 4-byte Manufacturing ID (MID), that has been laser fused into
the device during manufacturing. The bridge uses its MID to help randomize channel subsets, PN
codes and Network CRC Seeds. The bridge sends its MID to the HIDs when binding. The HID then
stores the bridge’s MID in non-volatile memory after binding. The HID sends the bridge’s MID as part
of the Connect Request packet, allowing the bridge to verify the identity of the HID when establishing
a connection.
12 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

WirelessUSB 2-Way HID Protocol Overview
Both the bridge and the HID use the bridge’s MID to generate the device Network ID components.
The following equations ensure that each network will have a unique set of Network ID components:

PN Code = (mid_1 << 2) + mid_2 + mid_3

Base Channel = (mid_2 >> 2) - (mid_1 << 5) + mid_3

PIN = (((mid_1 -mid_2) & PIN_MASK) + MIN_PIN)

CRC Seed = ((mid_2 >> 6)) + mid_1 + mid_3

2.7 Channel Selection Algorithm
The Channel Selection Algorithm produces a subset containing 13 of the possible 78 channels. The
Channel Selection Algorithm is based on the Network ID, with each channel in the subset six mega-
hertz from the nearest neighboring channels in the subset. This algorithm reduces the possibility of
multiple bridges selecting the same channels in the same order at the same time.

2.8 Protocol Modes
The ping, idle, reconnect, bind, and data modes are discussed in this section.

2.8.1 Ping Mode (Bridge Only)
Ping Mode is used by the bridge to find an available channel; channels are unavailable if they are
being used by another network with the same PN code, or if there is excessive noise on the channel.
The bridge first listens for activity on the selected channel. If the channel is inactive the bridge alter-
nately transmits Pings and listens for Ping Responses for a defined* period of time. During Ping
Mode the bridge also checks the Receive Signal Strength Indicator (RSSI) of the radio in order to
determine if a non-WirelessUSB device is using this channel (or a WirelessUSB device on the same
channel using a different PN code). If a Ping Response is received, indicating that another bridge is
using this channel the bridge selects the next channel using the Channel Selection Algorithm and
repeat this procedure. The bridge also selects another channel using the Channel Selection Algo-
rithm if RSSI is high; this indicates that there is other RF sources on the channel. If a Ping Response
is not received and RSSI is low, the bridge assumes the channel is available and moves to Data
Mode. Bridges send Ping Responses in response to all received Pings if the bridge is in Data Mode.
HIDs never respond to Pings.

[*The timeout value is configurable using the PING_NUM_RSSI define.]

2.8.2 Idle Mode (HID only)
This is the state of an HID after a power-on reset before it has had any communication with the Wire-
lessUSB bridge. If the bridge’s MID is stored in nonvolatile memory the HID retrieves the bridge’s
MID, calculate the Network ID and move to Reconnect Mode. If the bridge’s MID is not stored in non-
volatile memory the HID waits in Idle Mode until a user-initiated event causes the HID to enter Bind
Mode. After a defined period of time in Idle Mode the HID enters Sleep Mode in order to conserve
power. When the HID wakes up due to a user action, it re-enters Idle Mode.

2.8.3 Reconnect Mode (HID only)
Reconnect Mode is used by the HID to discover the current channel used by the bridge and to estab-
lish a connection with the bridge. Upon entering Reconnect Mode the HID uses the Network ID to
select a channel using the Channel Selection Algorithm. The HID transmits Connect Requests con-
taining the Manufacturing ID of the desired bridge and listens for an AutoACK. If an AutoACK is
received the HID disables the AutoACK and continues to listen for a Connect Response. If a bridge
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 13

WirelessUSB 2-Way HID Protocol Overview
in Data Mode receives a Connect Request containing its Manufacturing ID, it sends a positive Con-
nect Response to the HID. If a HID receives a positive Connect Response it moves to Data Mode. If
a HID does not receive a positive Connect Response, it selects the next channel using the Channel
Selection Algorithm and repeats the procedure. If the HID does not receive a positive Connect
Response on any of the channels in the subset, it enters Sleep Mode in order to conserve power.
When the HID wakes up due to a user action it reenters Reconnect Mode.

2.8.4 Bind Mode

2.8.4.1 HID

Bind Mode allows the HID to retrieve the bridge’s Manufacturing ID which is used to calculate the
Network ID. Upon entering Bind Mode the HID sets the current channel and PN code to the channel
and PN code specified in the Bind ID. The HID then transmits Bind Requests and listens for an
AutoACK. If an AutoACK is received, the HID (keeping the AutoACK enabled) continues to listen for
a Bind Response (containing the bridge’s MID) from the bridge. If a Bind Response is not received
the HID moves to the next channel. If a Bind Response is received the HID stores the bridge’s MID,
calculates the Network ID and moves to Reconnect Mode. The algorithms used to calculate these
fields are implementation specific and should be the same on the bridge and the HID (both devices
use the bridge’s Manufacturing ID to calculate these fields). If a defined* period of time has elapsed
while in Bind Mode without receiving a Bind Response, the HID exits Bind Mode and restores the
Channel and PN Code settings that were in use prior to entering Bind Mode. Bind Mode should last
long enough for the user to locate and push the button on both the bridge and the HID. A user-initi-
ated event can cause the HID to enter Bind Mode from any other mode.

[*The timeout value is configurable using the BIND_RETRY_COUNT define.]

2.8.4.2 Bridge

Upon entering Bind Mode the bridge sets the current channel and PN code to the channel and PN
code specified in the Bind ID. The bridge listens for a Bind Request on each channel for approxi-
mately 320 ms before selecting the next channel using the Channel Selection Algorithm. This
reduces the possibility of the bridge not receiving the Bind Request from the HID in the event of
channel interference. If the bridge receives a Bind Request from the HID containing a supported
device type, it sends a Bind Response containing the bridge’s Manufacturing ID and then switches to
Ping Mode. The bridge also switches to Ping Mode if the defined* time period has elapsed while in
Bind Mode. The Channel Selection Algorithm uses the Bind ID to produce the channel subset for
Bind Mode.

[*The timeout value is configurable using the NUM_CHANNELS_PER_SUBSET define.]

2.8.5 Data Mode

2.8.5.1 HID

When the HID application has data to send to the bridge the HID transmits a DATA packet and lis-
tens for an AutoACK. If an AutoACK is not received, the HID retransmits the packet. If the HID does
not receive an AutoACK after a defined number of retransmissions of the DATA packet it assumes
the channel has become unavailable due to excessive interference and moves to Reconnect Mode.

2.8.5.2 Bridge

Connected Mode allows application data to be transmitted from the HID to the bridge. The bridge
should continuously listen for DATA packets from the HID. When valid data is received from the HID
the bridge sends an ACK to the HID and sends the data to the USB host. If invalid data is received
the bridge ignores the packet and listens for the HID to retransmit the data. The bridge monitors the
14 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

WirelessUSB 2-Way HID Protocol Overview
interference level and moves to Ping Mode if the defined* interference threshold is reached. This
ensures that the bridge is operating on a clean channel.

[*The interference threshold value is configurable using the RSSI_NOISE_THRESHOLD define]

2.9 Packet Structures
The first byte of each packet is the Header byte. Some packets may consist only of the header byte
while other packets may contain up to 5 bytes.

Type[7:4]: The following packet types are supported:

BIND_REQ (HID) = 0x 0, // Bind Request Packet Type

BIND_RESP(bridge)= 0x0, // Bind Response Packet Type

CONNECT_REQ = 0x1, // Connect Request Packet Type

CONNECT_RESP= 0x 2, // Connect Response Packet Type

PING_PACKET = 0x 3, // Ping Packet Type

DATA_PACKET = 0x 4, // Data Packet Type

NULL_PACKET = 0x 7, // Null Packet Type

KEY_PACKET = 0x 8, // Key Packet Type for encryption

NO_PACKET = 0x F, // When there is no packet received

Res[3:0]: The lower nibble is used for packet specific information. The packet definitions below
define how these four bits are used in each case.

2.9.1 Bind Request Packet (HID)

Byte 1

Packet Type - 0

Device Type - This is a 3-bit field specifying a vendor-defined device type. This allows the bridge to
determine what type of device the HID is and thus determine the length of data packets, which PN
code to assign, etc. The keyboard device type is 2, and the mouse device type is 3.

Byte 1

Bits: 7:4 3:0

Field: Packet
Type Res.

Byte 1

Bits: 7:4 3:1 0

Field: 0 Device
Type 0
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 15

WirelessUSB 2-Way HID Protocol Overview
2.9.2 Bind Response Packet (Bridge)

Byte 1

Packet Type - 0

Pin - This is a 3-bit field specifying the PIN element of the Network ID.

Byte 2-5

Manufacturing ID (MID 1 - MID 4) – This is the 4-byte Manufacturing ID retrieved from the bridge’s
radio and will be used by the HID.

2.9.3 Connect Request (HID)

Byte 1

Device Type – 0x1

PIN – This is a 3-bit field specifying the PIN element of the Network ID.

Byte 2-5

Manufacturing ID (MID 1 - MID 4) – This is the 4-byte MID that was received from the bridge during
the bind procedure. This enables the bridge to identify if the HID belongs to its network.

2.9.4 Connect Response Packet (Bridge)
Connect Response Packets are sent from the bridge to the HID in Idle and Connected Mode in
response to valid Connect Requests.

Byte 1

Packet Type - 2

Flag (F) – This is a 1-bit field specifying a positive or negative Connect Response Packet (1 = posi-
tive, 0 = negative).

Byte 1 2 3 4 5

Bits: 7:4 3:1 0 7:0 7:0 7:0 7:0

Field: 0 PIN 0. Dongle
MID1

Dongle
MID 2

Dongle
MID 3

Dongle MID
4

Byte 1 2 3 4 5

Bits: 7:4 3:1 0 7:0 7:0 7:0 7:0

Field: 1 PIN 0. Dongle
MID1

Dongle
MID 2

Dongle
MID 3

Dongle MID
4

Byte 1

Bits: 7:4 3 2:0

Field: 2 Flag 0
16 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

WirelessUSB 2-Way HID Protocol Overview
2.9.5 Ping Packet (Bridge)

Byte 1

Packet Type - 3

Flag (F) – This is a 1-bit field specifying a Ping or Ping Response (0 = Ping, 1 = Ping Response).

2.9.6 Data Packet (Bridge and HID)
Data packets are sent from the HID to the bridge in Connected Mode. They are also sent from the
bridge to the HID in Connected Mode if there is an asynchronous back channel.

Byte 1

Packet Type - 4

Data Toggle Bit – This is a 1-bit field that is toggled for each new Data packet. It is used to distinguish
between new and retransmitted packets.

Device ID – This is 1-bit field containing the least significant bit of the Device Type. The Device ID
field is used in 2:1 systems to distinguish between the HID devices.

Byte 2-N

Data Byte 0-N – This is byte-aligned application data.

2.10 Bind and Reconnect Timing
When the Bind button on the bridge is pressed, the bridge goes into Bind Mode. In Bind Mode, the
bridge uses the Bind ID to communicate with any HIDs that want to bind to the system (see section
Bind Mode on page 14 for more information on the Bind ID). The bridge enables its receiver and ‘lis-
tens’ for any Bind Request packets from the HID, starting from channel 0. The bridge listens for
approximately 320 ms on the channel, and if there’s no Bind Request packet, it moves to the next
channel in the Bind channel subset (the Bind channel subset consists of channels 0, 6, 12, 18, 24 …
78). It takes the bridge approximately 4.16 seconds to sequentially ‘listen’ on all 13 channels of the
Bind channel subset. The bridge repeats the process for up to 5 times before it times out and exits
Bind Mode (time out is approximately 21 seconds). If it receives a valid Bind Request packet, it
immediately responds to the request with a Bind Response packet and exits the Bind Mode.

When the Bind button on the HID is pressed, the HID goes into Bind Mode. While in Bind Mode, the
HID also uses the Bind ID to communicate with the bridge. The HID sends a Bind Request packet
and listens for an AutoACK packet. If the HID does not receive the AutoACK, it moves to the next
channel in the Bind Channel subset and repeats the Bind Request packet. It takes the HID approxi-
mately 23.4 ms to sequentially hop through all 13 channels of the Bind Channel subset, and the HID
repeats the process for up to 1000 times before it times out. See Figure 2-2 on page 18.

Byte 1

Bits: 7:4 3 2:0

Field: 3 Flag 0

Byte 1 2 N

Bits: 7:4 3 2 1 0 7:0 7:0 7:0 7:0

Field: 4 0 Toggle ID 0 Byte 1 Byte N
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 17

WirelessUSB 2-Way HID Protocol Overview
Due to the fact that the bridge’s and HID’s Bind buttons may be pressed at different times, the HID
and the bridge could be on very different channels when the two are in Bind Mode. However,
because the HID ‘hops’ very quickly on all Bind channels while the bridge stays relatively long on a
channel, the bridge and HID will have multiple opportunities of being on the same channel. As a
result, binding normally completes very quickly as soon as the bridge and the HID are both in Bind
Mode (at 1.8 ms/channel ‘hopping’ frequency of the HID and the bridge’s 320 ms/channel, the two
will ‘meet’ on the same channel at least 13 times in any 320 ms period).

Figure 2-2. Bind Timing Diagram

The bridge uses the Receive Signal Strength Indicator (RSSI) to determine the noise level on the
channel. If the channel has become noisy, the bridge moves to Ping Mode to find a quieter channel
in its channel subset.

When the HID loses connection with the bridge, it moves to Reconnect Mode to find the bridge. The
HID sends a Connect Request packet and listens for an AutoACK packet. If the HID receives the
AutoACK, it immediately enables its receiver and listens for the Connect Response packet from the
bridge. If the HID does not receive the AutoACK, it selects the next channel using the Channel
Selection Algorithm and repeats this procedure. As shown in the Figure 2-3 on page 19, the recon-
nect attempt takes approximately 1.76 ms/channel. The HID moves through its channel subset up to
19 times before it times out and exits Reconnect Mode. The keyboard tries to send the data for up to

Cycle 1 Cycle 2 Cycle 3

23.4 ms

Cycle 1000

23.4 ms x 1000 Cyles = 23.4 seconds

Bridge

Device

Channel 0 Channel 6 Channel 12 Channel 78

1.8 ms 1.8 ms 1.8 ms

1.80 ms x 13 Channels = 23.4 ms

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

4.16 s
4.16s x 5 Cycles ~ 21 seconds

Channel 0 Channel 6 Channel 12 Channel 72

320 ms 320 ms 320 ms

320 ms x 13 Channels ~ 4.16 seconds

Channel 78

Cycle 999

Channel 72
18 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

WirelessUSB 2-Way HID Protocol Overview
5 seconds, and the mouse tries for 2 seconds, causing the HID to re-enter Reconnect Mode multiple
times if necessary.

Figure 2-3. Reconnect Timing Diagram

2.11 Back Channel Support for NumLk/ScrLk/Caps Lock
In the current design, to save the keyboard power consumption, the Num Lock, Caps Lock and
Scroll Lock LEDs are not supported. However, if there’s a need to retrieve the LED status from the
bridge to display on the keyboard, the following implementation may be used. Note that the following
information is just one of the many possible implementations.

Keyboard

The keyboard may use one of the unused bits in the Data packet header to flag the bridge that it is
requesting the NumLk/ScrLk/Caps Lock data from the bridge. After sending the Data packet with the
flag set, the keyboard ‘listens’ for an AutoACK packet. If an AutoACK is not received, the keyboard
retransmits the Data packet. If the keyboard does not receive an AutoACK after a defined* number
of transmissions of the Data packet, it assumes the channel has become unavailable due to exces-
sive interference and moves to Reconnect Mode. If the keyboard receives the AutoACK, it enables
its receiver and starts ‘listening’ for data from the bridge. The keyboard will stay in this ‘receive’ mode
for a defined* period of time. If it does not receive any bridge data, it exits ‘receive’ mode and tries to
get the bridge data again.

Reconnect
Mode

Reconnect
Mode

Reconnect
Mode

430 ms

Reconnect
Mode

Keyboard = 5 seconds; Mouse = 2 seconds

Inherence detected .
Move to a quieter

channel in the subset
Quiet channel found. Bridge will stay on this channel

Device lost connection .
Search for bridge in
the channel subset

Cycle 1 Cycle 2 Cycle 3 Cycle 19

22.88 ms
22.88 ms x 19 Cycles ~ 430 ms

1st Channel
in subset

2nd Channel
in subset

3th Channel
in subset

13th Channel
in subset

1.76 ms 1.76 ms 1.76 ms

1.76 ms x 13 Channels = 22.88 ms

Bridge

Device
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 19

WirelessUSB 2-Way HID Protocol Overview
Bridge

If the bridge has NumLk/ScrLk/Caps Lock data to be sent to the keyboard, it has to wait for a Data
packet from the keyboard before it can send its data. If the bridge receives a Data packet from the
keyboard with the flag indicating that the keyboard is requesting NumLk/ScrLk/Caps Lock data, the
bridge goes into ‘transmit’ mode by enabling its transmitter to send the data. After sending the Data
packet with NumLk/ScrLk/Caps Lock data, the bridge listens for an AutoACK packet. The bridge
exits the transmit mode and goes back to ‘receive’ mode after it receives the AutoACK packet or
after a transmission timeout.

Both the keyboard and the bridge must keep track of the Data Toggle bit for the ‘bridge keyboard’
data transmission. The Data Toggle bit is reset to ‘0’ after a successful Bind. The Data Toggle main-
tained in the keyboard is toggled when the keyboard receives a valid Data packet from the bridge.
The Data Toggle maintained in the bridge is toggled when the bridge receives the AutoACK from the
keyboard. If the keyboard receives a mismatched Data Toggle bit from the bridge, it does not update
its Data Toggle and ignores the received Data packet. This Data Toggle is independent of the ‘key-
board bridge’ Data transmission.

[*The timeout is application specific and should be defined by the developer]

2.12 Signature Byte
The WirelessUSB LP RDK uses the SIGNATURE byte to determine if the HID has ever been bound
to any bridge before.

If the HID has never bound to a bridge, the non-volatile memory used to store the SIGNATURE and
the bridge's MID data remains in its default value. Once the HID has bound to a bridge, the SIGNA-
TURE byte is set to 0x90 and the bridge's MID is also stored.

At power up, the HID reads the SIGNATURE and the MID bytes to determine its next action. If the
SIGNATURE byte is 0x90, the HID uses the retrieved MID to calculate the NetworkID and moves to
Re-connect mode. If the SIGNATURE byte is not 0x90, the HID goes to sleep mode, waiting for the
user to initiate the Bind process.

2.13 Encryption
Data packets may be encrypted for privacy. All encrypted Data packets shall have a payload of 8
bytes; this is the minimum block size for the encryption algorithm.

WirelessUSB LP uses the Tiny Encryption Algorithm (TEA) to encrypt application data. Some of the
features of TEA are:
■ 128-bit encryption key
■ 8-byte block size
■ Minimal RAM requirements
■ Small code size
■ Highly resistant to differential cryptanalysis

In order to use the TEA algorithm both the bridge and HIDs must possess the Data Encryption Key.
The bridge is responsible for creating the key, which is then shared with the HIDs. There are a vari-
ety of possible methods to share the key between the two devices. The key may be exchanged over
the WirelessUSB link using the Encryption Key Request and Encryption Key Response packets.
20 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

WirelessUSB 2-Way HID Protocol Overview
2.13.1 Key Management Over WirelessUSB
After binding and connecting to the bridge, the HID transmits an Encryption Key Request Packet and
listens for an AutoACK followed by an Encryption Key Response Packet containing the first half of
the Data Encryption Key. The HID then uses the Key Encryption Key (calculated from the bridge and
the HID MIDs) to decrypt the Data Encryption Key. The HID repeats this process for the second half
of the Data Encryption Key and stores the key in NVRAM. After receiving both halves of the Data
Encryption Key the HID may begin transmitting encrypted data to the bridge.

2.13.2 Encryption and Power Consumption Trade Off
If the keyboard encryption is enabled, each key code is encrypted into an 8 byte key code (the Keep
Alive and key up packets are not encrypted). When a single key is pressed, a non-encrypted key
down packet consists of 16-bit Preamble + 2 bytes SOF + 1 byte packet header + 1 byte key code +
2 bytes CRC while an encrypted key down packet consists of the same overhead packets plus 8
byte key code instead of 1 byte key code. As a result, the active transmit Icc increases by approxi-
mately 50%. This results in an increase in the average power consumption when encryption is
enabled. Our measurement shows that the average Icc in test mode (sending “quick brown …”
string) is 3.33mA if encryption is disabled. If encryption is enabled, the average Icc increases to
3.66mA.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 21

WirelessUSB 2-Way HID Protocol Overview
Figure 2-4. Encryption Key Management
22 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

3. Mouse
3.1 Introduction

3.1.1 Overview
This section describes the design goals, architecture, firmware source code modules and configura-
tion options for the WirelessUSB PRoC LP mouse. It does not cover the details of the radio sub-
system or the configuration options that go with it.

3.1.2 Design Features
The CY4672 Reference Design Kit uses a low cost Programmable Radio on Chip-LP for the RDK
mouse (Cypress part #: CYRF69103-40LFXC). Contact your local sales representative for more
information on the part.

The architecture was designed to be modular for extendibility and maintainability. It was also
designed so that it could easily be ported from one hardware platform to another assuming the use
of an equivalent microprocessor. Porting to another microprocessor family requires more work to
account for hardware specific changes.

Design efforts have been made to reduce the ‘on’ time of the microprocessor and radio to conserve
battery life. This includes protocol optimizations along with using sleep features of the radio, mouse
optics and the microprocessor.

3.2 Hardware Overview
This section presents the RDK mouse assembly, the hardware block diagram, schematics, and
Hardware Considerations.

3.2.1 RDK Mouse Assembly
The RDK mouse is currently enclosed in a skin that has been designed for the Avago ADNS-3040
Ultra Low-Power mouse sensor. The mouse features three buttons with one button combined with
the scroll wheel function. There is a connect button on the bottom of the mouse allowing the user to
perform an explicit bind with the bridge.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 23

Mouse
Figure 3-1. Bottom View Bind Button and On-Off Switch

Figure 3-1 shows the bottom of the mouse with the optics window, power switch, and Bind button.
There are two screw holes above the label. The top of the mouse can be removed once these two
screws on the bottom and one screw on the top have been extracted.

Figure 3-2. Exploded Mouse View

Figure 3-2 is a picture of the mouse with the top removed. The mouse consists of a single PCB that
contains all of the necessary mouse components.
24 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
3.2.2 Hardware Block Diagram

Figure 3-3. Mouse Hardware Block Diagram

3.2.3 Schematics
All schematics for the optical wireless mouse are located in the following directory: <installation
directory>\Hardware\RDK mouse. The schematic is in Adobe Acrobat format with the letters ‘Sch’ in
the file name.

Figure 3-4. Printed Circuit Assembly (PDC-9302)

Figure 3-4 is a picture of the controller board with the WirelessUSB PRoC LP Radio and optical sen-
sor. The ‘wiggle’ trace in the lower right is the antenna. This board has the option of adding pull up
resistors and filtering capacitors to the z-wheel and then powering the z-wheel with a separate GPIO
pin on the microcontroller. J10 is a programming header. Either the ICE-Cube or the PSoC MiniProg
may be used to program the mouse microcontroller using this ISSP header. J10 also doubles as a

Processor Radio

Optical sensor

SPI
nSS
O_nCS

Schroll
Wheel

Buttons IRQ
O_Motion

ISSP Header

Radio

Wireless
Encore 2

Optical
Sensor
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 25

Mouse
mechanism to force the firmware to enter a manufacturing test mode that is compatible with the
Cypress Manufacturing Test Kit. Pins 4 and 5 must be shorted together using a shorting block before
power is applied to the mouse to enter this mode.

3.2.4 Hardware Considerations
The mouse design uses the SS12 schottky diode (D1) and CDH53100LC inductor (L3) for its boost
circuitry. With these high efficiency components, preliminary characterization data shows a range of
approximately 74-87% efficiency for the 1.8-2.7V VBAT voltage range at different temperatures
(-10C to 80C). The mouse is a higher power consumption device compared to the keyboard. Extend-
ing the battery life is one of the crucial design considerations in the mouse design. The trade off for a
higher efficiency boost circuitry is the component costs and the board size (these components are
slightly bigger in size compared to the ones used in the keyboard design).

3.3 Firmware Architecture
There are two architectural views of the mouse. The first is a microcontroller configuration view of
User Modules mapped to digital and analog blocks inside the microcontroller. This architecture and
configuration is best viewed in the PSoCTM Designer application when the project is loaded. The
second view is a logical organization of the source code modules that make up the mouse applica-
tion code and other support modules.

This section describes both architectures with emphasis on top level organization and overall mod-
ule operation. More detailed description of variables and functions should be obtained by studying
the source code.

3.3.1 ROM/RAM Usage
The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options below. The bottom part exhibits the ROM/RAM
usage for individual build options.

3.3.2 enCoRe™ III LV Device Configuration
The enCoRe III LV is configured using the Device Editor in PSoC Designer. The mouse uses three
digital blocks and two analog blocks to support three separate user modules. The first module is an
SPI master for communicating with the optical sensor and the radio. The second module is a PWM
configured to operate as an 8-bit timer. The third module is a 10-bit ADC used to measure the bat-
tery voltage. The ADC is the module that requires two analog blocks in addition to one digital block.

Table 3-1. ROM/RAM Usage

Total ROM (Bytes) Total RAM (Bytes)

Basic Function 5202 69

Build Option ROM Usage (Bytes) RAM Usage (Bytes)

MOUSE_BATTERY_STATUS 708 2

MOUSE_TEST_CODE 522 0

MFG_TEST_CODE 448 0

MFG_TX_MODES 735 3
26 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
Figure 3-5 is a block diagram of the device User Module mapping to digital and analog blocks. Fur-
ther description of resources and User Modules follow the diagram.

Figure 3-5. Microcontroller Device Architecture

3.3.2.1 Global Configuration

Following is a description of the Global Resources that are configured for the CY7C60323-PVXC
enCoRe III LV microcontroller. Care must be taken when modifying these values as they affect the
User Modules discussed below.

3.3.2.1.1 Power Setting / System Clock Frequency

The mouse is powered using the Power Management Unit on the CYRF6936 radio chip. The default
configuration of the radio PMU is used to power the microcontroller at 2.7 volts. The microcontroller
power setting is set to 2.7 volts / 12 MHz.

3.3.2.1.2 CPU Clock

This parameter is set to SysClk/1 in order to run the CPU at 12 MHz. This operating frequency pro-
vides for faster code execution, when events are detected, so the microcontroller can be put back
into sleep mode for improved power savings. Slower clock frequencies increase power consumption
of the microcontroller in the mouse design.

3.3.2.1.3 Sleep Timer

The sleep timer is set to 1 Hz in order to reduce the microcontroller load. The sleep timer is used to
maintain a very coarse sense of time when the PWM User Module is turned off. Changing this value
affects timing operation of the timer code module.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 27

Mouse
3.3.2.1.4 VC1 – VC3

The other clock sources are set to provide optimal performance for the SPI User Module and the
ADC. Since there is a dependency of VC3 on VC2, VC2 on VC1 and VC1 on System Clock, chang-
ing of these parameters have a cascading affect. VC1 is configured for SysClk / 2. VC2 is configured
for VC1/3 and is used to clock the SPI User Module with 2 MHz. VC3 is used to clock the ADC User
Module and is configured for N = 128. The clock source for VC3 is set for VC1.

3.3.2.1.5 Other Global Resources

The SysClk Source must be set to Internal 24 MHz and the SysClk*2 Disable must be set to Yes.
The Trip Voltage is typically set to the lowest value of 2.45 V. LVD ThrottleBack must be disabled.
The Watchdog Timer is typically enabled.

3.3.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with both the radio and the optical sensor.
Both devices support leading edge data latching, non-inverted clock, and MSB first transmission as
defaults. This module uses the VC2 clock resource of 2 MHz which is divided by two for a 1 MHz SPI
clock. For reliable operation it is not recommended to increase the SPI clock frequency. The interrupt
API to this module is not used. See the spi code module description for how this module is used to
implement communication with multiple devices on the SPI bus.

3.3.2.3 PWM User Module

The PWM User Module is configured to use the ILO oscillator (CPU 32-kHz clock). This module is
used to provide a periodic interrupt to the timer code module in order to maintain a power saving mil-
lisecond sleep routine. The period of the timer is calibrated to the system clock at power on in order
to provide a period of about 250 µs. This calibration is performed to account for variations in temper-
ature and ILO variances from part to part. The module must be configured to generate a terminal
count interrupt. The period parameter is ignored since it is programmed at run time based upon the
calibration results. See the timer code module for more details on calibration.

3.3.2.4 ADC User Module

The ADC User Module is only powered on when needed to make a battery voltage measurement.
The VC1/VC3 global clock resources are used to control the measurement timing. The PWM High
parameter must be set to 8 VC3 periods and the PWM Low parameter must be set to 1 VC3 periods.
The interrupt API must be enabled for the module to make a measurement. The battery voltage is fil-
tered and then connected to a microcontroller pin that is routed to the AnalogMUXBus, which in turn
is routed to the ADC.

3.3.2.5 Flash Security

The PSoC Designer mouse project has a file called FlashSecurity.txt. This file specifies access rules
to blocks of the Flash ROM. Refer to the documentation at the top of the file for definitions. This file
is shipped with a single change from its default configuration. The block starting at hex address
1FC0 has been changed from W: Full (Write protected) to U: Unprotected. This location of Flash has
been dedicated to saving non-volatile configuration values for the protocol code module. Note:
when building the mouse firmware, be sure to check that the text image size does not occupy this
block.
28 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
3.3.3 Model

Figure 3-6. Firmware Architecture Model

The mouse firmware is partitioned into two logical groups. The Common group is a collection of code
modules that provide the underlying support for the application. This group provides services such
as radio protocol, radio driver, timing, polling, flash access, contact debounce, SPI, and interrupts.

The Application group implements the core functionality and features of the RDK wireless mouse.
This includes power management, optical sensor, button, z-wheel, packet formatting and reporting,
various test modes and battery level sensing. The code modules for each of these groups are
described below in further detail.

All of the following module descriptions have corresponding <module name>.c or <module
name>.asm and <module name>.h source code files. The module API and definitions are exported
in the header file while the module implementation and local definitions are contained in the C/
assembly file.

3.3.4 Common Code
The modules in the common code group are a combination of two sources. The first is PSoC
Designer generated files in the lib directory that have been modified to support the application. The
second group is modules that are generally used by the application.

3.3.4.1 Generated Library Code

There are currently only two files, generated by PSoC Designer, that are modified for the use of the
application. A minimal amount of code has been added to these modules in user protected areas
that are preserved across code generation.

debounce spi

flash radio driver

protocol

poll

timer

isr

mouse optical

testmode

mfgtest

battery

buttons

wheeltick

GPIO

Common

PSoC Lib

Application
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 29

Mouse
3.3.4.1.1 GPIO Interrupt Module

Due to inefficiency in the handling of compiler defined registers at interrupt level, code was added to
this module to improve the efficiency of interrupt handling in C modules to maintain modularity. Refer
to the isr module for more details.

3.3.4.1.2 Timer Interrupt Module

The timer interrupt module has been modified to provide a finer timing of 250 µs for the poll module
and course timing by providing a 1 ms tick. When the timer module has been turned off, it still pro-
vides a sense of time on the 1 ms tick by using the sleep timer. In this case polling is disabled to con-
serve power. See the poll module and timer module for more details.

3.3.4.2 Debounce Module

The debounce module is an assembly coded routine to perform debounce on button presses as well
as z-wheel motion. The algorithm is one that was published in EDN article as a way to perform hard-
ware debounce in software.

The debounce is performed by polling the inputs at a fixed period and by adding a weighted value of
the input to an accumulated value carried from the previous poll. The output is then passed to
threshold logic, with built in hysteresis, and a logic value of one or zero is computed. The thresholds
can be changed to adjust the hysteresis crossings by setting SCHMITT_HIGH_THRESH and
SCHMITT_LOW_THRESH. Once an input has changed state the output can be observed to change
approximately 10x the poll period later with the current threshold settings. With a poll period of
250 µs the input latency would be about 2.5 ms.

Refer to Contact-debouncing algorithm emulates Schmitt trigger on http://www.edn.com for more
details on the operation of this algorithm.

3.3.4.3 SPI Module

This module provides an interface to the SPI bus for the optical sensor only. Physically the SPI bus is
connected to the radio and the optical sensor. The radio driver is responsible for interfacing with the
radio. The enCoRe III LV SPI Master module does not manage the selection of slave devices. This
module was created to provide that functionality. This module has a dependency on the instantiation
of a SPIM module in PSoC Designer that is properly connected to the devices.

3.3.4.4 Radio Driver

The radio driver module is a low level module providing basic radio communication and configura-
tion. Its general application is such that it is likely not to be changed by the firmware developer. It
provides an interface for reading/writing radio registers, setting PN codes and initialization of the
radio and transmitting or receiving packets. See the WirelessUSB LP Radio Driver documentation
for details.

3.3.4.5 Protocol Module

The protocol module defines and implements the layer used to deliver packets from the device to the
bridge. It manages the binding of devices to a bridge as well as the connection and interference
immunity by channel hopping. This module has a dependency on the radio driver for sending for-
matted packets and the flash module for storing the manufacturing ID of the bridge the device is
bound to.

3.3.4.6 Flash Module

The flash module is a smaller version of E2PROM module provided in PSoC Designer. It is limited in
functionality and only implements the read/write routines required by the device. The flashsecurity.txt
30 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
file must be modified so that the block being modified by this module is given read/write privilege, i.e.
unprotected. Currently the very top most block in flash is used for this module.

3.3.4.7 Port Module

GPIO pins on the enCoRe III LV microcontroller ports can be configured as outputs with a pull up
resistor. This is the case for mouse buttons and the Bind button. In order to activate the pull up a
data value of one must be written to the port data latch for the pin. This feature presents a problem
when performing a read-modify-write on the port. For example, if a button happened to be pressed
(grounding the pin) a zero would be read and written back out on the read-modify-write operation.
This would turn off the pull-up for the button thereby essentially disabling the button. The port mod-
ule provides an interface to treat ports, using the pull up feature, in a special way by caching the
drive data for the port.

3.3.4.8 Poll Module

The poll module manages the timing, enabling/disabling and polling of the mouse buttons and z-
wheel inputs. When the mouse is active, polling is enabled and occurs at a rate of about 250 µs for
the z-wheel (see the timer module) and a rate of about 3 ms for the mouse buttons. When the
mouse is inactive, the buttons are changed to interrupt mode and the z-wheel is polled for change
only when the sleep timer expires; see button/wheel modules.

3.3.4.9 Timer Module

The enCoRe III LV has an internal low power oscillator (ILO) that is used for generating a clock to a
PWM User Module. This clock is affected by voltage and temperature and may drift over time. This
module provides an interface to periodically calibrate the PWM to the system clock. The PWM period
is calibrated to be approximately 250 µs. Care must be taken when changing this period since the
poll/debounce modules are coupled to this time value. Calibration of the ILO is done by placing it in
a single power mode. Since the ILO configuration register is read-only, the fastest frequency is set
for a more precise calibration. Typical frequencies tend to be in the 90-100 kHz range. Because the
ILO is adjusted this way, it also affects the sleep timer. Setting the sleep timer to 1 second in the
device editor actually results in a sleep timeout on the order of ¼ second.

The timer module also provides a set of functions for performing busy waits in the microsecond res-
olution. For more coarse timing requirements an API is provided for millisecond delays. The millisec-
ond delay routines should be used as often as possible to provide for better power consumption
since the microcontroller sleep feature is used. Also, when polling is enabled, it is performed as a
background task during the millisecond delay.

This module also adjusts the tick advancement based upon the sleep resolution selected as a global
parameter in the Device Editor when the timer is disabled. Turning off the timer provides for more
power savings, yet a sense of time is still preserved for non-critical timing.

Note: When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead
of the sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to syn-
chronization issues between the OCD part and the emulator.

3.3.4.10 ISR Module

This module provides an interface to enable/disable individual GPIO interrupts. It also provides the
top level GPIO interrupt handler for the application. It does not handle User Module specific inter-
rupts; those are handled by specific routines provided in each module.

Due to compiler inefficiencies and the desire to maintain modularity with interrupt handlers, the top
level handler isr_gpio() calls a routine in the GPIO interrupt User Module. The parameter passed is a
pointer to another C function that has been declared as an interrupt handler. This is done in order to
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 31

Mouse
preserve the registers used in the handler. The gpio_isr_redirector() function manipulates the stack,
preparing it for the interrupt handler being called. The rule is that the module routine being called
may not call any other functions and it must be declared with the #pragma interrupt_handler. For
example, the interrupt handler in the optical module to handle detection of optical motion does not
call any other C functions. Instead, it uses a macro provided by the mouse module to post an event
flag. See the optical/mouse modules. This method prevents the compiler from pushing all of its vir-
tual registers onto the stack when a function is called at interrupt context.

3.3.5 Application Code
The group of modules that make up the application code are responsible for implementing the
mouse functionality and behavior. Following is a high level description of each module responsibility
and associated algorithms.

3.3.5.1 Mouse Module

The mouse module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the mouse. The data formats and reporting algo-
rithms along with power management are explained in this section.

A few types are defined to support the operation of the mouse. One of these is the packet format
used when sending data to the bridge. This type is defined as TX_PACKET and is structured to sup-
port the different data packet formats as explained in the section Wireless Protocol Data Payload on
page 37. The present definition combines z-wheel data with button data into one byte in order to
conserve battery power by shortening the on-time of the radio. This format would need to change in
order to support a mouse with more than three buttons and a z-wheel, perhaps sending four bytes
instead of three.

The function main() is the entry point for the mouse application. This function is called from the
boot.asm file. The mouse first initializes all of the application modules and then initializes the proto-
col module. There is an order dependency for some of these, so care must be taken in modifying the
mouse_init() function. For example, other modules depend upon the timer facility running in order to
perform initialization. The spi module must be initialized before the optical and protocol modules
can be initialized. Once each module has been initialized, then the application checks for entry to the
‘LP’ draw test mode or the manufacturing test mode. If neither of the test modes is indicated, then
normal mouse operation begins.

The mouse module handles a variety of events at the main thread level. Most interrupt routines post
notification that an event occurred by using the macros provided by the mouse interface. The mouse
then processes these events at thread context rather than interrupt context.

The mouse application is implemented using a state machine to manage the various power modes
that it executes at any given time.

The mouse initially enters a disconnected state. When there is any mouse activity, it enters the
active state.

In the active state the timer is turned on so that more accurate timing and mouse events can be col-
lected, formatted and reported to the bridge. The mouse remains in this state as long as there is
mouse activity to report to the bridge or a period of time without any mouse activity has expired, after
which it returns to the idle state. If the mouse is unable to deliver a packet while in this state, it transi-
tions to the disconnected state.

In idle state the optical sensor is allowed to transition through its various rest modes to conserve
power. In this state, the mouse application is waiting for input from the optical sensor, z-wheel or but-
tons. The timer is turned off to conserve power and the notion of time is maintained using the sleep
32 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
timer. This state is maintained indefinitely until the batteries drop below 1.8 volts at which point the
mouse enters the off state.

The off state is where the radio and optical sensor are prevented from turning on. This state is
reached when the battery voltage drops below 1.8 volts. It is designed to keep the battery drain to an
absolute minimum to prevent battery leakage as a result of completely draining the batteries.

The battery level is reported by the mouse application when it detects a change from the discon-
nected state to the connected state. The battery level is measured when exiting the idle state. If
there is a change in the battery level, then it will be reported in the active state.

In the active state the mouse attempts to deliver a packet for the amount of time designated in
MOUSE_TX_TIMEOUT_MS. If it is unable to send the packet in this time, then it transitions to the
disconnected state.

The mouse application is responsible for detecting the Bind button press and then calling the bind
function in the protocol module.

The mouse application sends mouse reports as frequently as events arrive, but not any faster than
the time defined in the macro MOUSE_REPORT_IN_MS. Care must be used when setting this time
so that the report rate does not exceed that which the USB bus is capable of handling. Keep in mind
that the report rate varies slightly due to drift of the internal oscillator used to keep track of time.

3.3.5.2 Optical Module

The optical sensor module encapsulates the initialization, calibration and reading of the optical sen-
sor. This module also handles any power management required by the sensor, along with motion
detection if supported. The contents of this module potentially change with every design and are
unique to the sensor used.

This module has the responsibility to format the X and Y data into the mouse packet payload. Refer
to section Wireless Protocol Data Payload on page 37 for a definition of the packet payload.

3.3.5.3 Battery Module

The battery module is responsible for measuring the battery voltage and converting it into a level
between one and ten using an A/D.

The battery monitor circuit is implemented using a resistor and capacitor to filter out ripple from the
switcher, and is routed to an analog input on the enCoRe III LV microcontroller. This input is then
connected to a 10 bit single slope analog to digital converter User Module. The firmware has been
implemented to read the battery voltage and then provide a ten level mapping of the battery voltage.
The battery level is periodically measured and changes in level are transmitted to the bridge; see the
mouse module for the algorithm.

The battery module must be calibrated at power on reset prior to use in order to compensate for part-
to-part differences. Calibration is accomplished by calling:

 BatteryV_iCal(BATT_CAL_SET_POINT, BatteryV_CAL_VBG)

prior to each use. This forces the A/D to calibrate as close as possible to 1.3 V.
BATT_CAL_SET_POINT is = 475 (1.3V /2.8 V * 1023) which is the digital representation of 1.3 volts
using the internal band gap reference.

3.3.5.4 Testmode Module

The Testmode module provides code to continuously perform a vector drawing test within a drawing
application. This test mode is used to check radio range, co-location and inter-operability of the
mouse with the keyboard.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 33

Mouse
The test mode, when compiled in, is entered by holding down the left and right button while inserting
the batteries. The buttons must be held down until the optical sensor begins to flash. As soon as the
buttons are released the mouse repeatedly draws ‘LP’ in the drawing application. Each successive
‘LP’ should be drawn on top of the previous one. The test mode may only be exited by removing the
batteries. All button presses and mouse movement are ignored when in the test mode. However,
care must be taken not to bump other mice connected to the PC.

Note the mouse ‘acceleration’ or ‘enhance pointer precision’ option must to be turned off in the Win-
dows mouse Control Panel for this test to execute properly. If the letters are drawn erratically with
uneven sides or excessive amounts of space in between them, then check this setting or its equiva-
lent (based upon your PC operating system).

When the macro DEBUG_INDEX is defined, code is generated to move the mouse pointer to the
right and back again without the pen down. This is done in an incrementing fashion so that when
observing packet data on a Listener, a correlation can be made with a USB protocol analyzer. This is
useful for debugging data loss since the test mode guarantees packet delivery.

Entry to this test mode can be changed by modifying the macro TESTMODE_BUTTONS in the test-
mode.c file. The button macros are defined in the buttons.h file.

3.3.5.5 Buttons Module

The buttons module provides an API for handling the Bind button and the mouse buttons. This mod-
ule must be changed when adding or removing buttons for a new mouse design. The button portion
of the packet payload is formatted by this module and will need to change if more buttons are added.
See the mouse module for a definition of the packet payload format.

This module manages power configurations that may be implemented to conserve power related to
button presses. For example, button polling is turned off and interrupts are used to detect button
presses in the idle state. It also manages the acquisition of button information depending on the
implementation: interrupts or polling.

When changes in button state are detected, the mouse module is notified for collection and report-
ing of the data. Note: it is important for the buttons module to always report the button state when a
button is pressed. This condition frequently occurs when the mouse is moved with the button held
down.

3.3.5.6 Mfgtest Module

The manufacturing test module may be optionally compiled in, at the expense of code space, by
defining the macro MFG_TEST_CODE. In addition, a more complete version may be compiled in by
defining MFG_TX_MODES. The TX modes include code to perform a carrier test as well as a ran-
dom data test.

The manufacturing test code is designed to be compatible with the CY3631 Manufacturing Test Kit
Tester. Entry into this mode on the mouse is performed by placing a shorting block over pins four and
five of the ISSP programming header and then inserting the batteries. The test mode may only be
exited by removing the batteries and shorting block. For more information on how to use this test
mode, refer to the CY3631 Manufacturing Test Kit documentation.

It is recommended that you not make changes to this module unless similar changes are made to
the CY3631 Tester.

3.3.5.7 Wheel Module

The wheel module implements the functionality of the z-wheel. It is responsible for power modes
associated with the z-wheel, polling, z-wheel interrupts, wheel position tracking, and partial packet
formatting for z-wheel reports.
34 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
When the z-wheel is being polled, the GPIO pins are turned on with internal pull up resistors just
long enough to read the state. This is done to conserve power when the mouse is active. When the
polling timer has been turned off the wheel_poll_sleep() function is called which only looks for
change from the last state; it does not keep track of wheel position.

Z-wheel position tracking is done by comparing debounced wheel input to the previous two states.
Depending upon the wheel input phase transition the direction of the wheel can be determined. The
poll rate must be frequent enough to debounce and catch these transitions for a smooth response.
The RDK mouse is shipped with a mechanical encoder. It is typical for this decoder to rest on a
detent such that the z-wheel inputs are either both high or both low, hence the reason for only turning
on the pull ups when polling the input. Transition from one of these states to the other is reported as
a +/-1 motion. Note: sometimes the mechanical detents don’t align with the high-high or low-low
state and movement may not be seen every time from detent to detent.

When z-wheel motion is detected, the mouse module is notified for collection and reporting of the
data.

3.3.6 Configuration Options
All configuration options for the application can be found in the config.h file. Each item is explained
below and can be changed to values that meet the developer’s requirements.

3.3.6.1 MOUSE_REPORT_IN_MS

This configuration value sets the shortest period at which the firmware will honor events from the
mouse hardware to transmit using the radio. The default value is approximately 10 milliseconds. Set-
ting this value to something smaller than the USB poll period of 8 milliseconds generates excessive
radio retries from the mouse and is not recommended. Larger values improve battery life, but may
affect usability of the mouse. See the timer module for a description of timing accuracy. This valued
is defined in milliseconds.

3.3.6.2 MOUSE_ACTIVE_MS

This value sets how long the timer module runs generating poll interrupts for the z-wheel and but-
tons. This time affects power consumption of the mouse. Once this time expires, the buttons and z-
wheel go into a power down state, improving battery life. In power down state, z-wheel movement
exhibits latency. See the button/wheel modules for descriptions of power down states and opera-
tion. This value is defined in milliseconds.

3.3.6.3 MOUSE_DISCONNECTED_POLL_MS

Sets the rate at which the battery voltage is monitored while in the disconnected state. This ensures
that if the batteries go below the minimum battery voltage of 1.8 V, the radio and optical sensor are
prevented from turning on.

3.3.6.4 MOUSE_TX_TIMEOUT_MS

The transmit loop in the mouse attempts to guarantee delivery of mouse events. This loop eventually
times out if it does not receive a response from the bridge. This value sets that time-out time. The
default value is 2000. This value is defined in milliseconds.

3.3.6.5 PLATFORM_H

This configuration value identifies the header file that has the platform configuration information. The
default value is pdc9302.h, which is the identifier for the mouse board that is shipped with the RDK.
This macro changes when the code is ported to another platform.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 35

Mouse
3.3.6.6 MOUSE_800_NOT_400_CPI

This configuration definition is used to select between 800 or 400 counts per inch (cpi) when config-
uring the optical chip. If it is defined then 800 cpi is selected. If it not defined then 400 cpi is selected.
The default is 800 cpi.

3.3.6.7 MOUSE_BATTERY_STATUS

Enabling this feature causes the battery level measurement code to be compiled into the mouse
image. The ADC block must be configured properly in the PSoC Designer layout. The mouse then
measures the battery level and reports any changes to the bridge. Notification of the battery level is
done at the following events: the battery level changes, the mouse transitions from the idle state to
the active state, mouse transitions from the disconnected state to the connected state.

3.3.6.8 MOUSE_TEST_MODE

This configuration definition is used to selectively compile code for mouse test mode. If this value is
defined, then the test mode is compiled into the executable image.

The test mode moves the mouse in a fashion to repeatedly draw the letters ‘LP’ in a drawing pro-
gram. Mouse acceleration or advanced motion must be turned off when performing this test. See the
testmode module for more information on entering this test mode.

3.3.6.9 MFG_TEST_CODE

This configuration definition is used to selectively compile in the manufacturing test code. The man-
ufacturing test code in this mouse is compatible with the CY3631 Manufacturing Test Kit offered by
Cypress Semiconductor. See the mfgtest module for a description of how this test mode is exe-
cuted. See the CY3631 Manufacturing Test Kit documentation for a description of the test operation.

3.3.6.10 MFG_TX_MODES

When the MFG_TEST_CODE is defined, then the definition of this name adds in a carrier and ran-
dom data TX test option. See the mfgtest module for more information on these TX modes.

3.3.6.11 DEVICE_TYPE

This definition is used by the protocol module when filling out the packet header. The value must be
set to three for a mouse.

3.3.6.12 APP_TX_PACKET_SIZE

This is the application payload size of the data packet. It must be set to a value large enough to hold
the largest mouse data packet. Care must be taken when setting the value, since larger values affect
memory usage. This value is used in a union with other packet types that are used for the protocol,
so the overall memory usage may be larger than what is specified here.

3.3.6.13 APP_RX_PACKET_SIZE

This is currently not used by the mouse, but must be set to at least one for compilation. This value is
used in a union with other packet types, so the resulting receive packet will likely be larger than one.

3.3.7 Platform and Architecture Portability
The mouse firmware was designed to be easily ported from one hardware platform to another plat-
form with a simple re-mapping of pins on the enCoRe III LV. The file pdc9302.h maintains the pin
mapping definitions that are used throughout the code and is included in about every file by using
the macro PLATFORM_H that is defined in config.h.
36 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
Porting the code to another microprocessor architecture requires modification or leverage of the
existing code for processor specific features, along with pin definitions.

3.3.8 Initialization
Initialization of the enCoRe III LV chip is done by code that is generated in boot.asm by the PSoC
Designer software. The module boot.asm calls main() in the mouse module once the enCoRe III LV
has been configured and initialized.

3.3.9 Wireless Protocol Data Payload
The mouse protocol has been optimized to reduce the ‘on-time’ of the radio, which equates to
reduced power consumption. This optimization relies upon the RDK requirement of a three-button
mouse. With this requirement, it is possible to combine the z-wheel and the button report into a sin-
gle byte, allowing five bits of information for the z-wheel and three bits for the buttons.

The protocol code module offers the ability to send variable length packets, thereby allowing a
reduced number of bytes to be transmitted over the air, in order to extend battery life.

Since mouse usage data demonstrates that X, Y optical sensor data is more frequent than z-wheel
or button presses, the following transmission packet formats are implemented in this RDK. The
packet formats only show the application payload and do not show the protocol packet format.

3.3.9.1 Packet Format 1

When there is only X, Y delta data, the transmitted packet is two bytes.

3.3.9.2 Packet Format 2

When there is either z-wheel data or button data, the transmitted packet is three bytes. In the case
where there is no X, Y delta data, but there is z-wheel or button data, the X, Y delta bytes will be set
to zero. The z-wheel data is a signed value with bit 4 as the sign bit.

3.3.9.3 Packet Format 3

When battery voltage level is communicated, the transmitted packet is 1 byte.

Table 3-2. Packet Format 1

Byte 1 Byte 2
X Delta
(8 bits)

Y Delta
(8 bits)

Table 3-3. Packet Format 2

Byte 1 Byte 2 Byte 3
X Delta
(8 bits)

Y Delta
(8 bits)

Buttons (Bits[7:5]),
Z Delta (Bits[4:0])

Table 3-4. Packet Format 3

Byte 1
Battery Level
(1 – 10)
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 37

Mouse
3.3.10 Interrupt Usage and Timing
In the RDK mouse, the following interrupts has been enabled:
■ Motion interrupt from the optical sensor
■ Button (Left, Middle and Right buttons) interrupt
■ Bind button interrupt

The ISR module provides an interface to enable/disable individual GPIO interrupts. It also provides
the top level GPIO interrupt handler for the application. The other modules handle User Module spe-
cific interrupts.

The top level handler isr_gpio() calls a routine in the GPIO interrupt User Module. The parameter
passed is a pointer to another C function that has been declared as an interrupt handler. This is done
in order to preserve the registers used in the handler. The gpio_isr_redirector() function manipulates
the stack, preparing it for the interrupt handler being called. The rule is that the module routine being
called may not call any other functions and it must be declared with the #pragma interrupt_handler.
For example, the interrupt handler in the optical module that handles detection of optical motion
does not call any other C functions. Instead, it uses a macro provided by the mouse module to post
an event flag. See the optical/mouse modules. This method prevents the compiler from pushing all
of its virtual registers onto the stack when a function is called at interrupt context.

The interrupt latency includes two portions. The first portion is the time between the assertion of an
enabled interrupt and the start of its ISR, which can be calculated using the following equation:

Latency1 = Time for current instruction to finish +
Time for M8C to change program counter to interrupt address +
Time for LJMP instruction in interrupt table to execute.

For example, if the 5-cycle JMP instruction is executing when an interrupt becomes active, the total
number of CPU clock cycles before the ISR begins would be as follows:

(1 to 5 cycles for JMP to finish) +
(13 cycles for interrupt routine) +
(7 cycles for LJMP) = 21 to 25 cycles.

In the example above, at 12 MHz, 25 clock cycles take 2.083 µs.

The second portion is the time between the start of the ISR and the post of the event flag. For exam-
ple, the motion interrupt takes 308 CPU clock cycles for this portion. Therefore, the Latency2 equals
to 25.667 µs for the 12 MHz CPU.

Consequently, the total latency for a motion interrupt is:

Latency1 + Latency2 = 27.750 µs

3.3.11 Code Performance Analysis
A mouse motion report is used to analyze the code performance. A typical mouse motion report con-
tains the following steps:
■ Optical sensor responds to a mouse motion. With the mouse the sensor in the rest 1 state, it

takes 16.5 ms for the sensor to responds to this sensor motion.
■ The sensor interrupts the MCU by lowering its motion pin. The prior section has calculated that it

takes 27.750 µs for MCU to respond to this Interrupt.
■ In the function timer_wait_event (), the MCU exits the sleep state and spends 53 µs to finish the

wheel poll.
38 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Mouse
■ Firmware delays MOUSE_REPORT_IN_MS, which is 10 ms for the default. This delay is to pre-
vent excessive radio retries from the mouse.

■ Firmware calls function mouse_do_report() to read the Delta_X and Delta_Y value and send the
packet to the bridge. This step takes 1.98 ms, which includes 1.66 ms radio transmission time.

As a result, if a mouse is in the rest 1 state, it takes 28.6 ms for the mouse to report a motion to a
bridge.

3.4 Development Environment
See the CY4672 Getting Started Guide for a list of tools required to build and debug the mouse
application.

3.4.1 Tips and Tricks

3.4.1.1 M8C Sleep

When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead of the
sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to synchroni-
zation issues between the OCD part and the emulator.

3.4.1.2 Watchdog Timer

The watchdog timer is enabled for the RDK operation, but may be disabled for debug purposes.

3.4.2 Critical Test Points
The following figure shows the critical test points for RDK mouse.

Figure 3-7. RDK Mouse Critical Test Points

CLKOUTPACTL

MISO

MOSI

nSS
IRQ

SCK
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 39

Mouse
40 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

4. Keyboard
4.1 Introduction
This section covers the design goals, architecture, firmware source code modules, and configuration
options for the WirelessUSB LP keyboard. It does not cover the details of the radio subsystem or the
configuration options that go with it.

4.1.1 Design Features
There are several design goals that drove the requirements for the firmware development for the
keyboard. Some of these are architecture related, while others are feature related.

The CY4636 Reference Design Kit uses a enCoRe II LV controller for the RDK keyboard. Contact
your local sales representative for more information on the enCoRe II LV controller.

The architecture was designed to be modular for extendibility and maintainability. It was also
designed so that it could easily be ported from one hardware platform to another assuming the use
of a enCoRe II LV microprocessor. While porting to another microprocessor requires more work, the
hardware design was done to minimize usage of advanced enCoRe II LV features to expedite this
effort.

Design efforts have been made to reduce the ON time of the microprocessor and radio to conserve
battery life. This includes protocol optimizations along with using sleep features of the radio and
enCoRe II LV microprocessor.

4.2 Hardware Overview
Several pictures of the RDK keyboard assembly are presented in this section; also the schematics, a
keyboard matrix table, and hardware considerations are discussed in this section.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 41

Keyboard
4.2.1 RDK Keyboard Assembly

Figure 4-1. Keyboard Plastic

Figure 4-1 shows the RDK keyboard plastic.

Figure 4-2. Exploded Keyboard

Figure 4-2 shows the keyboard with the top removed. The radio/ enCoRe II LV board (PDC-9265) is
shown in the upper right hand corner.
42 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
Figure 4-3. Radio and PSoC Board (PDC-9265)

Figure 4-3 shows the main controller board with the enCoRe II LV and WirelessUSB LP Radio. All
of the components are on the top side of the board with the exception of the Bind button.

Figure 4-4. Keyboard Battery Compartment

Figure 4-4 shows the integrated battery compartment located on the bottom side of the keyboard.
The battery compartment cover is also shown.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 43

Keyboard
Figure 4-5. Bind Button

Figure 4-5 shows the Bind button.

4.2.2 Schematic
All schematics for the LP RDK keyboard are located in the following directory: <installation
directory>\Hardware\keyboard. The schematic is in Adobe Acrobat format with the letters
‘Sch’ in the file name.
44 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
4.2.3 Keyboard Matrix
The RDK keyboard matrix has 18 columns and 8 rows. Key presses generate a GPIO interrupt when
a column is connected (shorted) to a row. The keyboard then scans the matrix to determine which
keys have been pressed.

The RDK keyboard matrix with the USB scan codes are shown in Table 4-1.

Notes:

- Yellow indicates Multimedia Key (16-bit value)
- Red indicates Power Key
- Blue indicates Modifier Key
- No color indicates a Standard 101 Key

4.2.4 Hardware Considerations
The keyboard design uses the BAT400D-7-F schottky diode (D1) and CDH53100LC inductor (L3) for
its boost circuitry. These low cost components are used to reduce the over all system cost at the
expense of lower boost efficiency. Preliminary characterization data shows a range of 68-81% effi-
ciency for the 1.8-2.7V VBAT voltage range at different temperatures (-10C to 80C). Higher effi-
ciency components such as the ones in the mouse design may be used at the expense of
component costs and board size (these low cost components are smaller in size compared to the
ones used in the mouse design.)

4.3 Firmware Architecture
There are two architectural views of the keyboard. The first is a microcontroller configuration view of
User Modules. This architecture and configuration is best viewed in the PSoC Designer application

Table 4-1. RDK Keyboard Matrix

Row
0

Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Column 0 0x09 0x0A 0x19 0x05 0x17 0x15 0x21 0x22

Column 1 0x0D 0x0B 0x10 0x11 0x1C 0x18 0x24 0x23

Column 2 0x0E 0x3F 0x36 NA 0x30 0x0C 0x25 0x2E

Column 3 0x0F NA 0x37 NA 0x40 0x12 0x26 0x41

Column 4 0x33 0x34 NA 0x38 0x2F 0x13 0x27 0x2D

Column 5 0x31 0x3E 0x28 0x2C 0x2A NA 0x43 0x42

Column 6 0x5A 0x62 0x54 0x4F 0x5D 0x60 0x45 0x49

Column 7 0x59 NA 0x53 0x51 0x5C 0x5F 0x44 0x4C

Column 8 0x5B 0x63 0x55 0x56 0x5E 0x61 0x4E 0x4B

Column 9 0x07 0x3D 0x06 NA 0x3C 0x08 0x20 0x3B

Column 10 0x16 NA 0x1B NA 0x39 0x1A 0x1F 0x3A

Column 11 0x04 0x29 0x1D NA 0x2B 0x14 0x1E 0x35

Column 12 0x58 0x52 0x48 0x50 NA 0x57 0x4D 0x4A

Column 13 NA 0x04 NA 0x40 0x0192 0x47 0x46 0x0223

Column 14 0x02 0x00CD 0x20 NA 0x02 NA 0x0221 0x018A

Column 15 NA NA 0x10 NA 0x00E9 NA NA 0x01

Column 16 0x7D 0x00E2 0x80 0x7C 0x00B7 0x00EA 0x022A NA

Column 17 0x08 0x0225 NA 0x7B 0x0224 0x65 0x00B6 0x00B5
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 45

Keyboard
when the project is loaded. The second view is a logical organization of the source code modules
that make up the keyboard application code and other support modules.

The next few sections describe both architectures with emphasis on top level organization and over-
all module operation. Obtain more detailed description of variables and functions by referencing the
source code.

4.3.1 ROM/RAM Usage
The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options below. The bottom part exhibits the ROM/RAM
usage for individual build options.

*The ENCRYPT_DATA option requires 64 bytes extra ROM space to store the non-volatile session
key.

4.3.2 enCoRe II LV Device Configuration
The enCoRe II LV is configured using the Device Editor in PSoC Designer. The Device Editor allows
the Global Resources for the part and user module parameters to be configured. The keyboard uses
two separate user modules. The first module is an SPI master for communicating with the keyboard
and the radio. The second module is a programmable interval timer. The following is a screen shot of
the Device Editor showing the User Module mapping. Further description of resources and User
Modules follow the diagram.

Table 4-2. ROM/RAM Usage

Total ROM
(Bytes)

Total RAM
(Bytes)

Basic Functions 5550 119

Build Option ROM Usage
(Bytes)

RAM Usage
(Bytes)

KEYBOARD_MULTIMEDIA_SUPPORT 755 1

KEYBOARD_TEST_MODES 338 1

KEYBOARD_BATTERY_VOLTAGE_SUPPORT 166 1

KEYBOARD_FAST_SCAN 124 0

ENCRYPT_DATA* 942 1

MOUSE_EMULATION_MODE 610 1

MFG_TEST_CODE 457 0

MFG_TX_MODES 687 3
46 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
Figure 4-6. Microcontroller Device Architecture

4.3.2.1 Global Configuration

The following is a description of the Global Resources that are configured for the CY7C60123-
PVXC enCoRe II LV microcontroller. Care must be taken when modifying these values as they affect
the User Modules discussed below.

4.3.2.1.1 CPU Clock

This parameter is set to Internal (24 MHz). In order to run the CPU at 12 MHz, CPU Clock/N must to
be set to ‘2’. This operating frequency provides for faster code execution so that when events are
detected the microcontroller can be put back into the sleep state quicker for improved power sav-
ings.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 47

Keyboard
4.3.2.1.2 CPU Clock / N

This parameter is set to 2 to provide a 12 MHz clock.

4.3.2.1.3 Timer Clock

This parameter is set to TCAP.

4.3.2.1.4 Timer Clock /N

This parameter is set to 4.

4.3.2.1.5 Capture Clock

This parameter is set to Low Power (32 kHz).

4.3.2.1.6 Capture Clock /N

This parameter is set to 6.

4.3.2.1.7 Capture Edge

This parameter is set to Latest.

4.3.2.1.8 8 Bit Capture Prescaler

This parameter is set to 1.

4.3.2.1.9 CLKOUT Source

This parameter is set to Internal (24 MHz).

4.3.2.1.10 EFTB

This parameter is set to Enable.

4.3.2.1.11 Crystal OSC

This parameter is set to Disable.

4.3.2.1.12 Crystal OSC Xgm

This parameter is set to 000.

4.3.2.1.13 Low V Detect

This parameter is set to 3.10-3.16 V.

4.3.2.1.14 V Reset

This parameter is set to Disabled.

4.3.2.1.15 Watchdog Enable

This parameter should be set to Enable, but may be set to Disable for debug purposes.

4.3.2.2 SPI Master User Module

The SPI Master User Module is used to communicate with the LP radio. The LP radio supports lead-
ing edge data latching, non-inverted clock, and MSB first transmission as defaults. A clock divider of
6 is chosen which generates an SPI clock of 2 MHz. The interrupt API to this module is not used.
48 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
4.3.2.3 Programmable Interval Timer User Module

This module is used for timing.

4.3.2.4 Flash Security

The keyboard project within PSoC Designer has a file called FlashSecurity.txt. This file specifies
access rules to blocks of Flash ROM. See the documentation at the top of the file for definitions. This
file is shipped with a single change from its default configuration. The blocks starting at address
1F80 hex are changed from W: Full (Write protected) to U: Unprotected. These locations of Flash
are dedicated to save non-volatile configuration values for the protocol code module and non-vola-
tile session key for the encrypt code module.

4.3.3 Model

Figure 4-7. Firmware Architecture Model

The keyboard firmware is partitioned into two logical groups. The Common group is a collection of
code modules that provide the underlying support for the application. This group provides services
such as, radio protocol, radio driver, timing, flash access, and interrupts.

The Application group implements the core functionality and features of RDK wireless keyboard.
This includes power management, encryption, packet formatting and reporting, various test modes,
and battery level sensing. The code modules for each of these groups are described below in further
detail.

All of the following module descriptions have corresponding <module name>.c or <module
name>.asm and <module name>.h source code files. The module API and definitions are exported
in the header file while the module implementation and local definitions are contained in the C/
assembly file.

flash radio driver

protocol

timer

isr

keyboard encryption

battery

mfgtest

tick

GPIO

Common

PSoC Lib

Application
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 49

Keyboard
4.3.4 Common Code
The modules in the common code group are a combination of two sources. The first is PSoC
Designer generated files in the lib directory that have been modified to support the application. The
second group is modules that are generally used by the application.

4.3.4.1 Generated Library Code

There are currently no files, generated by PSoC Designer, that are modified for the use of the appli-
cation.

4.3.4.2 Radio Driver

The radio driver module is a low level module providing basic radio communication and configura-
tion. Its general application is such that it is likely not to be changed by the firmware developer. It
provides an interface for reading/writing radio registers, setting PN codes and initialization of the
radio and transmitting or receiving packets. See the Radio Driver documentation for details.

4.3.4.3 Protocol Module

The protocol module defines and implements the layer used to deliver packets from the device to the
bridge. It manages the binding of devices to a bridge as well as the connection and interference
immunity by channel hopping. This module has a dependency on the radio driver for sending and
receiving formatted packets and the flash module for storing the manufacturing ID of the bridge the
device is bound to.

4.3.4.4 Flash Module

The flash module is a smaller version of the E2PROM module provided in PSoC Designer. It is lim-
ited in functionality and only implements the read/write routines required by the device. Modify the
flashsecurity.txt file so that the block being modified by this module is given read/write privilege, i.e.
unprotected. Currently the two very top most blocks in flash are used by this module. One block is
used for storing the encryption key if encryption is enabled. The other block is used to store the bind
parameters.

4.3.4.5 ISR Module

This module provides an interface to initialize the interrupt.

4.3.4.6 Timer Module

The timer module provides a one-millisecond tick for the system. The tick resolution can be
changed, but is set for one millisecond for the keyboard. This module requires the use of a 12-bit
Programmable Interval Timer user module of the enCoRe II LV. The delay function used for millisec-
ond timing provides at least the delay requested with no more than one additional millisecond of
delay. The millisecond delay function will sleep the PSoC for the duration of the requested delay. The
microprocessor wakes just long enough to update the tick every millisecond and check if the delay
has been met and then returns to sleep state if it has not. See the documentation in the module for
requirements on configuring the enCoRe II LV block.

4.3.5 Application Code
The group of modules that make up the application code is responsible for implementing the key-
board functionality and behavior. Following is a high level description of each module responsibility
and associated algorithms.
50 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
4.3.5.1 Keyboard Module

The keyboard module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the keyboard.

A few types are defined to support the operation of the keyboard. One of these is the packet format
used when sending data to the bridge. This type is defined as TX_PACKET and is structured to sup-
port the different data packet formats as explained in the section Wireless Protocol Data Payload on
page 55.

The function main() is the entry point for the keyboard application. This function is called from the
boot.asm file. The keyboard first initializes all of the application modules and then initializes the pro-
tocol module. There is an order dependency for some of these, so care must be taken in modifying
the keyboard_init() function. For example, other modules depend upon the timer facility running in
order to perform initialization. Once each module has been initialized, then the application checks for
entry to the manufacturing test mode. If the manufacturing test mode is not indicated, then normal
keyboard operation begins.

There are two states for the keyboard operation: the idle state and the active state. The keyboard ini-
tially enters idle state; when there is any keystroke, it enters the active state.

In active state the keyboard is scanned for both the keys and the Bind button. The keystrokes are
collected, formatted and reported to the bridge. After that, the keyboard goes into the idle state.

In idle state the MCU and radio go to sleep to save power, and the keyboard application remains
waiting for input from the keys or Bind button. The timer is turned off to conserve power. This state is
maintained indefinitely until a keystroke or a button press occurs.

The battery level is reported by the keyboard application when it detects a keystroke after it has
been in an idle state for 8 seconds.

In the active state the keyboard attempts to deliver a packet for the amount of time designated in
KEYBOARD_TX_TIMEOUT. The keyboard application is also responsible for detecting the Bind but-
ton press, and then calling the bind function in the protocol module.

The keyboard application sends keyboard reports as frequently as events arrive, but not any faster
than the time defined in the macro KEY_DOWN_DELAY_SAMPLE_PERIOD. Carefully set this time
so that the report rate does not exceed that which the USB bus is capable of handling. Keep in mind
that the report rate varies slightly due to drift of the internal oscillator used to keep track of time.

4.3.5.2 Mfgtest Module

The RDK provides a compile-time option of adding a manufacturing test mode to the keyboard. The
manufacturing test code in this keyboard is compatible with the CY3631 Manufacturing Test Kit
offered by Cypress Semiconductor.

If MFG_TEST_CODE is defined and ENTER_BY_PIN is not defined, holding down the system sleep
key and the Bind button while inserting the batteries into the keyboard will enter the manufacturing
test mode.

If MFG_TEST_CODE and ENTER_BY_PIN are both defined, connecting pins 4 and 5 on the ISP
header with a shunt and then inserting the batteries into the keyboard will enter the manufacturing
test mode.

The only way to exit this mode is to cycle power.

4.3.5.3 Battery Module

The battery monitor circuit is implemented using the Low Voltage Interrupt (LVI) on the LP radio. Fol-
lowing is an explanation of the process to measure the battery voltage.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 51

Keyboard
The process first sets the LVI threshold to 1.8V and then checks for an LVI interrupt. If the interrupt
does not occur then it repeatedly sets the LVI TH and PMU OUTV with the following combination
and checks the status.

It then returns a battery level between 1 and 10: 1 being below 1.8V and 10 being above 2.7 volts.

4.3.5.4 Test Module

This RDK keyboard provides a compile-time option of adding test modes to the keyboard; see sec-
tion KEYBOARD_TEST_MODES on page 53 for enabling this option. The test mode module is
implemented in a way that it can be easily extended to add other test modes. Currently there are
only two test modes supported in the module. When this option is not enabled then all test mode
code is removed from the compilation.

The first test mode is initiated by holding down the left ctrl, left alt, right alt, right ctrl, and F1 keys at
the same time. If PANGRAM_TEST_MODE is defined, the test sends the key up/down scan codes
for the test pangram: ”a quick brown fox jumps over the lazy dog.<carriage return>” . Otherwise the
up/down scan codes are repeatedly sent for the test sequence ‘wirelessusb’ followed by the same
number of backspaces. The test repeats the appropriate sequence until the escape key is pressed.
Once the test has finished execution, the keyboard returns to normal operation.

The repeating ‘x’ test selection is initiated by holding down the left ctrl, left alt, right alt, right ctrl, and
F3 keys at the same time. The test continuously sends the ‘x’ key up/down scan codes. The test
continues until the escape key is pressed. Once the test has finished execution, the keyboard
returns to normal operation.

4.3.5.5 Encrypt Module

This module may be conditionally compiled in to provide encryption/decryption support. Encrypted
data transfers are typically used between RDK keyboard devices and the RDK bridge. Contact
Cypress Applications support for the encryption source code.

4.3.6 Configuration Options
All configuration options for the application can be found in the config.h file. Each item is explained
below and can be changed to values that meet the developer’s requirements.

4.3.6.1 KEYBOARD_KEEP_ALIVE_TIMEOUT

When a key is held down, this configuration value sets the period at which the firmware generates a
KEEP_ALIVE packet since the last keyboard report. The default is 65 milliseconds.

Table 4-3. LVI TH and PMU OUTV Combinations

LVI TH PMU OUTV VOLTAGE IF
INTERRUPT OCCURS

1.8V 2.7V < 1.8V

2.0V 2.7V < 2.0V

2.2V 2.7V < 2.2V

PMU OUTV 2.7V < 2.7V
52 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
4.3.6.2 KEY_DOWN_DELAY_SAMPLE_PERIOD

This configuration value sets the period at which the firmware polls the hardware for keyboard
events to transmit over the radio. This poll period is only active when the keyboard has not entered
sleep because keys are currently being pressed. The default value is 10 milliseconds.

4.3.6.3 KEYBOARD_DEBOUNCE_COUNT

The button debounce logic detects changes in the button state and immediately indicates a change
causing a report to be sent to the radio. The debounce logic then blocks out any further button state
changes for the specified debounce time. This operation is somewhat different from the usual
method of waiting for a button to stabilize during a debounce interval, and then reporting the change
in button state. It is implemented this way to improve button-reporting latency.

This configuration value sets the debounce time for buttons that are pressed. It is measured in units
of the poll rate. For example, if KEYBOARD_DEBOUNCE_COUNT is defined as 2 and
KEY_DOWN_DELAY_SAMPLE_PERIOD is defined as 10, then the button debounce time will be 20
milliseconds. The default setting is ‘2’.

4.3.6.4 KEYBOARD_MULTIMEDIA_SUPPORT

This configuration definition is used to selectively compile support for multimedia (hot) keys. If this
value is defined, then multimedia key support is compiled into the executable image. If it is not
defined, then the multimedia support code is omitted.

4.3.6.5 KEYBOARD_TEST_MODES

This configuration definition is used to selectively compile code for keyboard test modes. If this value
is defined, then test modes are compiled into the executable image. If it is not defined, then the test
mode code is omitted. The test modes are described in section Test Module on page 52.

4.3.6.6 KEYBOARD_TEST_MODE_PERIOD

This configuration value sets the period that the keyboard generates on test key presses. A key
press consists of a scan code as the down key and a NULL as the up key. The default value is 10
ms.

4.3.6.7 PANGRAM_TEST_MODE

This configuration definition is used to selectively compile in the pangram test mode. A pangram is a
sentence that contains all of the letters of the alphabet at least once.

4.3.6.8 KEYBOARD_BATTERY_VOLTAGE_SUPPORT

This configuration definition is used to selectively compile support for battery voltage level reporting.
If this value is defined, then battery voltage level reporting is compiled into the executable image. If it
is not defined, then the battery voltage level reporting code is omitted.

4.3.6.9 LP_RDK_KEYBOARD_MATRIX

This configuration definition is used to selectively compile in the keyboard matrix for the RDK key-
board hardware.

4.3.6.10 KEYBOARD_FAST_SCAN

This configuration definition is used to selectively compile in the Cypress Semiconductor fast scan
algorithm. Fast Scan is used to minimize the time it takes for the CPU to scan the key matrix which in
turn reduces the current consumption.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 53

Keyboard
4.3.6.11 KEYBOARD_TX_TIMEOUT

This configuration value sets the maximum time that the keyboard tries to send a report to the
bridge. The default value is 5000 ms.

4.3.6.12 TIMER_CAL

This configuration definition is used to selectively compile in the one-millisecond timer calibration
routine. The routine is called on power on and during protocol reconnect.

4.3.6.13 ENCRYPT_DATA

This configuration definition is used to selectively compile in data encryption for the keyboard. Con-
tact Cypress Applications support for the encryption source code.

4.3.6.14 MFG_TEST_CODE

This configuration definition is used to selectively compile in the manufacturing test code. The man-
ufacturing test code in this keyboard is compatible with the CY3631 Manufacturing Test Kit offered
by Cypress Semiconductor. See the mfgtest module for a description of how this test mode is exe-
cuted. See the CY3631 Manufacturing Test Kit documentation for a description of the test operation.

4.3.6.15 MFG_ENTER_BY_PIN

This configuration definition is used to select whether the manufacturing test code is executed by
connecting pin 4 and 5 on the ISP (programming) header. When this value is not defined, then the
manufacturing test code may be executed by holding the system sleep key and the Bind button
when the batteries are inserted into the keyboard.

4.3.6.16 MFG_TX_MODES

When the MFG_TEST_CODE is defined, the definition of this name adds in a carrier and random
data TX test option. See the mfgtest module for more information on these TX modes.

4.3.6.17 MOUSE_EMULATION_MODE

This configuration definition is used to selectively compile in the mouse Emulation Mode. The Scroll
Lock key is used to toggle this mode on/off. Once in this mode, the arrow keys are used to move the
mouse. The Delete key is the left mouse button, the End key is the right mouse button, and Page Up
and Page Down emulate the scroll wheel.

4.3.6.18 KEYBOARD_POWER_ON_BIND

This configuration definition is used to selectively compile in the option to enter bind mode on power-
up when the device has not been previously bound to a bridge.

4.3.6.19 PLATFORM_H

This configuration value identifies the header file that has the platform configuration information. The
default value is pdc9265.h, which is identifier for the keyboard board that is shipped with the RDK. It
is anticipated that this macro will change when the code is ported to another platform.

4.3.7 Platform and Architecture Portability
The keyboard firmware was designed to be easily ported from one hardware platform to another
platform with a simple re-mapping of pins on the enCoRe II LV. The file pdc9265.h maintains the pin
mapping definitions that are used throughout the code and is included in about every file by using
the macro PLATFORM_H that is defined in config.h.
54 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
The keyboard scan matrix is defined in kdefs.h and may need to be changed for different keyboards.

Porting the code to another microprocessor architecture requires modification or leverage of the
existing code for processor specific features, along with pin definitions.

4.3.8 Initialization
Initialization of the enCoRe II LV chip is done by code that is generated in boot.asm by the PSoC
designer software. The module boot.asm calls main once the enCoRe II LV has been configured and
initialized.

Main initializes the components of the keyboard along with timer, isr and radio modules. The main
routine then goes into an infinite loop monitoring keyboard activity and sleeping between keystrokes.

4.3.9 Wireless Protocol Data Payload
The keyboard protocol has been optimized to reduce the ON time of the radio and power consump-
tion.

The radio driver offers the ability to send variable length packets, allowing the opportunity to mini-
mize the number of bytes transmitted over the air, in order to extend battery life.

The following transmission packet formats are implemented in this RDK. The report formats show
the application payload and the radio protocol overhead with example packet headers.

4.3.9.1 Keyboard Application Report Formats

The first byte of the data packet payload, byte 2 of the radio packet, is used as a keyboard applica-
tion report header. There are five possible keyboard application reports. The reports are:
■ Standard 101 Keys Report
■ Multimedia Keys Report
■ Power Keys Report
■ Keep Alive Report
■ Battery Voltage Level Report

The first application report byte is Scan Code 1 if the byte is less than 0xFC. Otherwise, the first
application report byte is the Application Report Header (Multimedia, Power, Battery, or Keep Alive).
This also assumes that multimedia and power keys do not use modifier keys and that 0xFF, 0xFE,
0xFD and 0xFC are not valid Standard 101 key scan codes.

Trailing zeros in the reports are also removed to further minimize the number of bytes sent by the
radio.

The LP radio sends the reports with the format shown in Table 4-4.

4.3.9.1.1 Standard 101 Keys Report

If the Application Report Header byte is less than 0xFC then this indicates that this report is a Stan-
dard 101 Keys Report and the first byte is the actual scan code rather than the Report Header. This

Table 4-4. LP Generic Report

Byte 1 2 N

Bits: 7:4 3 2 1 0 7:0 7:0 7:0 7:0

Field: 4 0 Toggle ID 0
Application

Report
Header

Byte N
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 55

Keyboard
is done to optimize the packet size based on the fact that the most common report will have only one
non-zero scan code without a modifier. The full Standard 101 Keys report format is shown in
Table 4-5.

Example: The following reports would be sent if a user presses an ‘a’ on the keyboard. The down
key packet sent from the keyboard to the bridge is shown in Table 4-6.

The bridge would add the trailing zeros, insert the reserved byte, rearrange the modifier and scan
code 1 bytes and remove the packet header to produce the USB report shown in Table 4-7.

The up key packet sent from the keyboard to the bridge (all data bytes are zero) is shown in
Table 4-8.

The bridge would add the trailing zeros, insert the reserved byte, and remove the packet header to
produce the USB report shown in Table 4-9.

Table 4-5. Standard 101 Keys Report Format

Byte Name

2
Scan Code 1

 (< 0xFC)

3 Modifier Keys

4 Scan Code 2

5 Scan Code 3

6 Scan Code 4

7 Scan Code 5

8 Scan Code 6

Table 4-6. Example ‘a’ down key Standard 101 Keys Report

Byte 2
Scan Code 1

0x04

Table 4-7. Example USB report for the ‘a’ down key

Modifier
keys Reserved Scan

Code 1
Scan

Code 2
Scan

Code 3
Scan

Code 4
Scan

Code 5
Scan

Code 6
0x00 0x00 0x04 0x00 0x00 0x00 0x00 0x00

Table 4-8. Example up key Standard 101 Keys Report

Byte 2
Scan Code 1

0x00

Table 4-9. Example USB report for a Standard 101 Key Null Packet Report

Modifier
keys Reserved Scan

Code 1
Scan

Code 2
Scan

Code 3
Scan

Code 4
Scan

Code 5
Scan

Code 6
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
56 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
4.3.9.1.2 Multimedia Keys (Hot keys) Report

An Application Report Header of 0xFF indicates that this report is a Multimedia Keys Report. The
Multimedia Keys report format is shown in Table 4-10.

Example: The following reports would be sent if a user presses ‘Volume Increase’ (Hot Key 8) key on
the keyboard.

The ‘Volume Increase’ down key packet sent from the keyboard to the bridge is shown in Table 4-11.

The up key packet sent from the keyboard to the bridge is shown in Table 4-12.

4.3.9.1.3 Power Keys (Suspend/Sleep) Report

An Application Report Header of 0xFE indicates that this report is a Power Keys Report. The Power
Keys report format is shown in Table 4-13.

Example: The following reports would be sent if a user presses the Suspend/Sleep (Power Key 0)
key on the keyboard.

Table 4-10. Multimedia Keys Report Format

Byte Name

2
Application Report Header

0xFF

3
Hot Key Scan Code

(upper 8 bits)

4
Hot Key Scan Code

(lower 8 bits)

Table 4-11. Example ‘Volume Increase’ down key Multimedia Keys Report

Application Report

Application Report
Header

Hot Key Scan Code
(upper 8 bits)

Hot Key Scan Code
(lower 8 bits)

0xFF 0x00 0xE9

Table 4-12. Example up key Multimedia Keys Report

Application Report
Application Report Header

0xFF

Table 4-13. Power Keys Report Format

Byte Name

2
 Application Report Header

(0xFE)

3 Power Key Scan Code
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 57

Keyboard
The Suspend/Sleep down key packet sent from the keyboard to the bridge is shown in Table 4-14.

The up key packet sent from the keyboard to the bridge is shown in Example Up Key Power Keys
Report.

4.3.9.1.4 Keep Alive Report

An Application Report Header of 0xFC indicates that this report is a Keep Alive Report.

Example of a Keep Alive reports sent from the keyboard to the bridge is shown in Table 4-16.

If the bridge does not receive a Keep Alive packet or an up key within a specified interval
(DOWNKEY_TIME_OUT) while a down key is present, the bridge generates an up key to the com-
puter.

4.3.9.1.5 Battery Voltage Level Report

An Application Report Header of 0xFD indicates that this report is a Battery Voltage Level Report.
The Battery Voltage Level report format is shown in Table 4-17.

The Battery Voltage Level ranges from 1 (low) to 10 (full).

The Battery Voltage Level Report is sent after a keystroke that occurs whenever the keyboard has
been in idle for more than 8 seconds.

Table 4-14. Example Suspend/Sleep Down Key Power Keys Report

Application Report
Application Report

Header Power Key Scan

0xFE 0x02

Table 4-15. Example Up Key Power Keys Report

Application Report
Application Report Header

0xFE

Table 4-16. Example Keep Alive Report (Null Packet Support disabled)

Application Report
Application Report Header

0xFC

Table 4-17. Battery Voltage Level Report Format

Byte Name

2
Application Report Header

0xFD

3 Battery Voltage Level
58 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
Example of a Battery Voltage Level Report with fully charged batteries is shown in Table 4-18.

Example of a Battery Voltage Level Report with low batteries is shown in Table 4-19.

4.3.10 Ghost Key Detection
Ghost keys are possible on the RDK keyboard because it does not use diodes with the keyboard
switches. Ghost keys are caused when three keys are pressed at the same time and two of the keys
are on the same column and two of the keys are on the same row. When scanning the keyboard, it
appears that four keys have been pressed and it is impossible to tell which three of the four keys are
actually valid. The keyboard code detects this condition and does not send a report until one of the
three keys is released.

For example, assume the keys (RowX, ColumnA), (RowX, ColumnB), and (RowY, ColumnA) have
been pressed as shown in Figure 4-8. It appears that the key (RowY, ColumnB) has been pressed
as well when it has not since the other keys electrically connect RowY to ColumnB.

Figure 4-8. Ghost Key Example

4.3.11 Interrupt Usage and Timing
In the RDK keyboard, the following interrupts have been enabled:
■ Row Port interrupt
■ Bind button interrupt

When either of the above interrupts occurs, its ISR sets the flag.

Table 4-18. Example ‘full’ Battery Voltage Level Report

Application Report
Application

Report Header
Battery Voltage Level

0xFD 0x0A

Table 4-19. Example ‘low’ Battery Voltage Level Report

Application Report
Application

Report Header Battery Voltage Level

0xFD 0x01
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 59

Keyboard
The interrupt latency includes two portions. The first portion is the time between the assertion of an
enabled interrupt and the start of its ISR, which can be calculated using the following equation:

Latency1 = Time for current instruction to finish +
Time for M8C to change program counter to interrupt address +
Time for LJMP instruction in interrupt table to execute.

For example, if the 5-cycle JMP instruction is executing when an interrupt becomes active, the total
number of CPU clock cycles before the ISR begins would be as follows:

(1 to 5 cycles for JMP to finish) +

(13 cycles for interrupt routine) +

(7 cycles for LJMP) = 21 to 25 cycles.

In the example above, at 12 MHz, 25 clock cycles take 2.083 µs.

The second portion is the time between the start of the ISR and the set of the flag. For example, the
row port interrupt (caused by pressing any key) takes 19 CPU clock cycles for this portion. There-
fore, the Latency2 equals to 1.583 µs for the 12 MHz CPU.

Consequently, the total latency for a button interrupt is

Latency1 + Latency2 = 3.667 µs

4.3.12 Code Performance Analysis
A key press report is used to analyze the code performance. A typical key press report contains the
following steps:
■ A key press interrupts the MCU. The prior section has calculated that it takes 3.667 µs for MCU to

responds to this Interrupt.
■ MCU exits the sleep state, scans the Bind button and turns on the timer. It takes 40.8 µs.
■ MCU calls function scan_keyboard() to detect which key is pressed. This function consumes 1.15

ms.
■ MCU calls function generate_standard_report () to format the report and send the report to the

bridge. This step takes 2.01 ms, which includes 1.66 ms radio transmission time.

As a result, it takes 3.20 ms for the keyboard to report a key press to the bridge.

4.4 Modifying the Keyboard Matrix or Adding New Keys
The current keyboard matrix with the USB scan codes are shown in Table 4-1 on page 45. Custom-
ers may modify the keyboard matrix or they may add new keys to their keyboard. The following sec-
tions explain the procedure.

4.4.1 Modifying the Keyboard Matrix
In the file kdefs.h, a table called default_keyboard_scan_table matches the keyboard matrix shown
in Table 4-1 on page 45. By modifying this table, the keyboard matrix is automatically modified.

4.4.2 Adding New Keys
Example: The customer wants to add a multimedia key called My Computer, which is located at
Column 15 and Row 6 and has a scan code of 0x0194. The following steps must be performed:
60 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Keyboard
1. Go to file kdefs.h, and search for default_keyboard_scan_table. In the Col 15 (0xF) section, mod-
ify line 7 from {NO_DEVICE, NOKEY} to {DEVICE_2, 0x000E}. The 0x000E is the index into the
device 2 table.

2. Go to the table called device_2_keyboard_scan_table within the same file and add the scan code
of 0x0194 to the end of the table, as shown:
const UINT16 device_2_keyboard_scan_table[] =
{
 0x0192, // Calculator
 0x0223, // WWW Home
 0x00CD, // Play/Pause
 0x0221, // WWW Search
 0x018A, // Mail
 0x00E9, // Volume Up
 0x00E2, // Mute
 0x00B7, // Stop
 0x00EA, // Volume Down
 0x022A, // WWW Favorites
 0x0225, // WWW Forward
 0x0224, // WWW Back
 0x00B6, // Scan Previous Track
 0x00B5, // Scan Next Track
 0x0194, // My Computer
};

3. Build the firmware, the new key My Computer will work.

4.5 Development Environment

4.5.1 Tools
■ See the CY4636 Getting Started Guide for a list of tools required to build and debug the keyboard

application.

Figure 4-9. Figure 20: RDK Keyboard with POD Installed
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 61

Keyboard
4.5.2 Tips and Tricks

4.5.2.1 M8C Sleep

When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead of the
sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to synchroni-
zation issues between the OCD part and the emulator.

4.5.2.2 Watchdog Timer

The watchdog timer is enabled for the RDK operation, but may be disable for debug purposes.

4.5.3 Critical Test Points

Figure 4-10. RDK Keyboard Test Points

CLKOUT

PACTL

MISO

MOSI
nSS

SCK IRQ
62 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

5. Bridge
5.1 Introduction
This section covers the design goals, architecture, firmware source code modules and configuration
options for the WirelessUSB LP bridge. It does not cover the details of the radio subsystem or the
configuration options that go with it.

5.1.1 Design Features
The CY4636 Reference Design Kit uses an enCoRe II controller for the LP RDK bridge (Cypress
part #: CY7C63803-SXC). Contact your local sales representative for more information on the
enCoRe II controller.

The architecture was designed to be modular for extendibility and maintainability. It was also
designed so that it could easily be ported from one hardware platform to another assuming the use
of an enCoRe II microprocessor with USB hardware support. Porting to another microprocessor
requires more work to account for the USB hardware support and other hardware specific changes.

Design efforts have been made to reduce the ON time of the microprocessor and radio to conserve
battery life of attached devices. This includes protocol optimizations along with using sleep features
of the radio and enCoRe II microprocessor.

5.2 Hardware Overview
The WirelessUSB LP HID bridge is provided with the RDK. This bridge may be plugged into the USB
port on a PC to provide the Wireless USB bridge functionality. The bridge firmware runs on an
enCoRe™ II CY7C63803-SXC chip, is written in C and assembly, and runs on the PDC-9263 USB
HID bridge. The rest of this section gives a functional overview of the bridge firmware.

The bridge connects the remote WirelessUSB LP HIDs to a low-speed USB host. This firmware sup-
ports 2-way communication with bridge and HID devices configured as transceivers.

Packets similar to Standard USB HID packets are encapsulated inside WirelessUSB LP packets,
which also contain a packet header and CRC to help the bridge correctly process the USB HID data
packets. Valid packets are then sent via USB to the USB host.

5.2.1 Bridge Photographs
Figure 5-1 shows the top side of the RDK bridge board. The side button on the board is the ‘Bind’
button.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 63

Bridge
Figure 5-1. RDK Bridge Top

Figure 5-2 shows the bottom side of the RDK bridge board.

Figure 5-2. RDK Bridge Bottom

5.2.1.1 In-System Programming

The LP RDK Bridge has the capability of being programmed through the USB connector using a
Cypress USB adapter board PDC-9241 as shown in Figure 5-3.

Figure 5-3. Cypress USB Programming Adapter

Figure 5-4 on page 65 shows the LP RDK bridge connected with an USB adapter board to a PSoC
MiniProg.
64 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
Figure 5-4. RDK Bridge with USB Adapter and PSoC MiniProg

5.2.2 Schematics
The LP RDK bridge schematics and Gerber files are located in the following directory: <installa-
tion directory>\Hardware\bridge. The schematic is in Adobe Acrobat PDF format with the
letters ‘Sch’ in the file name.

5.2.3 LED Usage
Red LED:
■ When the dongle is first plugged in, the red LED turns on. It turns off when the USB enumeration

process completes. Note If the Bind button is pushed when the dongle is first plugged in, the firm-
ware enters MTK test mode and blinks the LED. The LED blinks continuously until the dongle is
removed from the computer.

■ The red LED blinks ON/OFF when the dongle is in Bind Mode. The ON and OFF time is approxi-
mately 320 ms which is the rate at which the dongle changes channels during the Bind process.

■ The red LED also blinks ON/OFF when the PC is suspended. The blinking rate is approximately
1 second which is the frequency of the wake up interrupts.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 65

Bridge
Green LED:
■ The green LED turns ON when the dongle receives data from mouse or keyboard. It remains ON

for 250 ms after the last received Data packet.
■ The green LED turns on and remains on if a key is pressed and held (due to the keyboard’s send-

ing Keep Alive packets).
■ The green LED turns ON and remains ON during Ping Mode (in normal operation, Ping Mode is a

very short period. The user may not notice this period).

The Red and Green LED are blinking alternately when in Manufacturing Test mode.

5.3 Firmware Architecture
There are two architectural views of the bridge. The first is a microcontroller configuration view of
User Modules mapped to digital and analog blocks inside the controller. This architecture and config-
uration is best viewed in the PSoC Designer application when the project is loaded. The second view
is a logical organization of the source code modules that make up the bridge application code and
other support modules.

The next two sections describe both architectures with emphasis on top-level organization and over-
all module operation. More detailed description of variables and functions should be obtained by ref-
erencing the source code.

5.3.1 ROM/RAM Usage
The following table shows the ROM/RAM usage. The top part exhibits the total ROM/RAM usage for
basic functions, which disables all the build options below. The bottom part exhibits the ROM/RAM
usage for individual build options.

*The ENCRYPT_DATA option requires 64 bytes of extra ROM space to store the non-volatile ses-
sion key.

5.3.2 enCoRe II Device Configuration
The enCoRe II is configured using the Device Editor in PSoC Designer. The bridge uses the SPI
Master, USB Device, and the 1 Millisecond Interval Timer enCoRe User Modules. The SPI Master
User Module is used by firmware to communicate with the LP radio. The USB Device User Module
allows the bridge to operate as a low-speed USB device. The 1 Millisecond Interval Timer User Mod-
ule is used for timing. Following is a screen shot of the Device Editor showing the User Module map-
ping. Further description of resources and User Modules follow the diagram.

Table 5-1. ROM/RAM Usage

Total ROM (Bytes) Total RAM (Bytes)

Basic Functions 6522 164

Build Option ROM Usage (Bytes) RAM Usage (Bytes)

ENCRYPT_DATA* 887 29

MFG_TEST_CODE 465 0

MFG_TX_MODES 632 2
66 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
Figure 5-5. Microcontroller Device Architecture

5.3.2.1 Global Configuration

The following is a description of the Global Resources that are configured for the CY7C63803-SXC
enCoRe II microcontroller. Care must be taken when modifying these values as they affect the User
Modules discussed below.

5.3.2.1.1 CPU Clock

This parameter is set to Internal (24 MHz). In order to run the CPU at 12 MHz CPU Clock/N must be
set to 2. This operating frequency provides for faster code execution.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 67

Bridge
5.3.2.1.2 CPU Clock / N

This parameter is set to 2 to provide a 12 MHz clock.

5.3.2.1.3 Timer Clock

This parameter is set to TCAP.

5.3.2.1.4 Timer Clock /N

This parameter is set to 4.

5.3.2.1.5 Capture Clock

This parameter is set to Internal (24MHz).

5.3.2.1.6 Capture Clock /N

This parameter is set to 6.

5.3.2.1.7 Capture Edge

This parameter is set to Latest.

5.3.2.1.8 8 Bit Capture Prescaler

This parameter is set to 1.

5.3.2.1.9 USB Clock

This parameter is set to Internal (24 MHz).

5.3.2.1.10 USB Clock /2

This parameter is set to Enable.

5.3.2.1.11 CLKOUT Source

This parameter is set to Internal (24 MHz).

5.3.2.1.12 Low V Detect

This parameter is set to 4.44-4.53 V.

5.3.2.1.13 V Reset

This parameter is set to 4.4V.

5.3.2.1.14 VReg

This parameter is set to ‘Disable’ here. The VReg is enabled in the application code to implement the
hard reset to the LP radio.

5.3.2.1.15 V Keep-alive

This parameter is set to Disable.

5.3.2.1.16 Watchdog Enable

This parameter should be set to Enable, but may be set to Disable for debug purposes.
68 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
5.3.2.2 SPI Master User Module

The SPI Master User Module is used by firmware to communicate with the LP radio. The interrupt
API to this module is not used.

5.3.2.3 USB Device User Module

The USB Device User Module handles the enumeration and data transfers over USB endpoints.

5.3.2.4 1 Millisecond Interval Timer User Module

The 1 Millisecond Interval Timer User Module is used to determine when a USB suspend has
occurred, LED on/off duration timing, RSSI checking and others.

5.3.2.5 Flash Security

The bridge project within PSoC Designer has a file called FlashSecurity.txt. This file specifies access
rules to blocks of the Flash ROM. Refer to the documentation listed at the top of the file for defini-
tions. This file is shipped with a single change from its default configuration. The block starting at
address 0x1FC0 has been changed from W: Full (Write protected) to U: Unprotected. This location
of Flash has been dedicated to saving non-volatile session key for the encrypt code module.

5.3.3 Model

Figure 5-6. Firmware Architecture Model

The bridge firmware is partitioned into two logical groups. The Common group is a collection of code
modules that provide the underlying support for the application. This group provides services such
as, radio protocol, radio driver, USB, timing, flash access, SPI and interrupts.

radio driver

master
protocol

timer

flash

main

USB

encrypt

mfgtest

mstimer

usb_1

Common

PSoC Lib

Application
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 69

Bridge
The Application group implements the core functionality and features of RDK wireless bridge. This
includes USB HID packet formatting and reporting, encryption, and manufacturing test mode. The
code modules for each of these groups are described below in further detail.

All of the following module descriptions have corresponding <module name>.c and <module
name>.h source code files. The module API and definitions are exported in the header file while the
module implementation and local definitions are contained in the C file.

5.3.4 Common Code
The modules consist of the common code logical grouping.

5.3.4.1 PSoC Generated Library Code

There are currently only three files, generated by PSoC Designer, that are modified for the use of the
application. A minimal amount of code has been added to these modules in user protected areas
that are preserved across code generation.

5.3.4.1.1 USB include (USB_1.inc)

This file includes the additional code for the Battery Level and Link Quality software application in
USB_1_cls_hid.asm.

5.3.4.1.2 USB HID Class Module (USB_1_cls_hid.asm)

The additional user code provides support for the Battery Level and Link Quality software applica-
tion.

5.3.4.1.3 1 Millisecond Interval Timer Interrupt Module (MSTIMER.asm)

The additional user code decrements application countdown timers and checks for USB activity to
detect a USB suspend condition.

5.3.4.2 Flash

The module includes routines to write to the enCoRe II flash to Encryption key.

5.3.4.3 Timer

The module includes busy wait time routines.

5.3.4.4 Radio Driver

The radio driver module is a low level module providing basic radio communication and configura-
tion. Its general application is such that it is likely not to be changed by the firmware developer. It
provides an interface for reading/writing radio registers, setting PN codes and initialization of the
radio and transmitting or receiving packets. See the Radio Driver documentation for details.

5.3.4.5 Master Protocol

The module includes LP RDK master protocol routines to handle ping, button bind, channel agility
and data packets. This module has a dependency on the radio driver for sending and receiving for-
matted packets and the flash module.

5.3.5 Application Code
The group of modules that make up the application code is responsible for implementing the bridge
functionality and behavior.
70 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
5.3.5.1 Bridge Module

The bridge module is the controlling code for the application. It has many responsibilities in imple-
menting various features and functions offered by the bridge. The function main() is the entry point
for the bridge application. This function is called from the boot.asm file. The bridge first initializes all
of the application modules and then initializes the master_protocol module. There is an order
dependency for some of these, so care must be taken in modifying the bridge_init() function. For
example, other modules depend upon the timer facility running in order to perform initialization.
Once each module has been initialized, then the application checks for entry to the manufacturing
test mode. If the manufacturing test mode is not indicated, then normal bridge operation begins.

The bridge continuously checks the USB idle timer, received packet, the Bind button and the USB
suspend.

5.3.5.1.1 Check the USB Idle Timer

The check_usb_idle() function is called within the main() function to properly handle the USB
Set_Idle command. The USB Set_Idle command from the host PC is used to silence the keyboard or
mouse report until a new event occurs or the specified amount of time passes. If the host PC’s
Set_Idle command sets the Idle Duration to ‘0’, the keyboard or mouse endpoint inhibits reporting
forever, only reporting when a change is detected in the report data. This causes the bridge to NAK
any polls on the endpoint while its current report remains unchanged. If the Set_Idle command sets
the Idle Duration to a non-zero number, a single report is generated by the endpoint if the given time
duration elapses with no change in report data (see the HID Specification for more information on
this topic).

The check_usb_idle() function also checks the time out for down key and ‘keep alive’ packet. A ‘keep
alive’ packet is transmitted every 65 ms during the time a key is pressed, so that the bridge can
detect if the RF link is lost, and in that unlikely case, the bridge inserts a ‘key up’ event, to prevent a
‘stuck key’ state being transmitted to the PC. The number of milliseconds before upkey reports are
generated is defined by DOWNKEY_TIME_OUT.

5.3.5.1.2 Check the Received Packet

When the bridge receives a valid packet, it parses the packet. If it is a data packet, the bridge for-
mats and sends a USB packet to the USB host. If it is a connect request with an approved device or
a ping request, the bridge sends a response correspondingly.

5.3.5.1.3 Check the Bind Button

The bridge checks the Bind button frequently. If this button is pressed, the bridge goes into the bind
state.

5.3.5.1.4 Check the USB Suspend

The check_usb_suspend() monitors the USB suspend condition on the USB bus and takes proper
actions to put the system into a low power state when no bus activity is observed for 3 ms.

When suspended, the bridge supports remote wakeup by intermittently turning the radio on when the
sleep timer interrupt occurs, checking for valid data from the HID devices, and then turning the radio
off again if no HID traffic was detected.

5.3.5.2 USB Module

This module parses the radio packets, builds the appropriate keyboard and mouse USB packets and
loads these packets into the endpoints.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 71

Bridge
5.3.5.3 Mfgtest Module

The manufacturing test module may be conditionally compiled in to provide manufacturing test sup-
port. The module configures the radio for reception and then enters a loop waiting for command
packets to be sent from the tester. The test echoes all echo command packets appended with the
number of invalid bits received and all other ‘valid’ command packets (no invalid bits). The manufac-
turing test code can only be exited by cycling power. The manufacturing test code in this bridge is
compatible with the CY3631 Manufacturing Test Kit offered by Cypress Semiconductor.

The manufacturing test mode on the LP RDK bridge can be entered by three different methods
depending on the compile-time configuration.

Method 1: Holding the Bind button during insertion into a USB Host enters the manufacturing test
mode.

Method 2: Forcing an SE1 condition (D+ and D– are both high) on the USB bus and applying power
to the bridge.

Method 3: Grounding P0.4 during insertion into a USB Host enters the manufacturing test mode.

5.3.5.4 Encrypt Module

This module may be conditionally compiled in to provide encryption/decryption support. Encrypted
data transfers are typically used between RDK keyboard devices and the RDK bridge. Contact
Cypress Applications support for the encryption source code.

5.3.6 Configuration Options
All configuration options for the application can be found in the config.h file. Options may be config-
ured by defining/un-defining certain #define statements.

5.3.6.1 MFG_TEST_CODE

This configuration definition is used to selectively compile in the manufacturing test code. The man-
ufacturing test code in this bridge is compatible with the CY3631 Manufacturing Test Kit offered by
Cypress Semiconductor. See the mfgtest module for a description of how this test mode is exe-
cuted. See the CY3631 Manufacturing Test Kit documentation for a description of the test operation.

5.3.6.2 MFG_TX_MODES

When the MFG_TEST_CODE is defined, the definition of this name adds in a carrier and random
data TX test option. See the mfgtest module for more information on these TX modes.

5.3.6.3 MFG_ENTER_BY_PIN

This configuration definition is used to selectively compile in a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by grounding a
specific pin during insertion of the LP RDK bridge into a powered USB port or applying external
power.

5.3.6.4 MFG_ENTER_BY_BUTTON

This configuration definition is used to selectively compile in a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by holding the
Bind button during insertion of the LP RDK bridge into a powered USB port or applying external
power.
72 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
5.3.6.5 MFG_ENTER_BY_USBSE1

This configuration definition is used to selectively compile in a method to enter the manufacturing
test code. When this value is defined, the manufacturing test code may be executed by causing a
USB SE1 condition on the D+ and D- signals during insertion of the LP RDK bridge into a powered
USB port or applying external power.

5.3.6.6 ENCRYPT_DATA

This configuration definition is used to selectively compile in data encryption/decryption. Contact
Cypress Applications support for the encryption source code.

5.3.6.7 GREEN_LED_ON_TIME

This configuration definition defines the number of milliseconds the Green LED stays on after a valid
USB report is loaded in an endpoint.

5.3.6.8 DOWNKEY_TIME_OUT

This configuration definition defines the number of milliseconds before upkey reports are generated
by the bridge in the absence of valid packets from an attached keyboard device.

5.3.7 Platform and Architecture Portability
The bridge firmware was designed to use the hardware features of the enCoRe II such as USB.

Porting the code to another microprocessor architecture may require modification of the existing
code to support the different processor specific features.

5.3.8 Initialization
Initialization of the enCoRe II chip is done by code that is generated in boot.asm by the PSoC
Designer software. The module boot.asm calls main once the enCoRe II has been configured and
initialized.

Main initializes the components of the bridge along with the radio modules. The bridge firmware
enters a loop to receive and handle radio packets and generate USB packets.

5.3.9 Wireless Protocol Data Payload
The RDK HID protocol has been optimized to reduce the ON time of the radio, which equates to
reduced power consumption on the LP devices. Refer to the RDK keyboard and RDK mouse sec-
tions for radio packet format details.

5.3.10 Suspend and Remote Wake-up
In order to meet the USBIF Compliance requirements regarding power consumption during suspend
state, the WirelessUSB LP RDK bridge must reduce the over all power consumption to less than 500
µA if Remote Wakeup is not enabled (Remote Wakeup is the device ability to wake up a suspended
PC with user’s input such as a key press, mouse movement, etc.) Because the WirelessUSB LP
RDK is not configured to wake up the suspended host PC, the entire bridge must go into deep sleep
state to conserve power. Only bus activity from the host PC can bring the bridge back to normal
operation.

If Remote Wakeup is enabled, the bridge may draw up to 2.5 mA in suspend state. This requires that
the radio circuitry be off most of the time. It is necessary to periodically turn the radio on to sense
activity from the WirelessUSB LP mouse or keyboard (and thereby know when to wake the host).
The wake up period is configurable and is set to 1 second (see Register OSC_CR0 setting). Increas-
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 73

Bridge
ing the wakeup interrupt frequency results in a faster response to the user's wakeup events at the
expense of a slightly higher than average sleep current.

5.3.11 Interrupt Usage and Timing
The polling method is used for the Bind button.

5.3.12 Code Performance Analysis
A keyboard report processing is used to analyze the code performance. A typical keyboard report
processing contains the following steps:
■ The bridge receives the keyboard report packet and process the packet. This step takes 108 µs.
■ MCU calls function handle_keyboard_report() to format USB packet and load this packet into the

endpoint buffer. This function consumes 118 µs.

As a result, it takes 226 µs for the bridge to process a keyboard report.

5.4 USB Interface

5.4.1 USB Descriptors
The USB Descriptors can be viewed/edited with the USB Setup Wizard.

Table 5-2. Bridge Average Icc in Suspend State

Parameter Icc Units
bridge Average Suspend Power Consumption - REMOTE
WAKE UP ENABLED 1.44 mA

bridge Average Suspend Power Consumption - REMOTE
WAKE UP DISABLED 0.3 mA
74 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
5.4.1.1 Device/Config Descriptors

Figure 5-7. USB Device/Config Descriptors
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 75

Bridge
5.4.1.2 Keyboard HID Report Descriptor

The keyboard HID report descriptor defines a Boot Protocol keyboard. This enables a LP RDK key-
board with the LP RDK bridge to work on different BIOS versions that do not correctly support the
USB Report Protocol. Only standard 101(104) keys are sent using this format over endpoint 1.

Figure 5-8. Keyboard HID Report Descriptor (Endpoint 1)
76 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
5.4.1.3 Mouse/Keyboard HID Report Descriptor

The mouse/keyboard HID Report Descriptor uses report protocol format with a unique report ID for
each report. Mouse data uses Report ID 1. The mouse report include delta x, delta y, and scroll
wheel data.

Figure 5-9. Mouse HID Report Descriptor (Report ID 1 – Endpoint 2)

Keyboard multimedia keys use Report ID 2.

Figure 5-10. Keyboard’s MM Keys HID Report Descriptor (Report ID 2 – Endpoint 2)
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 77

Bridge
Keyboard power keys use Report ID 3.

Figure 5-11. Keyboard’s Power Keys HID Report Descriptor (Report ID 3 – Endpoint 2)

Report ID 4 is used to send the mouse battery level and link quality report.

Figure 5-12. Mouse’s Battery/Link Quality Report Descriptor (Report ID 4 – Endpoint 2)
78 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
Report ID 5 is used to send the keyboard battery level and link quality report.

Figure 5-13. Keyboard’s Battery/Link Quality Report Descriptor (Report ID 5–Endpoint 2)
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 79

Bridge
5.4.2 Keyboard Report Format
The keyboard standard keys information is sent to the host PC via the data endpoint 1. The key-
board multimedia keys and power keys information is sent to the host PC via the data endpoint 2
using Report ID (the first byte in the report). The mouse uses Report ID 1. The keyboard multimedia
keys use Report ID 2. The keyboard power keys use Report ID 3. The formats of the keyboard report
are shown below:

Figure 5-14. Keyboard Report Format

Figure 5-15. Multimedia and Power Keys Report Format

Right
GUI

Right
Alt

Right
Ctrl

Right
Shift

Left
Alt

Left
GUI

Left
Ctrl

Left
Shift

Reserved

Standard Key 1

Standard Key 2

Standard Key 3

Standard Key 5

Standard Key 4

Standard Key 6

Keyboard Endpoint (EP1)

Multimedia Key

Multimedia Key

Power Key

Power Key

Mouse Endpoint (EP2) Mouse Endpoint (EP2)

Report ID 2 Report ID 3
80 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
5.4.3 Mouse Report Format
The mouse data is sent over the data endpoint 2 using Report ID 1. The format of the mouse report
is shown below:

Figure 5-16. Mouse Report Format

5.4.4 Battery Level and Link Quality Reports
The WirelessUSB LP bridge implements a mechanism to report the radio parameters of attached
HID devices via the USB control endpoint. The code for this functionality can be found in the user
custom code section of the User Module source file usb_1_cls_hid.asm.

The RadioParams HID report is a vendor-defined HID report for communicating several radio
parameters of the WirelessUSB LP HID devices.

The HID Report Page is defined as:

Cypress WirelessUSB HID RadioParams Report Page (0xFF01 – Vendor Defined)

Table 5-3. USB Report Usage IDs

Usage ID Usage Name
0x00 Undefined

0x01 WirelessUSB keyboard

0x 02 WirelessUSB mouse

0x03-0x1F RESERVED

0x 20 Battery Level

0x 21 WirelessUSB Channel

0x 22 WirelessUSB PN Code

0x 23 Corrupt Packets

0x 24 Packets Transferred

Mouse Endpoint (EP2)

X

Y

Unused Middle
Button

Right
Button

Left
Button

Z Wheel

Report ID 1
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 81

Bridge
The RadioParams Report is 8 bytes long and has the 6 data fields listed in Table 5-4.

5.4.4.1 Requesting a New Battery Reading

When the Bridge receives a control endpoint request from the host with the following parameters, it
returns an 8-byte RadioParams report over the control endpoint. An attached LP device should send
an updated battery report whenever a reconnect or a change in the battery level occurs.

Control endpoint request for new battery reading.

5.4.4.2 Obtaining the RadioParams Report

When the bridge receives, from the host, a control endpoint request with the parameters listed on
Table 5-6, it returns an 8-byte RadioParams report over the control endpoint.

Control endpoint request for RadioParams report are listed.

When the bridge receives the Get Report control request code, it returns a RadioParams report and
then resets the Packets Transferred parameter for the specified device to zero.

The Link Quality value is updated whenever the bridge receives a radio packet from the wireless
device.

Battery Level is only updated when the device sends an updated battery level report.

At startup, the Battery Level, Corrupt Packets and Packets Transferred are initialized to zero.

Table 5-4. USB Report Format

Byte Use Range
0 Report ID # 0x04

1 Battery Level 0 – 0x0A

2 Channel # 0 – 0x4D

3 PN Code 0 – 0x30

4-5 Corrupt Packets 0 – 0xFFFF

6-7 Packets Transferred 0 – 0xFFFF

Table 5-5. USB Set Report

Value
bmRequestType 0x21 (To Device, Type = Class, Recipient = Interface)

Request Code 0x09 (Set Report)
wValue 0x0304 (Feature Report, ReportID = 4)

wIndex 0x0000 = Kbd, 0x0001 = mouse

Table 5-6. USB Get Report

Value
bmRequestType 0xA1 (From Device, Type = Class, Recipient = Interface)

Request Code 0x01 (Get Report)
wValue 0x0304 (Feature Report, ReportID = 4)

wIndex 0x0000 = Kbd, 0x0001 = mouse
82 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
5.4.5 Example USB Bus Analyzer (CATC) Traces
Figure 5-17 below shows the USB data transmissions between the bridge and the host PC captured
with the USB CATC Bus Analyzer. In this example, the Right Shift + ‘g’, ‘h’ keys were typed followed
by the ‘Volume Up’, ‘Volume Down’ keys. Note the keyboard regular key reports are sent to the PC
via the endpoint 1 while the Multi Media key reports are sent via the endpoint 2 with Report ID 2.

Figure 5-17. Example keyboard CATC Trace (Standard and MM Keys)

Modifier Byte.
Right Shift Key Down

“g” Key code.
Key Down

“h” Key code.
Key Down

“h” Key Up

“g” Key Up

Keyboard EP (EP1)

Endpoint 2, Report ID 2 =
Multimedia keys

“Volume + ”
Key Down

“Volume + ”
Key Up
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 83

Bridge
Figure 5-18 below shows the mouse data being transferred between the dongle and the host PC.
The first part of the trace shows the mouse data when the left button was pressed and held down as
the mouse was moved, and then the left button was released. The second part of the trace shows
the Z-wheel being moved down and up.

Figure 5-18. Example Mouse CATC Trace

Mouse Endpoint
(EP2)

Report ID 1 No Button Click

X Delta Y Delta

Left Button Click

Z Wheel Down

Z Wheel Up
84 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Bridge
Figure 5-19 shows the Sleep key being pressed. Note the power key reports are sent via endpoint 2
and Report ID 3.

Figure 5-19. Example Keyboard CATC Trace (Power Key)

Figure 5-20 below shows the Get_Report requests used to retrieve the keyboard and mouse battery
level and link quality information. Note the data transfers occurred on the control endpoint, endpoint
0, and Report ID were used to differentiate keyboard and mouse requests.

Figure 5-20. CATC Trace of Battery and Link Quality Data Requests

Key Up

Key CodeReport ID 3 =
Power Key

Keyboard’s Battery and Link
Quality Request Using Report ID 5

Mouse’s Battery and Link Quality
Request Using Report ID 4
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 85

Bridge
5.5 Development and Debug Environment
Information on the tools required and tips on using those tools are presented in this section.

5.5.1 Tools
See the CY4636 Getting Started Guide for a list of tools required to build and debug the keyboard
application.

Figure 5-21. RDK Bridge with POD Foot

Figure 5-22. RDK Bridge with POD Installed

5.5.2 Tips and Tricks
M8C Sleep
■ When using the ICE-Cube, define the macro PSOC_ICE so that busy waits are used instead of

the sleep instruction. Using the sleep instruction with the ICE-Cube generates errors due to syn-
chronization issues between the OCD part and the emulator.

Watchdog Timer
The watchdog timer is enabled for the RDK operation, but may be disable for debug purposes.

POD Power
On the Project Settings->Debugger window select ‘Pod uses external power only’ when connected
to USB. The other option is to disconnect the VBUS signal on the PCB.
86 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

6. Manufacturing Test Support, MTK
6.1 Introduction
The Manufacturing Test Kit (MTK) provides production line test support in addition to providing FCC
certification tests. This section provides a description of the Tester serial protocol, the RF protocol
between the MTK Tester and the MTK Device-Under-Test (DUT) and a brief description of porting
the MTK DUT code to different platforms.

Refer to the Manufacturing Test Kit User’s Guide for instructions on operating the MTK Tester.

6.2 MTK Block Diagram

Figure 6-1. Block Diagram

6.3 MTK Serial Protocol
The MTK Tester implements a text-based protocol over an RS232 serial port to provide both a con-
figurable standard test and script-based testing.

All commands listed under the standard test set a configuration value that is stored in non-volatile
storage. All remaining serial commands only affect the current setting and are not stored (reset
across power cycles). Table 6-1 on page 88 describes the serial port protocol in the PC to tester
direction.

 PC (Optional after
initial MTK Test
configuration)

MTK Tester MTK DUT

Serial Cable
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 87

Manufacturing Test Support, MTK
Every serial command issued by the PC is returned with a response once the command is complete.
The valid responses are shown in Table 6-2.

All serial commands must end in either a carriage return or carriage return and line feed. All
responses end with a carriage return and linefeed.

The serial port settings for the MTK Tester are shown in Table 6-3 on page 89. Neither software nor
hardware handshake is supported.

Table 6-1. Serial Command Protocol

Command Command Description
ST START STANDARD TEST

St
an

da
rd

 T
es

t P
ar

am
et

er
s

CL <power level> CONFIGURE POWER LEVEL (0-7)
PN <PN code> CONFIGURE PN CODE INDEX (0-7)

TT <tx error threshold> CONFIGURE TX ERROR THRESHOLD (0-65535) units of bit
errors

RT <rx error threshold> CONFIGURE RX ERROR THRESHOLD (0-65535) units of bit
errors

C1 <channel> CONFIGURE CHANNEL (0-77)
C2 <channel> CONFIGURE SECOND CHANNEL (0-77)
C3 <channel> CONFIGURE THIRD CHANNEL (0-77)
CB <# of bytes> CONFIGURE NUMBER OF BYTES/PACKET PAYLOAD (0-15)
CP <# of packets> CONFIGURE NUMBER OF PACKETS (0-255)

TC <time> TRANSMIT CARRIER (0-255)
TR <time> TRANSMIT RANDOM (0-255)

SC <channel> <PN code>
<power level> <correlator threshold>

SET COMMUNICATION (0-77) (0-7) (0-7) (0-16)
Note: The device transmits on <channel> + 2.
For example, 2=2.402 GHz

PD <packet data> SET PACKET DATA (ASCII representation of hexadecimal num-
bers without any prefix, i.e. 5A 34 CB)

CA <crystal adjust> SET CRYSTAL FREQUENCY ADJUST VALUE (0-63)
RE RESTORE NVRAM DEFAULTS
CS SHOW CURRENT CONFIGURATION
HE SHOW HELP MENU

Table 6-2. Serial Response Protocol

REPORT REPORT DESCRIPTION
OK COMMAND COMPLETE
CE COMMAND ERROR
TE <transmit error count> TX ERROR COUNT (units of bit errors)
RE <receive error count> RX ERROR COUNT (units of bit errors)
88 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Manufacturing Test Support, MTK
6.4 MTK RF Protocol
Command packets received by the Device-Under-Test (DUT) are ‘echoed’ with the addition of an
added byte that contains the count of invalid bits for the received packet. Extra bytes in packets that
are larger than what the DUT can support are ignored. Commands other than ‘Echo Packet’ are only
‘echoed’ and executed if the number of invalid bits are zero.

The RF command packets exchanged between the MTK Tester and the MTK DUT contain two
bytes. The first byte contains the command type and the subsequent byte(s) contain the parameter
values as shown in Table 6-4.

The ‘Transmit carrier’ and ‘Transmit random pattern’ test mode can be conditionally compiled with
the define MFG_TX_MODES.

6.5 MTK DUT source Code Porting
The RDK keyboard, bridge and mouse use the C source files mfgtest.c and mfgtest.h. Select the
appropriate source files for the target platform as a starting point. Make code changes as necessary
to work in your environment.

6.6 Accessing MTK in the DUT
Mouse: Apply a jumper across the ISSP header pins 4/5 and install the batteries.

Keyboard: Same as mouse.

Bridge: Press the button while plugging it into the USB port. The LEDs should blink.

Table 6-3. Serial Port Parameter Settings

Serial Port Parameter Setting
Baud Rate 9600
Parity None
Number of Data Bits 8
Number of Stop Bits 1

Table 6-4. RF Commands

Description Command Parameter
Echo Packet 0x00 N/A
Set New Configuration 0x61 Channel (0-77)

PN code index (0-7)
PA (0-7)
Correlator Threshold (0-16)

Transmit carrier 0x66 Time in seconds (0-255)
Note: A zero runs the test continuously
until a reset.

Transmit random pattern 0xA3 Time in seconds (0-255)
Note: A zero runs the test continuously
until a reset.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 89

Manufacturing Test Support, MTK
90 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

7. Regulatory Testing Results
7.1 Introduction
The LP mouse was tested in a certified lab and meets FCC part 15, Subpart B, Title 47 CFR -Unin-
tentional radiators, FCC Part 15 Subpart C -Intentional radiators, and Industry Canada RSS-Gen.
The following table outlines the results of the testing.

Testing for the keyboard and bridge is expected in the near future.

Table 7-1. EMC Test Results

Test Parameter FCC Limit Measured Value Margin
Spurious Radiated Emissions 54 dBuV/m(Av) 50.5 dBuV/m -3.5 dB
Spurious Conducted Emis-
sions

 -20dBc -31.9 dBc 11.9 dB

Power Spectral Density 8 cBm/3 kHz -9.0 dBm/3 kHz 17.0 dB
Output Power 30 dBm 2.3 mW 26.0 dB
Occupied Bandwidth >500 kHz 960 kHz 460 kHz
Conducted Band Edge Com-
pliance

 20 dB below fundamen-
tal

-27.0 dBc 7.0 dB

Radiated Band Edge Compli-
ance at 2482 Mhz

54 dBuV/m(Av) 51.7 dBuV/m -2.3 dB

Industry Canada limit
Receiver Radiated Emissions 46 dBuV/m(QP) 35.4 dBuV/m -10.6 dB
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 91

Regulatory Testing Results
92 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

8. Power Considerations
8.1 RDK Keyboard

8.1.1 Usage Model
The following usage model are considered for the RDK keyboard.
■ 4 hours per day of 6 keystrokes per second, 5 days per week
■ 24 hours per day with no activity, 2 days per week
■ A packet is transmitted on both key-up and key-down events
■ A ‘keep alive’ is transmitted for each key-down event

8.1.2 Current Measurements
Per the keyboard usage model, there are 6 keystrokes per second in the active state, and every key-
stroke includes one ‘down key’ packet, one ‘up key’ packet and one ‘keep alive’ packet. The test
mode firmware only sends out one ‘down key’ packet and one ‘up key’ packet for each keystroke.
Therefore, we need to set the typing rate to 8 keystrokes per second in test mode in order to con-
sume the equivalent power of the usage model. It is accomplished by changing the
KEYBOARD_TEST_MODE_PERIOD define in the config.h file to 50.

The following is the results of RDK keyboard current measurement:

Table 8-1. Keyboard Current Measurement

Operation Mode
Icc (mA) with

Supply Voltage =
2.5 V

Icc (mA) with
Supply Voltage =

2.8 V

Average Icc
(mA)

Active state - Place the keyboard in test mode
"the quick brown fox …" and set the typing rate
to 8 keystrokes per second.

0.96 0.83 0.90

Idle state - A keyboard is in its normal power on
state and connected to the bridge with no keys
pressed.

0.04 0.04 0.04

Not connected state - Type the keyboard. 20.3 16.9 18.6

Not connected state - No typing. Transition to idle
state.

Transition to idle
state.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 93

Power Considerations
8.1.3 Battery Life Calculations
The following table shows the times spent in each state by the RDK keyboard usage model. By sub-
stituting the current measurements in section Current Measurements on page 95, the overall aver-
age Icc for RDK keyboard can be calculated.

The RDK keyboard uses two AA cells and enables the PMU function. Therefore, it is able to access
approximately 2850-mAh battery capacity, which yields a battery life estimate of 829 days or 27
months.

8.2 RDK Mouse

8.2.1 Usage Model
The following usage model is considered for the RDK mouse.
■ 1 hour per day with the 3030/3040 sensor in ‘active’ state
■ 2 hours per day with the 3030/3040 sensor in ‘rest1’ state
■ 2 hours per day with the 3030/3040 sensor in ‘rest2’ state
■ 19 hours per day with the 3030/3040 sensor in ‘rest3’ state
■ 5 days per week as above, 2 days per week 24 hours in ‘rest3’ state

Table 8-2. RDK keyboard Power Consumption

State Hours/
day Days Average Icc (mA) Charge (mAh)

Week day
Active 4 5 0.90 18

Idle 20 5 0.041 4.1

Weekend Idle 24 2 0.041 1.97

Charge Per Week (mAh) 24.07
Overall Average Icc (mA) 0.143
94 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Power Considerations
8.2.2 Current Measurements
The following is the results of RDK mouse current measurement:

8.2.3 Battery Life Calculations
The following table shows the times spent in each state by the RDK mouse usage model. By substi-
tuting the current measurements in section Current Measurements on page 95, the overall average
Icc for RDK mouse can be calculated.

The RDK mouse uses two AA cells and enables the PMU function. Therefore, it is able to access
approximately 2850-mAh battery capacity, which yields a battery life estimate of 338 days or 11
months.

Table 8-3. Mouse Current Measurement

Operation State
Icc (mA) with

Supply Voltage =
2.5 V

Icc (mA) with
Supply Voltage =

2.8 V

Average Icc
(mA)

Active state - Move the mouse in a circle on white
paper. 7.7 6.4 7.1

Rest1 state - Allow the mouse to sit idle for 1 sec-
ond after being in the active state. 1.5 1.2 1.4

Rest2 state - Allow the mouse to sit idle for 10
seconds after being in the active state. 0.15 0.12 0.14

Rest3 state - Allow the mouse to sit idle for 10
minutes after being in the active state. 0.07 0.05 0.06

Not connected state - Move the mouse. 23.2 19.1 21.2

Not connected state - No moving. Transition to rest3
state.

Transition to rest3
state.

Table 8-4. RDK Mouse Power Consumption

State Hrs/day Days Average Icc (mA) Charge (mAh)

Week day

Active 1 5 7.05 35.25
Rest1 2 5 1.37 13.7
Rest2 2 5 0.15 1.5
Rest3 19 5 0.06 5.7

Weekend Rest3 24 2 0.06 2.88

Charge Per Week (mAh) 59.0
Overall Average Icc (mA) 0.351
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 95

Power Considerations
96 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

9. Software Users Guide
9.1 Introduction
This section describes the software source code modules used in order to communicate with the
WirelessUSB LP bridge HID device to obtain the current radio parameters for the attached Wire-
lessUSB devices. It does not cover the details of the Microsoft Foundation Class (MFC) Library or
the HID Library that contains standard system-supplied routines that user-mode applications use to
communicate with USB devices that comply with the USB HID Standard. Refer to the Microsoft
Visual C++ documentation for more on MFC and HID Class concepts, in addition to the Device Class
Definition for Human Interface Devices (HID) defined by the USB Implementers Forum, Inc. (http://
www.usb.org/developers/hidpage).

9.2 Software Code Modules
There are three main modules contained in the WirelessUSB Software:
■ USB HID API module – generic class interface to HID Class compliant devices
■ System Tray module – generic class to create and control an icon on the system tray
■ WirelessUSB System Tray Application module – main system tray application module

The following sections describe the software module contents.

9.2.1 USB HID API module
The USB HID API module defines two classes, CHidDevice and CHidManager. The CHidDevice
class is the primary interface to a HID device, while the CHidManager class keeps track of the arrival
and removal of HID devices, along with notification to the application of such events. The building
blocks for the USB HID API module was derived from the HCLIENT sample code provided in the
Windows DDK. This module was designed to provide a generic interface to any HID Class compliant
device and is not expected to require any modification, however all source code is provided for refer-
ence.
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 97

http://www.usb.org/developers/hidpage
http://www.usb.org/developers/hidpage

Software Users Guide
9.2.1.1 CHidDevice Class Methods

Table 9-1. CHidDeviceClass Methods

Method Type Description
OpenHidDevice() Public This method sets appropriate access rights, attempts to open a han-

dle to the HID device, obtains the top collection data, and makes a
call to setup input, output, and feature data buffers.

CloseHidDevice() Public This method closes the HID device handle, un-registers the HID
device notification, and frees pre-parsed data and data/report buffers.

RegisterHidDevice() Public This method registers the HID device handle for event notification
IsOpen() Public This method is used to report if a valid handle is open to the HID

device.
IsOpenForRead() Public This method is used to report if the handle open to the HID device

allows for read access.
IsOpenForWrite() Public This method is used to report if the handle open to the HID device

allows for write access
IsOpenOverlapped() Public This method is used to report if the handle open to the HID device

allows for overlapped I/O.
IsOpenExclusive() Public This method is used to report if the handle open to the HID device is

setup for exclusive access.
GetHandle() Public This method returns the handle to the HID device.
Read() Public This method reads an input report from the HID device, performs a

validity check, and unpacks the report data.
Write() Public This method is used for every report ID, pack a report buffer and write

the report data to the HID device.
GetFeature() Public This method obtains the feature report from each report ID exposed

by the HID device.
SetFeature() Public This method sends a feature report for each report ID exposed by the

HID device.
UnpackReport() Public This method scans through the HID report and if it can, fills in any

data in the structures.
PackReport() Public This method packages the HID report based on the data in the struc-

tures.
GetManufacturerString() Public This method obtains the USB manufacturer string from the HID

device.
GetProductString() Public This method obtains the USB product string from the HID device.
GetSerialNumberString() Public This method obtains the USB serial number string from the HID

device.
RegGetValue() Public This method attempts to get a registry value from the registry key

where the device-specific configuration information for the HID device
is stored.

RegSetValue() Public This method attempts to set a registry value in the registry key where
the device-specific configuration information for the HID device is
stored.

SetupHidDevice() Protected This method sets up HID Input, Output and Feature data buffers used
to simplify communication with HID devices.

ValidateHidDevice() Protected This method simply returns TRUE, it is expected that this routine will
be overridden by the application where the actual validation will be
handled.
98 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Software Users Guide
9.2.1.2 CHidManager Class Methods

Table 9-2. CHidManagerClass Methods

Method Type Description
Create() Public This method creates an invisible window and uses the returned win-

dow handle to register for HID device notification events, then it cre-
ates a list of existing HID devices that are maintained by the HID
manager.

IsHidDevicePresent() Public This method attempts to open a handle to the HID device to deter-
mine if it is present (or not) and returns the result

RefreshHidDevices() Public This method validates that all HID devices in the list are still present,
removes those from the list that are currently not present, scans the
list of all existing HID devices present, and then attempts to add the
existing HID devices to the list

GetDeviceCount() Public This method returns the number of connected devices
GetFirstHidDevice() Public This method returns a pointer to the first HID device in the list
GetNextHidDevice() Public This method returns a pointer to the next HID device in the list
GetCurrentHidDevice() Public This method returns a pointer to the current HID device in the list
GetHidDeviceWithPath() Public This method scans the current list of HID devices and returns a

pointer to the HID device that matches the device path provided
GetHidDevice
WithHandle()

Public This method scans the current list of HID devices and returns a
pointer to the HID device that matches the device handle provided

HidDeviceAlreadyExists() Public This method determines if the HID device already exists in the list
AddHidDevice() Public This method checks if the provided HID device already exists, and if

not, adds the new HID device to the end of the list, increments the
HID device counter, and call the HID callback function to indicate a
new HID device was added

RemoveHidDevice() Public This method closes the outstanding handle to the HID device, calls
HID callback function to indicate HID device is being removed,
removes the HID device from the list, and deletes the HID device

RemoveAllHidDevices() Public This method scans though all HID devices in the list and removes
them

CreateUniqueDeviceID() Public This method attempts to create and maintain a unique ID for the
associated HID device

FreeUniqueDeviceID() Public This method frees the specified unique ID
NewHidDevice() Protected This method allocates memory for a new HID device structure
DeleteHidDevice() Protected This method deletes previously allocated memory for an existing HID

device structure
RegisterHidNotification() Protected This method registers for notification of events for all HID devices and

calls HID callback function to indicate registration was completed
HidDeviceArrival() Protected This method makes sure the HID device does not already exist in the

list, and then creates a new HID device, opens a handle to the
device, adds the new HID device to the list, and registers event notifi-
cation for this new HID device

HidDeviceQuery
Removal()

Protected This method readies the HID device for removal by making sure the
handle is closed

HidDeviceRemoval() Protected This method removes the HID device
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 99

Software Users Guide
9.2.2 System Tray Module
The System Tray module defines the CCySysTray class which provides the interface to the system
tray for the application. This module is not expected to require any modification; however, all source
code is provided for reference.

9.2.2.1 CCySysTray Class Methods

Table 9-3. CCySysTray Methods

Method Type Description
Create() Public This method creates an invisible window and sets up the system tray

icon (if needed)
SetIcon() Public This method sets (or replaces) the icon displayed on the system tray
RemoveIcon() Public This method removes the icon from the system tray
SetToolTip() Public This method sets the tool tip to be displayed on the system tray
SetMenuItem() Public This method sets the default menu item executed when the icon is

double-clicked on the system tray
IsHidden() Public This method is used to determine if the system tray icon is hidden
ShowBalloonTip() Public This method displays a balloon style tip message (only supported on

W2K or higher)
OnTrayNotification() Public This method processes events that occur to the icon in the system

tray
OnTaskbarCreated() Protected This method is called when the system tray is being restarted (for

example, if Explorer crashes)
WindowProc() Protected This method overrides the default WindowProc to call OnTrayNotifi-

cation for messages targeting the system tray icon or OnTaskbarCre-
ated if the system tray is being restarted
100 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Software Users Guide
9.2.3 WirelessUSB System Tray Application Module
The WirelessUSB System Tray module is the main system tray application. This module places the
icon on the system tray bar, manages the HID devices, displays pop up messages, and controls the
WirelessUSB Status Property Sheet. Additionally, via command-line parameters, this module can
enable and disable the system tray application from running at startup.

9.2.3.1 CWirelessUSBTrayApp Class Methods

The CWirelessUSBTrayApp class performs application initialization and removal, in addition it
parses command-line parameters used to enable or disable the system tray application from being
run at startup.

Table 9-4. CWirelessUSBTrayApp Methods

Method Type Description
InitInstance() Public This method performs basic initialization and checks for any com-

mand-line parameters: if command-line parameters are found, it
takes the appropriate action and ends the application; if no com-
mand-line parameters are found then it checks to make sure the
application is not currently running and, if not, then proceeds to run
the system tray application

ExitInstance() Public This method performs some standard cleanup before the application
ends

RegisterAutoLoader() Protected This method registers the application (itself) to always be run at star-
tup and optionally launches itself as well

UnregisterAudoLoader() Protected This method un-registers the application (itself) to prevent running at
startup and optionally ends itself from running

AutoLoadExe() Protected This method launches the specified EXE application
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 101

Software Users Guide
9.2.3.2 CMainFrame Class Methods

The CMainFrame class is the Visual C++ generated file that is a derived frame-window class for the
system tray application's main frame window. This class has been modified to also perform the timer
based polling of the WirelessUSB LP bridge HID device to obtain the radio parameters and display
any appropriate pop up messages. Additionally, this class also processes the command message to
create the WirelessUSB Status Property Sheet.

Table 9-5. CMainFrame Methods

Method Type Description
OnCreate() Public This method is called when a new window is created for this frame; it

sets up the HID Notification callback, device status property sheet,
initializes the HID manager, creates the system tray icon, sets up the
menu and tool tips, if any HID devices are present then displays the
icon on the system tray, and makes a call to start the timer

HIDNotification() Public This method processes notifications of when an HID device is added
or removed from the list; it adds or removes property pages to the
wireless status page and adds or removes the icon from the system
tray when the first or last HID device is added or removed

OnStartTimer() Public This method starts the timer based on the hard-coded poll timer (cur-
rently set at once every 5 seconds)

OnStopTimer() Public This method stops the timer
OnTimer() Public This method is the timer routine that is called when the timer expires,

it loops through all the HID devices in the list and updates their status
values and then restarts the timer; also it occasionally requests an
update in the battery level, currently set at once every hour

OnDestroy() Public This method is called when the frame window is destroyed; it stops
the timer, removes the property sheet (if displayed), and removes the
icon from the system tray

OnAppWireless
USBStatus()

Public This method displays the wireless status page, if it is not already dis-
played
102 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Software Users Guide
9.2.3.3 CWirelessUSBStatusPropertyPage Class Methods

The CWirelessUSBStatusPropertyPage class is the Visual C++ generated file that implements the
WirelessUSB Device Status Property Page, a unique property page is created for each WirelessUSB
device enumerated.

9.2.3.4 CWirelessUSBStatusPropertySheet Class Methods

The CWirelessUSBStatusPropertySheet class is the Visual C++ generated file that implements the
WirelessUSB Status Property Sheet, which generates a unique WirelessUSB Device Status Prop-
erty Page for each WirelessUSB device enumerated.

Table 9-6. CWirelessUSBStatusPropertyPage Methods

Method Type Description
OnInitDialog() Public This method initializes the wireless status page, reads the current

value of the Disable Warning Message check box from the registry,
and makes a call to start the timer

OnDestroy() Public This method removes the wireless status page and stops the timer
OnStartTimer() Public This method starts the timer for the wireless status page based on the

hard-coded poll timer (currently set at once ever 500 ms)
OnStopTimer() Public This method stops the timer for the wireless status page
CommaStr() Public This method takes a numeric value and returns a CString representa-

tion of the number with commas added
OnTimer() Public This method updates the HID device values displayed on the status

page and then restarts the timer; also it occasionally requests an
update in the battery level, currently set at once every 5 seconds
while the status page is displayed

OnBnClickedWireless
USBDisableWarning
Message()

Public This method is called when the Disable Warning Messages check box
is changed; base on the check box value it either disables or enables
battery and signal strength warning messages for the specific HID
device; the updated value is stored in the device-specific configura-
tion information for the HID device

Table 9-7. CWirelessUSBStatusPropertySheet Methods

Method Type Description
OnInitDialog() Public This method initializes the wireless status property sheet and adds a

property page for each HID device in the list
OnBnClickedClose() Public This method ends the dialog box if the user selects the Close button
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 103

Software Users Guide
9.2.3.5 CHidTrayDevice Class Methods

The CHidTrayDevice class is derived from the CHidDevice class and is the class used to interface
with WirelessUSB devices.

9.2.3.6 CHidTrayManager Class Methods

The CHidTrayManager class is derived from the CHidManager class and is used to manage Wire-
lessUSB devices.

9.3 Development Environment
The following tools are required to build and develop the Wireless USB Software application.
■ Microsoft Visual C++ .NET
■ Windows Driver Development Kit (DDK)

A Microsoft Windows based PC is used for tool execution.

The Microsoft Visual C++ .NET solution file can be found at the following location:

.\WirelessUSBSysTray\WirelessUSBTray.sln

Table 9-8. CHidTrayDevice Methods

Method Type Description
RequestNewUsageValues() Public This method sets up and issues a Set Feature request to the HID

device, which now simply requests the wireless device to provide
an update of its battery level the next time it communicates with the
USB bridge

UpdateUsageValues() Public This method retrieves the latest usage values from the USB
bridge, which includes wireless channel, wireless PN code, last
reported battery level, and signal strength

UpdateDeviceInfo() Public This method makes a call to update the HID device usage values
and displays a warning message (if enabled)

GetUsageIDValue() Public This method extracts the value of the provided Usage ID from the
feature data

VerifyHidDevice() Public This method is called to verify that the HID device is one that
should be added to the list; right now this is done by making sure
the usage page reported is WIRELESSUSB_USAGEPAGE and
the usage reported is either
WIRELESSUSB_USAGE_KEYBOARD or
WIRELESSUSB_USAGE_MOUSE

Table 9-9. CHidTrayManager Methods

Method Type Description
NewHidDevice() Protected This method creates a new HID device, initializes it, and adds it to the

list of existing HID devices
DeleteHidDevice() Protected This method removes the HID device from the list and deletes the

HID device
104 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Appendix A. References
CY4636 Getting Started

PSoC Designer version 4.3 documentation

CY3631 Manufacturing Test Kit

Device Class Definition for Human Interface Devices (HID) (http://www.usb.org/developers/hidpage)

Avago ADNS-3040 Low Power Optical mouse Sensor Data Sheet

CYRF6936 WirelessUSB™ LP 2.4 GHz Radio SoC Data Sheet
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 105

http://www.usb.org/developers/hidpage

106 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Index
A
application code

mouse 32
AutoACK 12
automatic acknowledgment 12

B
back channel support 19
battery and link quality data requests 85
battery level reading 82
battery level report 81
bind and reconnect timing 17
bind button

mouse 24
bind request packet

HID 15
bind response packet

bridge 16
bind timing diagram 18
block diagram

mouse hardware 25
bridge

1 millisecond interval timer user module 69
application code 70
bind response packet 16
common code 70
configuration options 72
connect response packet 16
data packet 17
design features 63
enCoRe II device configuration 66
encrypt module 72
firmware architecture 66
firmware architecture model 69
flash security 69
global configuration 67
hardware overview 63
initialization 73
in-system programming 64
interrupt usage and timing 74
introduction 63
Keyboard HID report descriptor 76
LED usage 65
mfgtest module 72
microcontroller device architecture 67
mouse/keyboard HID report descriptor 77
ping mode 13

ping packet 17
platform and architecture portability 73
RDK bridge board 64
schematics 65
SPI master user module 69
suspend and remote wake-up 73
USB descriptors 74
USB device user module 69
USB device/config descriptors 75
USB interface 74
USB module 71
wireless protocol data payload 73

bridge module 71

C
CATC trace 83
channel selection algorithm 13
chip error correction 12
codes

PN codes 11
pseudo-noise 11

common code
bridge 70

configuration options
mouse 35

connect request
HID 16

connect response packet
bridge 16

D
data packet

bridge 17
HID 17

definitions of acronyms 9
design features

mouse 23
development and debug environment 86
device-under-test (DUT) 89

E
EMC test results 91
enCoRe III LV device configuration 26
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 107

Index
encryption 20
encryption and power consumption 21
encryption key management 22
encryption key request packet 21

F
firmware architecture

keyboard 45
mouse 26

H
hardware considerations

mouse 26
hardware overview

mouse 23
HID

bind request packet 15
connect request 16
data packet 17

I
idle mode

HID 13

K
keyboard

adding new keys 60
application code 50
battery compartment 43
battery module 51
bind button 44
code performance analysis 60
common code 50
configuration options 52
critical test points 62
design features 41
enCoRe II LV device configuration 46
firmware architecture 45
firmware architecture model 49
flash module 50
flash security 49
generated library code 50
ghost key detection 59
global configuration 47
hardware considerations 45
hardware overview 41
initialization 55
interrupt usage and timing 59
introduction 41
ISR module 50
keyboard module 51
mfgtest module 51
microcontroller device architecture 47

modifying the keyboard matrix 60
platform and architecture portability 54
programmable interval timer user module 49
protocol module 50
radio and PSoC board 43
radio driver 50
ROM/RAM usage 46
schematics 44
SPI master user module 48
test module 52
timer module 50
wireless protocol data payload 55

keyboard application report formats 55
keyboard battery level 79
keyboard CATC trace 85
keyboard matrix 45
keyboard power keys 78
keyboard report format 80

L
link quality report 81

M
manufacturing ID 12
manufacturing test kit (MTK) 87
mouse

application code 32
battery module 33
buttons module 34
code performance analysis 38
common code 29
configuration options 35
debounce module 30
development environment 39
firmware architecture model 29
flash module 30
generated library code 29
global configuration 27
global resources 28
hardware block diagram 25
interrupt usage and timing 38
ISR module 31
mfgtest module 34
microcontroller device architecture 27
optical module 33
overview 23
poll module 31
port module 31
protocol module 30
radio driver 30
schematics 25
SPI module 30
testmode module 33
timer module 31
wheel module 34

mouse battery level 78
mouse CATC trace 84
108 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

Index
mouse firmware
initialization 37
platform and architecture portability 36

mouse module 32
mouse report format 81
MTK block diagram 87
MTK serial protocol 87
multimedia keys 80

N
network ID parameters 12

O
overview

mouse 23
WirelessUSB 2-way HID protocol overview 11
WirelessUSB LP KBM RDK 9

P
packet structures 15
ping mode

bridge 13
ping packet

bridge 17
power considerations

RDK keyboard 93
RDK mouse 94

protocol modes 13
pseudo-noise codes 11

R
radio channel management 11
radio driver

keyboard 50
RadioParams report 82
RDK bridge with USB adapter and PSoC

MiniProg 65
RDK keyboard assembly 42
RDK mouse assembly 23
reconnect mode

HID 13
report ID 1 77
report ID 2 77
report ID 3 78
report ID 4 78
report ID 5 79
RF commands 89
ROM/RAM usage

mouse 26

S
schematics

mouse 25
serial command protocol 88
serial response protocol 88
signature byte 20
software source code

development environment 104
system tray module 100
USB HID API module 97
WirelessUSB system tray module 101

U
USB report usage IDs 81

W
WirelessUSB 2-way HID protocol overview 11
CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007 109

Index
110 CY4636 Reference Design Kit Guide, Version 1.1 January 22, 2007

	CY4636 Reference Design Kit Guide
	1. Introduction
	1.1 Scope
	1.2 Overview
	1.3 Definitions

	2. WirelessUSB 2-Way HID Protocol Overview
	2.1 Radio Channel Management
	2.2 Pseudo-Noise Codes
	2.3 Chip Error Correction
	2.4 Automatic Acknowledgment
	2.5 Network ID
	2.6 Manufacturing ID
	2.7 Channel Selection Algorithm
	2.8 Protocol Modes
	2.8.1 Ping Mode (Bridge Only)
	2.8.2 Idle Mode (HID only)
	2.8.3 Reconnect Mode (HID only)
	2.8.4 Bind Mode
	2.8.4.1 HID
	2.8.4.2 Bridge

	2.8.5 Data Mode
	2.8.5.1 HID
	2.8.5.2 Bridge

	2.9 Packet Structures
	2.9.1 Bind Request Packet (HID)
	2.9.2 Bind Response Packet (Bridge)
	2.9.3 Connect Request (HID)
	2.9.4 Connect Response Packet (Bridge)
	2.9.5 Ping Packet (Bridge)
	2.9.6 Data Packet (Bridge and HID)

	2.10 Bind and Reconnect Timing
	2.11 Back Channel Support for NumLk/ScrLk/Caps Lock
	2.12 Signature Byte
	2.13 Encryption
	2.13.1 Key Management Over WirelessUSB
	2.13.2 Encryption and Power Consumption Trade Off

	3. Mouse
	3.1 Introduction
	3.1.1 Overview
	3.1.2 Design Features

	3.2 Hardware Overview
	3.2.1 RDK Mouse Assembly
	3.2.2 Hardware Block Diagram
	3.2.3 Schematics
	3.2.4 Hardware Considerations

	3.3 Firmware Architecture
	3.3.1 ROM/RAM Usage
	3.3.2 enCoRe™ III LV Device Configuration
	3.3.2.1 Global Configuration
	3.3.2.1.1 Power Setting / System Clock Frequency
	3.3.2.1.2 CPU Clock
	3.3.2.1.3 Sleep Timer
	3.3.2.1.4 VC1 - VC3
	3.3.2.1.5 Other Global Resources

	3.3.2.2 SPI Master User Module
	3.3.2.3 PWM User Module
	3.3.2.4 ADC User Module
	3.3.2.5 Flash Security

	3.3.3 Model
	3.3.4 Common Code
	3.3.4.1 Generated Library Code
	3.3.4.1.1 GPIO Interrupt Module
	3.3.4.1.2 Timer Interrupt Module

	3.3.4.2 Debounce Module
	3.3.4.3 SPI Module
	3.3.4.4 Radio Driver
	3.3.4.5 Protocol Module
	3.3.4.6 Flash Module
	3.3.4.7 Port Module
	3.3.4.8 Poll Module
	3.3.4.9 Timer Module
	3.3.4.10 ISR Module

	3.3.5 Application Code
	3.3.5.1 Mouse Module
	3.3.5.2 Optical Module
	3.3.5.3 Battery Module
	3.3.5.4 Testmode Module
	3.3.5.5 Buttons Module
	3.3.5.6 Mfgtest Module
	3.3.5.7 Wheel Module

	3.3.6 Configuration Options
	3.3.6.1 MOUSE_REPORT_IN_MS
	3.3.6.2 MOUSE_ACTIVE_MS
	3.3.6.3 MOUSE_DISCONNECTED_POLL_MS
	3.3.6.4 MOUSE_TX_TIMEOUT_MS
	3.3.6.5 PLATFORM_H
	3.3.6.6 MOUSE_800_NOT_400_CPI
	3.3.6.7 MOUSE_BATTERY_STATUS
	3.3.6.8 MOUSE_TEST_MODE
	3.3.6.9 MFG_TEST_CODE
	3.3.6.10 MFG_TX_MODES
	3.3.6.11 DEVICE_TYPE
	3.3.6.12 APP_TX_PACKET_SIZE
	3.3.6.13 APP_RX_PACKET_SIZE

	3.3.7 Platform and Architecture Portability
	3.3.8 Initialization
	3.3.9 Wireless Protocol Data Payload
	3.3.9.1 Packet Format 1
	3.3.9.2 Packet Format 2
	3.3.9.3 Packet Format 3

	3.3.10 Interrupt Usage and Timing
	3.3.11 Code Performance Analysis

	3.4 Development Environment
	3.4.1 Tips and Tricks
	3.4.1.1 M8C Sleep
	3.4.1.2 Watchdog Timer

	3.4.2 Critical Test Points

	4. Keyboard
	4.1 Introduction
	4.1.1 Design Features

	4.2 Hardware Overview
	4.2.1 RDK Keyboard Assembly
	4.2.2 Schematic
	4.2.3 Keyboard Matrix
	4.2.4 Hardware Considerations

	4.3 Firmware Architecture
	4.3.1 ROM/RAM Usage
	4.3.2 enCoRe II LV Device Configuration
	4.3.2.1 Global Configuration
	4.3.2.1.1 CPU Clock
	4.3.2.1.2 CPU Clock / N
	4.3.2.1.3 Timer Clock
	4.3.2.1.4 Timer Clock /N
	4.3.2.1.5 Capture Clock
	4.3.2.1.6 Capture Clock /N
	4.3.2.1.7 Capture Edge
	4.3.2.1.8 8 Bit Capture Prescaler
	4.3.2.1.9 CLKOUT Source
	4.3.2.1.10 EFTB
	4.3.2.1.11 Crystal OSC
	4.3.2.1.12 Crystal OSC Xgm
	4.3.2.1.13 Low V Detect
	4.3.2.1.14 V Reset
	4.3.2.1.15 Watchdog Enable

	4.3.2.2 SPI Master User Module
	4.3.2.3 Programmable Interval Timer User Module
	4.3.2.4 Flash Security

	4.3.3 Model
	4.3.4 Common Code
	4.3.4.1 Generated Library Code
	4.3.4.2 Radio Driver
	4.3.4.3 Protocol Module
	4.3.4.4 Flash Module
	4.3.4.5 ISR Module
	4.3.4.6 Timer Module

	4.3.5 Application Code
	4.3.5.1 Keyboard Module
	4.3.5.2 Mfgtest Module
	4.3.5.3 Battery Module
	4.3.5.4 Test Module
	4.3.5.5 Encrypt Module

	4.3.6 Configuration Options
	4.3.6.1 KEYBOARD_KEEP_ALIVE_TIMEOUT
	4.3.6.2 KEY_DOWN_DELAY_SAMPLE_PERIOD
	4.3.6.3 KEYBOARD_DEBOUNCE_COUNT
	4.3.6.4 KEYBOARD_MULTIMEDIA_SUPPORT
	4.3.6.5 KEYBOARD_TEST_MODES
	4.3.6.6 KEYBOARD_TEST_MODE_PERIOD
	4.3.6.7 PANGRAM_TEST_MODE
	4.3.6.8 KEYBOARD_BATTERY_VOLTAGE_SUPPORT
	4.3.6.9 LP_RDK_KEYBOARD_MATRIX
	4.3.6.10 KEYBOARD_FAST_SCAN
	4.3.6.11 KEYBOARD_TX_TIMEOUT
	4.3.6.12 TIMER_CAL
	4.3.6.13 ENCRYPT_DATA
	4.3.6.14 MFG_TEST_CODE
	4.3.6.15 MFG_ENTER_BY_PIN
	4.3.6.16 MFG_TX_MODES
	4.3.6.17 MOUSE_EMULATION_MODE
	4.3.6.18 KEYBOARD_POWER_ON_BIND
	4.3.6.19 PLATFORM_H

	4.3.7 Platform and Architecture Portability
	4.3.8 Initialization
	4.3.9 Wireless Protocol Data Payload
	4.3.9.1 Keyboard Application Report Formats
	4.3.9.1.1 Standard 101 Keys Report
	4.3.9.1.2 Multimedia Keys (Hot keys) Report
	4.3.9.1.3 Power Keys (Suspend/Sleep) Report
	4.3.9.1.4 Keep Alive Report
	4.3.9.1.5 Battery Voltage Level Report

	4.3.10 Ghost Key Detection
	4.3.11 Interrupt Usage and Timing
	4.3.12 Code Performance Analysis

	4.4 Modifying the Keyboard Matrix or Adding New Keys
	4.4.1 Modifying the Keyboard Matrix
	4.4.2 Adding New Keys

	4.5 Development Environment
	4.5.1 Tools
	4.5.2 Tips and Tricks
	4.5.2.1 M8C Sleep
	4.5.2.2 Watchdog Timer

	4.5.3 Critical Test Points

	5. Bridge
	5.1 Introduction
	5.1.1 Design Features

	5.2 Hardware Overview
	5.2.1 Bridge Photographs
	5.2.1.1 In-System Programming

	5.2.2 Schematics
	5.2.3 LED Usage

	5.3 Firmware Architecture
	5.3.1 ROM/RAM Usage
	5.3.2 enCoRe II Device Configuration
	5.3.2.1 Global Configuration
	5.3.2.1.1 CPU Clock
	5.3.2.1.2 CPU Clock / N
	5.3.2.1.3 Timer Clock
	5.3.2.1.4 Timer Clock /N
	5.3.2.1.5 Capture Clock
	5.3.2.1.6 Capture Clock /N
	5.3.2.1.7 Capture Edge
	5.3.2.1.8 8 Bit Capture Prescaler
	5.3.2.1.9 USB Clock
	5.3.2.1.10 USB Clock /2
	5.3.2.1.11 CLKOUT Source
	5.3.2.1.12 Low V Detect
	5.3.2.1.13 V Reset
	5.3.2.1.14 VReg
	5.3.2.1.15 V Keep-alive
	5.3.2.1.16 Watchdog Enable

	5.3.2.2 SPI Master User Module
	5.3.2.3 USB Device User Module
	5.3.2.4 1 Millisecond Interval Timer User Module
	5.3.2.5 Flash Security

	5.3.3 Model
	5.3.4 Common Code
	5.3.4.1 PSoC Generated Library Code
	5.3.4.1.1 USB include (USB_1.inc)
	5.3.4.1.2 USB HID Class Module (USB_1_cls_hid.asm)
	5.3.4.1.3 1 Millisecond Interval Timer Interrupt Module (MSTIMER.asm)

	5.3.4.2 Flash
	5.3.4.3 Timer
	5.3.4.4 Radio Driver
	5.3.4.5 Master Protocol

	5.3.5 Application Code
	5.3.5.1 Bridge Module
	5.3.5.1.1 Check the USB Idle Timer
	5.3.5.1.2 Check the Received Packet
	5.3.5.1.3 Check the Bind Button
	5.3.5.1.4 Check the USB Suspend

	5.3.5.2 USB Module
	5.3.5.3 Mfgtest Module
	5.3.5.4 Encrypt Module

	5.3.6 Configuration Options
	5.3.6.1 MFG_TEST_CODE
	5.3.6.2 MFG_TX_MODES
	5.3.6.3 MFG_ENTER_BY_PIN
	5.3.6.4 MFG_ENTER_BY_BUTTON
	5.3.6.5 MFG_ENTER_BY_USBSE1
	5.3.6.6 ENCRYPT_DATA
	5.3.6.7 GREEN_LED_ON_TIME
	5.3.6.8 DOWNKEY_TIME_OUT

	5.3.7 Platform and Architecture Portability
	5.3.8 Initialization
	5.3.9 Wireless Protocol Data Payload
	5.3.10 Suspend and Remote Wake-up
	5.3.11 Interrupt Usage and Timing
	5.3.12 Code Performance Analysis

	5.4 USB Interface
	5.4.1 USB Descriptors
	5.4.1.1 Device/Config Descriptors
	5.4.1.2 Keyboard HID Report Descriptor
	5.4.1.3 Mouse/Keyboard HID Report Descriptor

	5.4.2 Keyboard Report Format
	5.4.3 Mouse Report Format
	5.4.4 Battery Level and Link Quality Reports
	5.4.4.1 Requesting a New Battery Reading
	5.4.4.2 Obtaining the RadioParams Report

	5.4.5 Example USB Bus Analyzer (CATC) Traces

	5.5 Development and Debug Environment
	5.5.1 Tools
	5.5.2 Tips and Tricks

	6. Manufacturing Test Support, MTK
	6.1 Introduction
	6.2 MTK Block Diagram
	6.3 MTK Serial Protocol
	6.4 MTK RF Protocol
	6.5 MTK DUT source Code Porting
	6.6 Accessing MTK in the DUT

	7. Regulatory Testing Results
	7.1 Introduction

	8. Power Considerations
	8.1 RDK Keyboard
	8.1.1 Usage Model
	8.1.2 Current Measurements
	8.1.3 Battery Life Calculations

	8.2 RDK Mouse
	8.2.1 Usage Model
	8.2.2 Current Measurements
	8.2.3 Battery Life Calculations

	9. Software Users Guide
	9.1 Introduction
	9.2 Software Code Modules
	9.2.1 USB HID API module
	9.2.1.1 CHidDevice Class Methods
	9.2.1.2 CHidManager Class Methods

	9.2.2 System Tray Module
	9.2.2.1 CCySysTray Class Methods

	9.2.3 WirelessUSB System Tray Application Module
	9.2.3.1 CWirelessUSBTrayApp Class Methods
	9.2.3.2 CMainFrame Class Methods
	9.2.3.3 CWirelessUSBStatusPropertyPage Class Methods
	9.2.3.4 CWirelessUSBStatusPropertySheet Class Methods
	9.2.3.5 CHidTrayDevice Class Methods
	9.2.3.6 CHidTrayManager Class Methods

	9.3 Development Environment

	Appendix A. References
	Index

