

TSC2111EVM and TSC2111EVM-PDK

This user's guide describes the characteristics, operation, and use of the TSC2111EVM, both by itself and as part of the TSC2111EVM-PDK. This evaluation module (EVM) is a touch screen controller evaluation module, with auxiliary inputs and battery and temperature measurement capabilities, and also a complete stereo audio codec evaluation module, with several audio inputs and outputs, side tone, key click, and effects capabilities. A complete circuit description, schematic diagram and bill of materials are also included.

The following related documents are available through the Texas Instruments web site at www.ti.com .

EVM-Compatible Device Data Sheets				
Device	Literature Number			
TSC2111	<u>SLAS495</u>			
TAS1020B	<u>SLES025</u>			
REG1117-5	SBVS001			
TPS767D301/318	SLVS209			
SN74LVC125A	SCAS290			
SN74LVC1G125	SCES223			
SN74LVC1G07	SCES296			

Contents

1	EVM Overview	3
2	Getting Started	3
3	Program Description	8
4	Other Board Level Connections	23
5	Physical Description	27
	List of Figures	
1	Connecting the TSC2111EVM Board to Top of USBMODEVM Board	6
2	TSC2111 EVM-PDK Software – Human Interface Tab	7
3	Human Interface Screen (Dot Mode)	8
4	Human Interface Screen (Line Mode)	9
5	Data Acquisition Screen	10
6	Human Interface Screen With Enabled Buffer Function	11
7	Data Acquisition Screen, Reading Content Box	12
8	Configuration Screen	13
9	Configuration Screen With External Reference Selection	14
10	Audio 1 Screen Default Configuration	16
11	Audio 2 Screen at Default	17
12	Bass Boost Filter Screen Default Configuration	
13	Audio Effect Screen with Bad Data	

Speedy33 is a trademark of Hyperception, Inc. Microsoft Windows is a trademark of Microsoft Corporation.

14	Component Layout	29
15	Top PCB Layer	30
16	Power/Ground Plane 1	
17	Power/Ground Plane 2	32
18	Bottom PCB Layer	33
19	Bottom Silkscreen and Solder Mask	34
20	TSC2111EVM/TLV320AIC29EVM Schematic, Page 1	35
21	TSC2111EVM/TLV320AIC29EVM Schematic, Page 2	36
22	USB Board Schematic, Page 1	37
23	USB Board Schematic, Page 2	38
	List of Tables	
1	TSC2111EVM Board Default Configuration Settings	. 4
2	USBMODEVM Board Default Configuration Settings	. 5
3	Analog Interface Pinout	23
4	Analog Connectors	24
5	Digital Interface Pinout	24
6	Power Supply Pin Out	25
7	TSC2111EVM Bill of Materials	27

1 EVM Overview

1.1 Features

- Full-featured evaluation board to evaluate/test the TSC2111 functions and features
- Modular design for use with a variety of DSP and microcontroller interface boards

The TSC2111EVM-PDK is a complete evaluation kit, which includes a TSC2111EVM board, a universal serial bus (USB)-based motherboard, and the evaluation software for use with a personal computer running Microsoft Windows™ operating systems (Win2000 or XP).

1.2 Introduction

The TSC2111 is an advanced analog interface circuit. It contains a complete 12-bit A/D resistive touch screen converter, including driver and control circuits to measure touch pressure. The TSC2111 communicates with a host processor through a standard SPI serial interface. The TSC2111 offers two auxiliary analog inputs and one input optimized for battery voltage measurement capable of reading battery voltages up to 6 V, while operating with only a 2.7-V supply. It also has an on-chip temperature sensor capable of 1°C resolution. In addition, a mono-input/stereo-output audio codec is included in the TSC2111, and audio data is communicated to the device over an I²S bus. For more detail about the device, refer to the TSC2111 data sheet.

The TSC2111EVM uses Texas Instruments' modular EVM form factor, allowing direct evaluation of the TSC2111 performance and operating characteristics, and easing software development and system prototyping. This EVM is compatible with the Texas Instruments 5-6K DSP Interface Board (<u>SLAU104</u>) from Texas Instruments and additional third party boards such as the HPA449 demonstration board from SoftBaugh, Inc. and the Speedy33[™] from Hyperception, Inc.

The TSC2111EVM-PDK is a complete evaluation/demonstration kit, which includes the above stated TSC2111 EVM and a USB-based motherboard called the USB-MODEVM Interface Board. Also, included with TSC2111EVM-PDK is the evaluation software for use with a personal computer running Microsoft Windows operating systems.

2 Getting Started

This chapter guides you through unpacking your EVM and setting it up so you can begin working with it immediately.

2.1 Unpacking the EVM or EVM-PDK

When unpacking the TSC2111EVM or EVM-PDK, check the material in the box. The EVM kit includes the following:

- TSC2111EVM board, PWB 6478196
- USBMODEVM board, PWM 6463995 (for TSC2111EVM-PDK only)
- CD-ROM, 6481572

If any of these components is missing, contact Texas Instruments for a replacement.

2.2 Default Configuration

The TSC2111EVM or EVM-PDK features a few simple means of configuring its operation. The default settings of the EVM board are shown in Table 1, and the default settings of the USBMODEVM board are shown in Table 2. When you unpack your TSC2111EVM-PDK, ensure that both boards have been initially configured as listed in the two tables.

Table 1. TSC2111EVM Board Default Configuration Settings

Board Identifier		Default Settings	
SW1	Headset (SPK1/SPK2) Output	Mode Selection	Capless mode
JMP1	AGND and DGND connection	Installed: Connect AGND to DGND	Installed
		Removed: Disconnect AGND to DGND	
JMP2	FW Boot source selection	Installed: boot from daughtercard EEPROM	Installed
		Removed: boot from motherboard EEPROM	
JMP3	AUX2 resistance measuremen	t ⁽¹⁾	Removed
JMP4	AUX1 resistance measuremen	t ⁽¹⁾	Removed
JMP5	+1.8VD to TSC2111 DVDD pir	n connection (2)	Installed
JMP6	+3.9VA to TSC2111 BVDD pin	connection ⁽²⁾	Installed
JMP7	+3.3VA to TSC2111 DRVDD p	in connection ⁽²⁾	Installed
JMP8	+3.3VA to TSC2111 AVDD1 pi	Installed	
JMP9	+3.3VA to TSC2111 AVDD2 pin connection ⁽²⁾		Installed
JMP10	IOVDD power selection	Connect 1 ~ 2: IOVDD = +5VD	Connect 3 ~ 4
		Connect 3 ~ 4: IOVDD = +3.3VD	
		Connect 5 ~ 6: IOVDD = +1.8VD	
JMP11	Reset connection	Installed: RESET from J4-GPIO2 and GPIO4	Removed
		Removed: RESET from J4-GPIO2	
JMP12	IOVDD to TSC2111 IOVDD pir	n connection [2]	Installed
JMP13	MIC BIAS source selection	Connect 1 ~ 2: from +3.3 VA	Connect 2 ~ 3
		Connect 2 ~ 3: from TSC2111 MICBIAS_HND pin	
JMP14	VGND mode Selection	Connect 1 ~ 2: TSC2111 VGND pin as VGND	Connect 1 ~ 2
		Connect 2 ~ 3: TSC2111 VGND pin as CP_OUT-	
JMP15	Differential MICIN selection	Removed: Single-ended MINCIN only	Removed
		Connect 1 ~ 3: MICIN_HND and AUX2 diff	
		Connect 3 ~ 5: MICIN_HND and AUX1 diff	
		Connect 2 ~ 4: MICIN_HED and AUX2 diff	
		Connect 4 ~ 6: MICIN_HED and AUX1 diff	

⁽¹⁾ Refer to the note on the TSC2111 EVM schematic for the details of these jumpers.

⁽²⁾ JMP5, JMP6, JMP7, JMP8, JMP9, and JMP12 are installed by default. These jumpers can be replaced by current meters for evaluating or testing the corresponding power consumption.

Table 2. USBMODEVM Board Default Configuration Settings

Board Identifier		Description	Default Settings
SW1	Onboard power supply enable	SW1-1: +1.8VD Enable	On: Enabled
		SW1-2: +3.3VD Enable	On: Enabled
SW2	On/Off board control selection	SW2-1: Onboard EEPROM address bit A0	On: A0=0
		SW2-2: Onboard EEPROM address bit A1	Off: A1=1
		SW2-3: Onboard EEPROM address bit A2	On: A2=0
		SW2-4: Onboard I2S	On: Onboard
		SW2-5: Onboard MCLK	On: Onboard
		SW2-6: Onboard SPI	On: Onboard
		SW2-7: Onboard RESET	On: Onboard
		SW2-8: External MCLK from J10 (EXT MCK)	Off: Not EXT
JMP1	+5VA and +5VD connection	Installed: Connect +5VA to +5VD	Installed
		Removed: Disconnect +5VA to +5VD	
JMP2	AGND and DGND connection	Installed: Connect AGND to DGND	Removed
		Removed: Disconnect AGND to DGND	
JMP3	JMP3 Connect I2C SDA pull-up	to IOVDD	Removed
JMP4	JMP4 Connect I2C SCL pull-up	to IOVDD	Removed
JMP5	SPI /SS select	Connect 1 ~ 2: /SS from CNTL	Connect 2 ~ 3 (FSX)
		Connect 2 ~ 3: /SS from FSX	
JMP6	Board power selection	Connect 1 ~ 2: +5VD from USB	Connect 1 ~ 2
		Connect 2 ~ 3: +5VD from U2	(USB)
JMP7	IOVDD power selection	Connect 1 ~ 2: IOVDD +5VD	Connect 3 ~ 4
		Connect 3 ~ 4: IOVDD = +3.3VD	(+3.3VD)
		Connect 5 ~ 6: IOVDD = +1.8VD	
JMP8	JMP8 TAS1020B P1.3 GPIO con	nnection	Removed
JMP9	JMP9 TAS1020B P1.2 GPIO connection		Removed
JMP10	JMP10 TAS1020B P1.1 GPIO connection		Removed
JMP11	JMP11 TAS1020B P1.0 GPIO connection		Removed
JMP12	JMP12 TAS1020B P3.5 GPIO connection		Removed
JMP13	JMP13 TAS1020B P3.4 GPIO connection		Removed
JMP14	JMP14 TAS1020B P3.3 GPIO co	JMP14 TAS1020B P3.3 GPIO connection	

2.3 Connection

The TSC2111 EVM-PDK allows direct evaluation of the TSC2111 device with a personal computer. The TSC2111EVM board, as the daughtercard, is installed on the top of the USBMODEVM motherboard, as shown in Figure 1.

Use a USB cable to connect the PC to the EVM system through the J7 USB connector on the USBMODEVM card.

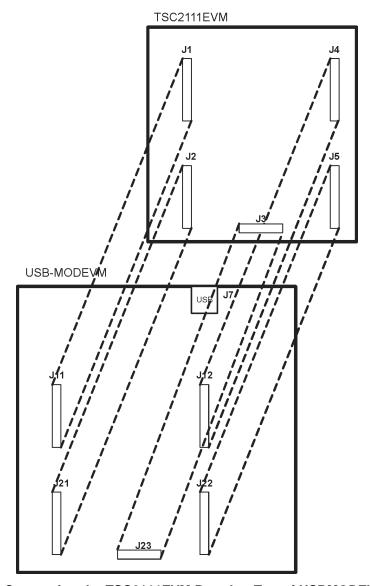


Figure 1. Connecting the TSC2111EVM Board to Top of USBMODEVM Board

2.4 Quick Start

After the TSC2111EVM-PDK has been unpacked, and you have verified that both the daughter board (TSC2111EVM) and the motherboard (USBMODEVM) had been configured as shown in Table 1 and Table 2, and connected as shown in Figure 1, install the software from the included CD-ROM.

Run the Setup program on the supplied CD-ROM to install the TSC2111EVM software on your PC. Follow the instructions provided by the installer. When the installation is complete, connect a USB cable from the PC to J7 on the motherboard. When the TSC2111EVM-PDK is connected to the PC for the first time, the user may see a message that a Human Interface/Audio Device has been connected. Once this connection has been made, launch the TSC2111EVM software on the PC. The software should automatically find the TSC2111EVM. If the board is found, the screen shown in Figure 2 appears.

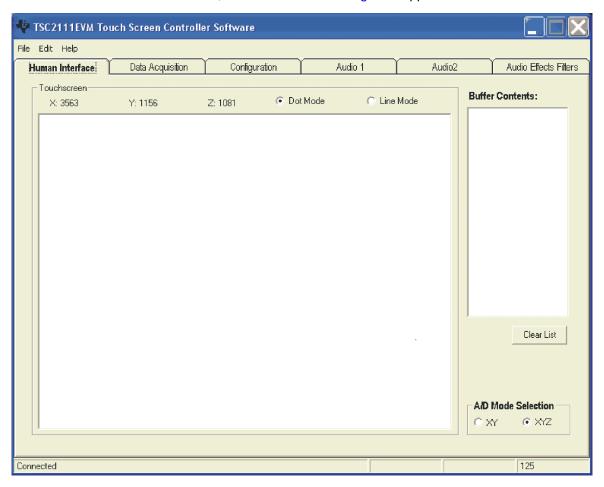


Figure 2. TSC2111 EVM-PDK Software – Human Interface Tab

To use the touch screen features, a 4-wire resistive touch screen can be connected to J1A or J6 on the TSC2111EVM daughter board. Note the correct X+(J1A-2), X-(J1A-4), Y+(J1A-6) and Y-(J1A-8) locations when connecting.

With the firmware/software default configuration, the TSC2111 audio output OUT8 is powered up, and the side tone and the key click functions are activated. To verify the functionality of the EVM system, a speaker (8-ohms or above) can be connected to J13 (the loudspeaker connection terminal or OUT8) on the TSC2111EVM daughter-card. A 'ding' sound should be heard when the USB cable from the PC is plugged into the motherboard (J7). Additional dings are heard when launching the software. Sounds picked up by the onboard microphone (MK1) on the daughter board should be able be audible through the speaker.

3 Program Description

After installing the software for the TSC2111EVM as previously described, the user can begin to evaluate the functions of the TSC2111 using the evaluation-software graphic user interface (GUI).

The program's interface is a simple, six-tab interface. Clicking on a tab takes you to the functions associated with that tab. The program begins on the Human Interface screen (the default) as shown in Figure 2.

3.1 Human Interface Screen

The Human Interface screen displays the activity on the touch screen connected to the TSC2111EVM.

The status bar at the bottom of the screen is divided into four sections showing the communication status between the PC and the EVM-PDK. Starting from the left, the first section shows the status of the connection. If a communication error occurs, an error message appears here; otherwise, it displays *Connected*, as shown in the above Figure 2. The final section, on the right side of the status bar, shows the number of readings per second being taken from the touch screen.

The touch screen box on this screen is updated when a touch is detected on the touch screen. As the touch screen is drawn on, the motion on the touch screen is translated into pixels on the screen. The software takes X and Y, or X, Y, and Z readings, which are shown numerically above this box. Even though TSC2111 has five different touch-screen scan modes, this EVM allows only two selections at this tab, either X and Y, or X, Y, and Z. Default is the X, Y, and Z mode. In X and Y mode, the pixel size is fixed. In the X, Y, and Z mode, as the touch pressure is increased, the pixel size increases. A lighter touch results in smaller pixel sizes. Refer to Figure 3.

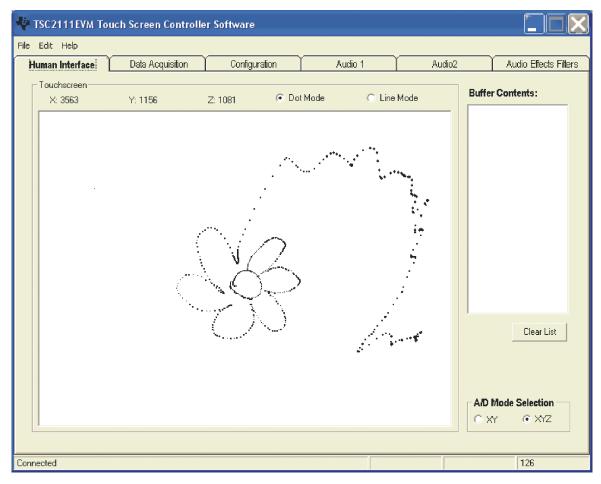


Figure 3. Human Interface Screen (Dot Mode)

The X and Y, or X, Y, and Z mode is selected by clicking on the option at the A/D Mode Selection Box. The touch action is shown on the screen in dot mode, as shown in Figure 3, or solid line mode as shown in Figure 4. The dot line mode is selected by the corresponding option above the drawing screen.

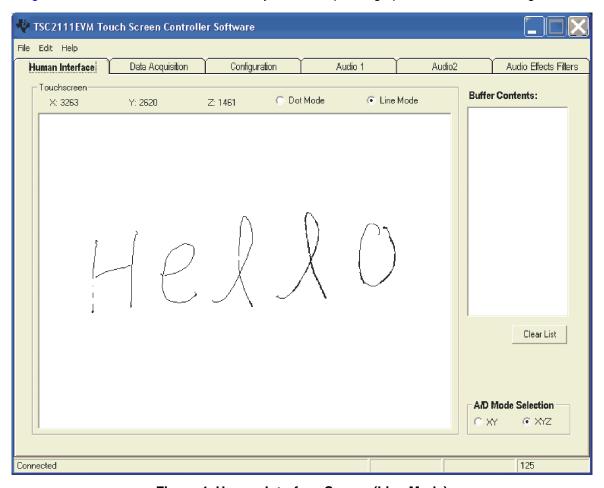


Figure 4. Human Interface Screen (Line Mode)

The display can be cleared by pressing Enter on the PC keyboard.

The window to the right of the screen shows the touch screen data when the TSC2111 is in buffer mode. For the details on the buffer mode, refer to the TSC2111 datasheet and the next section *Data Acquisition Screen*.

3.2 Data Acquisition Screen

Clicking on the Data Acquisition tab brings up the screen as shown in Figure 5.

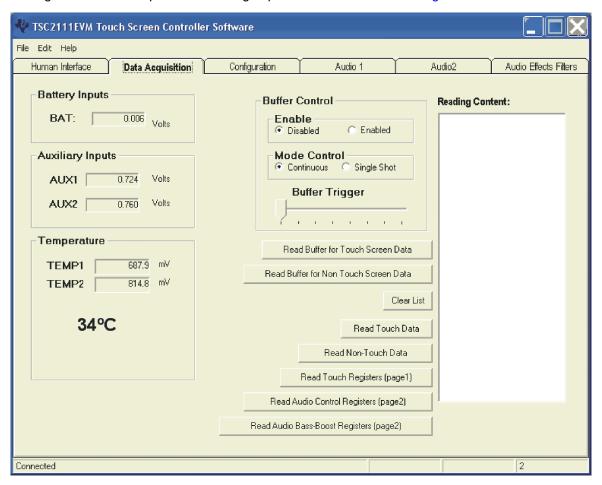


Figure 5. Data Acquisition Screen

3.2.1 Nontouch Data Acquisition

At this screen, while the Buffer Mode is *not* enabled, the TSC2111 samples the battery and auxiliary input voltage readings, and then the TEMP1 and TEMP2 measurements. These measurements are all repeated twice per second, and the results are displayed on the three boxes at the left side of this screen.

3.2.2 Buffer Function

In the middle of the screen are the Buffer Mode settings. By default, the buffer function is disabled, and all touch or non-touch data are converted and stored to the corresponding registers. When the buffer function is enabled by checking the Enable option, the data is converted and saved to the buffer registers in Page 3 of the TSC2111 memory space. Refer to the data sheet for the details of the buffer function.

Below the *Buffer Trigger* slider, the *Read Buffer for Touch Screen Data* button can be used to place the TSC2111 into self-controlled mode, and the *Read Buffer for Non Touch Screen Data* button can be used to select host-controlled mode.

When the *Read Buffer for Touch Screen Data* button is clicked, the interface switches from this screen to the Human Interface screen. The touch-screen data in the TSC2111 page 3 registers is displayed in the *Buffer Contents* box when the screen is touched, as Figure 6 illustrates. Note that in buffer mode, the touch screen data does not show up on the touch screen drawing box. In XY A/D mode, the data list is in the sequence of X, Y, X, Y, X, Y, etc. And under the XYZ A/D mode, the data is that of X, Y, Z1, Z2, X, Y, Z1, Z2, X, etc.



Figure 6. Human Interface Screen With Enabled Buffer Function

Clicking on the *Read Buffer for Non Touch Screen Data* button places the TSC2111 in *auto-scan mode*. This automatically scans the AUX1, AUX2, and TEMP1 inputs, and displays nontouch screen raw data in the *Reading Content* box on the right side of the display under the Data Acquisition tab, as shown in Figure 7. The data in the *Reading Content* box shown in Figure 7 is listed in this order: AUX1, AUX2, TEMP1, AUX1, AUX2, TEMP1, AUX1, etc.

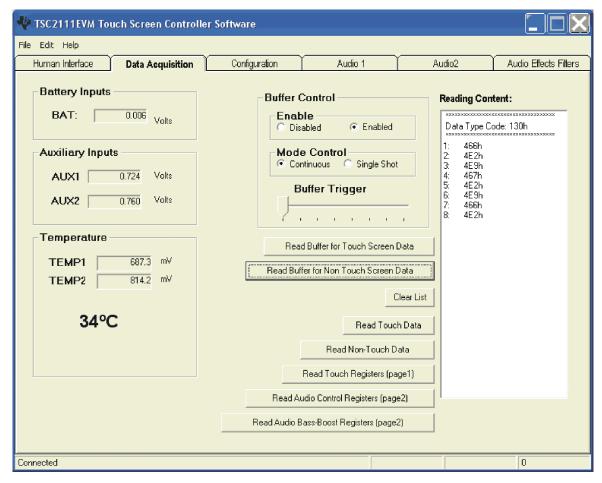


Figure 7. Data Acquisition Screen, Reading Content Box

The *Buffer Trigger* level slider can be set to either 8 or 16. Even though the TSC2111 can be set to a higher trigger level up to 64, this EVM allows only 8 or 16. The buffer function can be controlled in either Continuous or Single Shot mode, which is selected on the mode-control option box. Refer to the data sheet for more on the TSC2111 buffer function.

The data in the list is cleared by clicking on the Clear List button on this screen

3.2.3 Displaying Register Contents

Five additional register-read buttons access the corresponding registers, and move the raw data into the list. This is helpful for testing and debugging.

3.3 Configuration Screen

This screen accesses all the configurable settings for the TSC2111 analog-to-digital converter (ADC) and reference as shown in Figure 8.

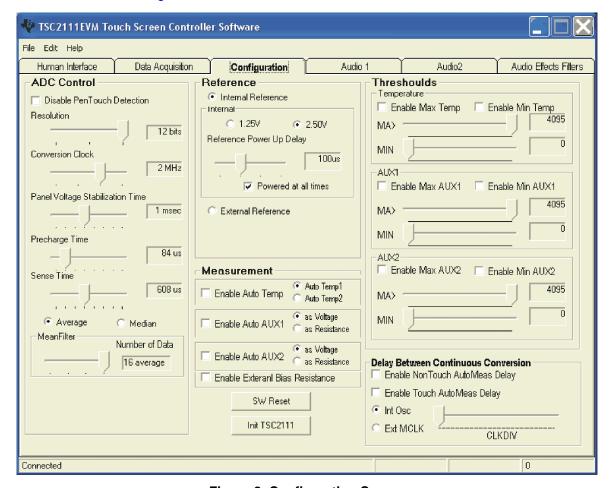


Figure 8. Configuration Screen

3.3.1 ADC Control Section

The ADC Control box has a check box to disable the Pen Touch Detection function of TSC2111. See the TSC2111 Data Sheet for information about this function.

The sliders in this section control the parameters of the ADC, for the touch (XYZ) and non-touch (BAT, AUX1, AUX2, TEMP1, TEMP2) data. Each slider controls one parameter, whose value is shown next to the slider.

- Resolution Selects between 8–, 10–, and 12–bit resolution.
- Conversion Clock The internal clock that runs the ADC can run at 8, 4, 2, or 1 MHz. When running at 8 MHz, only 8-bit resolution is possible; when running at 4 MHz, only 8- or 10-bit resolution is possible. Only 1- or 2-MHz clock rates allow 12-bit resolution to be chosen.
- Panel Voltage Stabilization Time This is the time that the TSC2111 allows for the touch screen to stabilize after turning the drivers on.
- Precharge Time and Sense Time These two parameters are the time allowed to precharge the
 touch panel capacitance, and then sense to see if the screen is touched. For more details on these
 parameters, refer to the TSC2111 data sheet.
- Average/Median There are two ways to reduce noise effects on the ADC measurements. One is averaging, where 4, 8, or 16 readings are averaged; another option is to find the median value among 5, 9, or 15 readings. The default is the average mode, as shown in Figure 8. Median mode can be selected with the corresponding button.

Note that these settings apply to all operations of the A/D converter, not just the touch screen operations. Thus, resolution and averaging can be changed to increase accuracy in the data acquisition functions.

3.3.2 Reference Section

The touch screen function is always performed using a ratiometric or differential mode on this EVM set to obtain better touch readings. For all other A/D functions (non-touch measurements such as BAT), a reference voltage is needed for the A/D converter. Figure 8 shows this section with the TSC2111 internal reference chosen.

The internal reference voltage can be set to either 1.25 V or 2.5 V. The internal reference powers down between conversions to save power. The *Powered at all times* checkbox overrides this feature, and the reference does not power down. If the reference is allowed to power down, the TSC2111 must allow a delay time for the reference to power up when a conversion is to take place. This delay time can be set using the slider in this section.

If an external reference is to be used, it can be selected as shown in Figure 9. The value of the external reference should be entered in the text box shown.

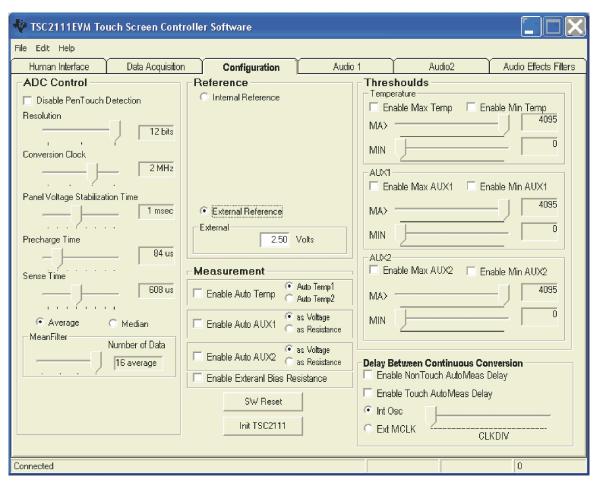


Figure 9. Configuration Screen With External Reference Selection

3.3.3 Measurement Section

The TSC2111 supports programmable, automatic temperature and auxiliary-input measurements. In the auto measurement mode, the TSC2111 can auto start the TEMP1, TEMP2, AUX1, and/or AUX2 measurement after a programmable interval. The checkboxes and sliders in the Measurement section provide choices.

Additionally, the AUX1 and AUX2 can be configured to measure voltage or resistance. Under the resistance measurement, the bias can be configured as external or internal by checking or unchecking the *Enable External Bias Resistance* box.

3.3.4 Threshold Section

The TSC2111 monitor the temperature and the auxiliary inputs and set corresponding flags if an input exceeds the bounds set in the threshold registers.

In this section, if the threshold function has not been enabled (*Enable* checkbox has not been checked), the corresponding MAX/MIN slider does not move. Also note that the MAX value must be greater than or equal to the MIN value.

3.3.5 Continuous Conversion Delay Section

In auto-measurement mode, the delays between the conversions are programmable. This section can be used to program to delays between the continuous conversions.

The nontouch and touch auto measurement delays can be programmed individually. By clicking on the corresponding Enable checkbox, the auto-measurement delay is enabled. The delay-time option allows selection of delay-clock source and divider.

The clock used can be the internal oscillator or the external MCLK. The clock divider (CLKDIV) is used to derive the 1-MHz clock for the programmable delay. This sets the CLKDIV so that MCLK/CLKDIV = 1 MHz.

3.3.6 Reinitialization and Reset

Two buttons on this screen allow the user to reset and reinitialize the TSC2111.

By clicking the *SW Reset* button, a software device reset is issued to the TSC2111. By clicking the *Init TSC2111* button, the control registers (for ADC and audio) revert back to the startup (firmware) default settings.

To restore the TSC2111 EVM to its power-up state, click SW Reset, followed by Init TSC2111.

3.4 Audio Screens

Three tabs control the TSC2111 audio functions: Audio 1, Audio 2, and Audio Effects Filters tabs.

Figure 10 shows the default configuration of the Audio 1 tab with the following sections:

- INTERFACE: Audio I²S port
- PLL: PLL parameters, FSref frequency
- ADC: Audio ADC, ADC input source selection
- DAC/Outputs: Audio DAC, other analog-output features
- GPIO1: GPIO1 function/status
- GPIO2: GPIO2 function/status

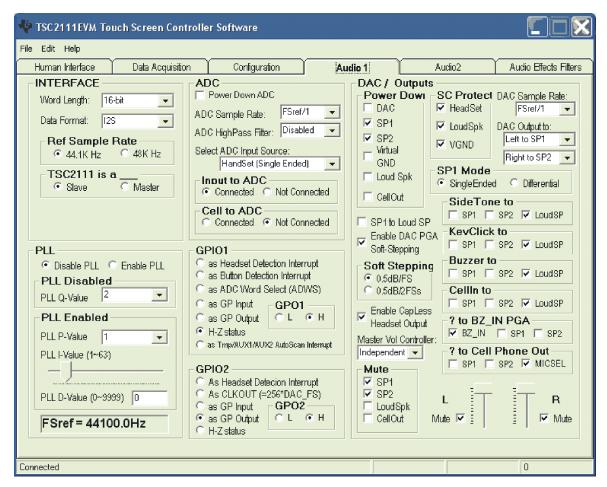


Figure 10. Audio 1 Screen Default Configuration

Figure 11 shows the default condition of the Audio 2 tab. The functions and setting on Audio 2 primarily control the audio analog inputs with the following sections:

- HeadSet: Headset input power and gain control (PGA or AGC) function and other headset specified functions.
- HandSet: Handset input power and gain control (PGA or AGC) function and other handset specified functions.
- Cell Phone: Cell-phone input power and gain control (PGA or AGC) function.
- SideTone: Sidetone power and gain.
- KeyClick: Key-click tone.
- Buzz Input: Power and gain for the BUZZ_IN input pin.

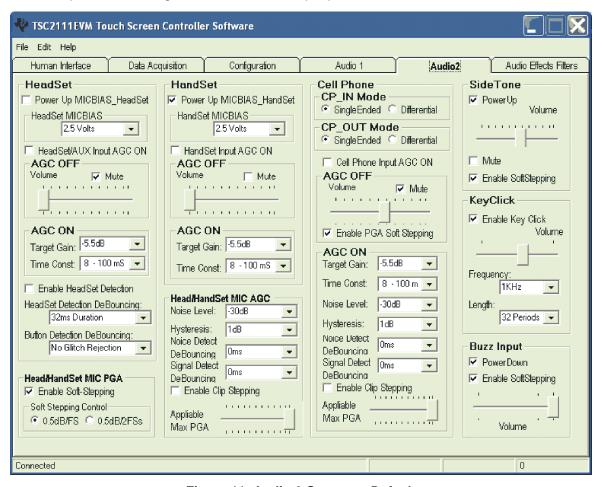


Figure 11. Audio 2 Screen at Default

Figure 12 shows the default configuration of the AudioEffects Filters tab. This tab displays the boost filters, the de-emphasis filter, and the DAC and output driver pop-noise reduction functions.

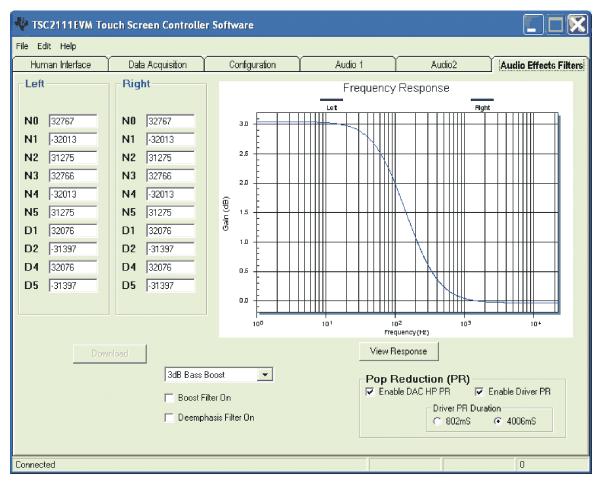


Figure 12. Bass Boost Filter Screen Default Configuration

3.4.1 Interface Section

This section (refer to Figure 10) controls the behavior of the I²S port (BCLK, LRCLK, DIN, and DOUT pins). In this EVM, the audio port transfers 16-bit data in I²S format, and the codec reference sample rate is 44.1 kHz.

The TSC2111 is programmed as an I²S slave by default. The onboard processor TAS1020B is the master, which generates the BCLK and LRCLK signal. If the TSC2111 is used as a master, the onboard processor should be disabled and the I²S port should be detached from the processor by turning off the onboard I²S interface. Refer to Table 2 in the *Default Configurations 2.2* section.

3.4.2 PLL Section

There is an on-chip phase-locked loop (PLL) in the TSC2111. The PLL can be enabled or disabled, based on the given master clock (MCLK) to the TSC2111 and the required reference frequency (FSref) for the codec. For more details on the PLL, refer to the TSC2111 data sheet.

The PLL can be set on the PLL Secton of Audio 1 screen (Figure 10).

The default frequencies for this EVM board are

- MCLK = 11.2896 MHz
- Reference sample rate = 44.1 kHz

At the bottom of the section, the corresponding FSref frequency is shown based on the selection of:

- 1. the Q-value if the PLL has not been enabled, or
- 2. the P, J, D values if the PLL has been enabled.

3.4.3 ADC Section

This section (Audio 1 Tab, Figure 10) configures the audio ADC power and the analog input source.

By default, the audio ADC is powered up so that the audio-recording function can start running with the default settings. Checking *Power Down ADC* disables the audio ADC.

The ADC sample rate can be set as a divider frequency from the reference frequency, FSref. For example, when FSref = 44.1 kHz (set in the INTERFACE section of the same tab), an 8-K sample rate is obtained by setting the divider to 5.5 (44100/5.5 = 8018 Hz).

The audio ADC also has a high-pass filter, which is a sub-multiple of the sample rate, to remove dc or low frequency components from the input signal.

The input signal to the audio ADC can be selected from different analog resources under different modes using the *Select ADC Input Source* option list. The microphone input from the headset or the handset can be selected; the single-ended or the differential input (paired with AUX1 or AUX2) can be used.

The cell-phone input can also be connected to the audio ADC.

3.4.4 DAC/Outputs Section

This section configures the audio DAC power and all functions of the analog outputs, such as power, gain, mode, and destination, which identifies the analog output pin or pins where the analog output signal is sent.

In the *Power Down* subsection, the DAC and the output driver circuits can be powered up/down individually. By checking a checkbox, the corresponding TSC2111 circuit is powered down.

In the *SC Protect* subsection, the short-circuit (SC) protection function can be enabled or disabled. When the short-circuit protection function is enabled and a short-circuit occurs, all analog outputs are disabled and the corresponding flag is set. For example, to set the headset SC protection, check the box. In the event of a headset short circuit, all analog outputs are disabled, and D1 of control registers in page 2 address 0x1D is set. The TSC2111 requires hardware or software reset to return to normal operation.

Similar to the ADC, the DAC sample rate can be set as a divider frequency from the reference FSref frequency, through the *DAC Sample Rate* option list.

The TSC2111 has the capability to route the stereo DAC output signals to the selected analog output. To route the signals to the headset drivers (SP1 and SP2 pins), select from the *DAC Output* to lists. By default, the left channel DAC output is routed to SP1 and the right channel to SP2.

The signal routed to SP1 can also be output to the loud speaker (OUT8P/OUT8N), if the SP1 to Loud SP checkbox is checked.

The SP1 output can be used in single-ended or differential mode. In single-ended mode, it is driven as one channel of the stereo headset outputs, and the audio sound is output through a headset at J11 on the TSC2111EVM daughtercard. In differential mode, the SP1 is paired with the OUT32N pin as the *receiver driver*, and the audio sound is output through a speaker connected to the terminal block J2 on the TSC2111EVM. By default, the SP1 is set to single-ended mode.

Other signals, such as the SideTone, KeyClick, CP_IN, and BUZZ_IN can be routed to speaker 1 (SP1), speaker 2 (SP2), and/or the loud speaker (LoudSP). Signal selection can be done in this section by checking the corresponding checkbox.

The signals to SP1, SP2, or the ADC can be output to the TSC's cellphone output pin, and the BUZZ IN, SP1 and SP2 signals can also be output the BUZZ IN PGA.

The DAC PGA gain can be set to soft-stepping mode. In soft-step mode, the soft stepping can be set to either 0.5-dB per one sample, or 0.5-dB per two samples.

The stereo DAC audio volume is controlled by the left (L) and right ®) volume control slides, selectable through setting the master volume controller, in three different ways:

- Independent,
- Right channel controlled, or
- Left channel controlled.

In addition to the left and right DAC channel volume controls and mutes, the analog signals from the SPK1, SPK2, OUT8P/OUT8N (loud speaker), and CP OUT pins can be individually muted or unmuted.

The TSC2111 supports both capacitor-coupled (cap) and capacitorless (capless) headset interfaces through settings in software and hardware. To use the capless outputs, Check the box Enable Capless Headset Output, and select the CAPLESS setting on SW1 on the TSC2111EVM daughter board.

Note: The settings of SW1 and Enable Capless Headset Output must match for proper EVM operation.

3.4.5 **GPIO1 and GPIO2 Sections**

The two GPIO pins on the TSC2111 are programmed for several different functions, selectable through the GPIO1 or GPIO2 section. Refer to the data sheet for all of the functions. When a GPIO pin is used as a digital output, its status can be controlled by the GPO Command to either logic high or low. When not being used, the GPIO pin should be set to high impedance (Hi-Z).

3.4.6 **Headset Section**

The headset configuration section is in the Audio 2 tab, which is used mainly to set the headset input gain through the headset PGA or the AGC, selectable by the Headset/AUX Input AGC ON checkbox.

By default, the AGC is OFF, and the programmable-gain amplifier (PGA) on the headset circuit is selected for the gain control, allowing analog-input gain control from 0 dB to 59.5 dB. When the AGC is OFF, moving the volume slide on the AGC OFF subsection adjusts the PGA on the MICIN_HED path. Checking the Mute box mutes the headset input signal.

When the PGA changes from the current value to a newly programmed value, the change rate can be controlled if the PGA Soft Stepping box is checked in the Head/Handset MIC PGA section, where the PGA changes 0.5 dB at either 1 step per sample or one step per two samples.

When the box by AGC ON is checked, the AGC is enabled. Refer to the TSC2111 data sheet and the appreciated application note(s) for setting and using the AGC.

In addition to the input-gain control, the headset microphone bias can be selected. The programmable de-bounce features for the headset and button detect are also configured in this section. Refer to the data sheet for the details on detection and de-bounce.

3.4.7 Handset Section

Similar to the headset section, the handset section is used mainly to configure the handset input gain through the handset PGA or the AGC, selectable by the *Handset Input AGC ON* checkbox.

By default, when the handset AGC is OFF, and the programmable gain amplifier (PGA) is selected for the input gain control, allowing analog input gain control from 0 dB to 59.5 dB. When the AGC is off, moving the volume slide on the AGC OFF subsection adjusts the PGA on the MICIN_HND path. Checking the Mute box mutes the handset input signal.

The handset and headset share the soft-stepping settings. Refer to the explanation in the *Headset Section* for the feature and settings.

Similar to the headset, when the box by AGC ON is checked, the handset AGC is enabled.

In addition to the handset input-gain control, the handset microphone bias can be selected in the *Handset Section*, similar to that in the *Headset Section*.

3.4.8 Cell-Phone Section

The Cell-Phone section is used to configure the cell-phone input gain, by using the CP_IN PGA or AGC.

When the checkbox by *Cell Phone Input AGC ON*, is not checked, the PGA controls the gain, from –34.5 dB to 12 dB, and in 0.5 dB steps if the soft-stepping option is selected. The cell-phone input is muted when the Mute box under the slider is checked.

When the box by AGC ON is checked, the cell-phone input AGC is enabled. Refer to the TSC2111 data sheet or the appropriate application report(s) for setting and using the AGC.

At the TSC2111, both CP_IN and CP_OUT signals can be at single-ended or differential mode. The corresponding software settings can be found in this section.

3.4.9 Sidetone Section

The TSC2111 has an analog sidetone circuit. The audio outputs of the TSC2111 includes a mixer so that the sidetone can be mixed with the audio output signals, in proportion to their respective volume settings.

The sidetone is enabled when the *PowerUp* box is checked. Its volume can be adjusted by the analog volume control slider, ranging from –34.5 dB to12 dB, and in 0.5-dB steps if the soft-stepping option is used. The sidetone is muted when the Mute box under the slider is checked.

At the EVM power up, the sidetone is defaulted to power up.

3.4.10 Keyclick Section

When the *Enable Key Click* box is checked, a clicking sound is heard whenever an audio-related setting is selected or checked in the Audio 1, Audio 2 and the Audio Effects Filters screens.

The volume, frequency, and duration (length) of this keyclick can be adjusted using the corresponding slider and selectors.

At the EVM power up, the keyclick is enabled by default.

3.4.11 Buzz Input Section

The buzzer input from the cell phone can be routed to the TSC2111 through the BUZZ_IN pin, if the checkbox by PowerDown is not selected. This input path supports the PGA range of from –45 dB to 0 dB, in 3 dB steps if the soft-stepping option was chosen.

3.4.12 Audio Effects

The programmable Audio Effects filters coefficients of the TSC2111 can be accessed in the Audio Effect Filters screen, as shown in Figure 12.

Different filter coefficients can be loaded for left and right channels, although these are typically set to the same values.

If changes are made directly to coefficient values, the response can be viewed on the graph by clicking the *View Response* button. It is recommended that the user view the response before downloading values to the TSC2111, as some values can cause clipping or oscillation of the filter. The filter equation is described in the TSC2111 data sheet. When the data entered is outside the acceptable range, a warning window appears to indicate the improper coefficient, as shown in Figure 13.

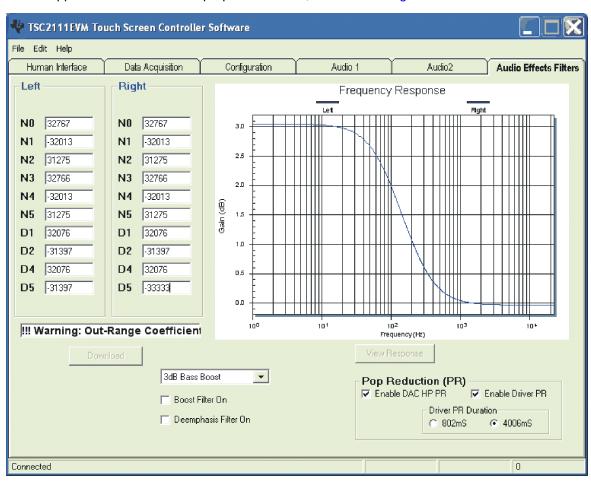


Figure 13. Audio Effect Screen with Bad Data

In addition to the direct coefficient settings previously described, there are six preconfigured filters designed with the EVM software, selectable using the drop-down list of this screen. When a preconfigured filter is selected, the coefficients are updated along with the graph of the filter response to the selection. However, nothing is loaded into the TSC2111 until the *Download* button is clicked. Checking the *Boost Filter* box enables the filter selected.

3.4.13 Deemphasis Filter

In addition to the boost filter, a de-emphasis filter is provided by the TSC2111 for the audio DAC. Checking the *Deemphasis Filter On* box enables the filter.

3.4.14 Power-Up Pop Reductions

Settings on this tab can reduce the pop noise heard at the moment the TSC2111 output circuit is powered up. The pop noise reduction can be set on the DAC or the analog output driver circuit. Click on the *Enable DAC HP PR* checkbox to enable the DAC pop-reduction feature, and the *Enable Driver PR* checkbox to enable the output driver pop-reduction feature. Change the *Driver PR Duration* to set and optimize the noise reduction effects.

4 Other Board Level Connections

This chapter describes the board-level connectors of the TSC2111EVM or EVM-PDK. Using these connectors, the TSC2111 EVM can operate as a stand-alone unit, or as the daughter-board of the USBMODEVM.

4.1 Analog Interface

For maximum flexibility, the TSC2111EVM is designed for easy interface to multiple analog sources. Samtec part numbers SSW-110-22-F-D-VS-K and TSM-110-01-T-DV-P provide a convenient 2x10-pin dual-row header/socket combination at J1 and J2. These headers/sockets provide access to the analog input and output pins of the device. Table 3 summarizes the analog interface pinout for the TSC2111EVM.

Table 3. Analog Interface Pinout

Pin Number	Signal	Description
J1.1	CP_IN+	Input from cell-phone module (+)
J1.2	X+	Touch screen X+ position input and driver
J1.3	CP_IN-	Input from cell-phone module (-)
J1.4	X-	Touch screen X– position input and driver
J1.5	CP_OUT+	Output to cell-phone module (+)
J1.6	Y+	Touch screen Y+ position input and driver
J1.7	CP_OUT-	Output to cell-phone module (-)
J1.8	Y-	Touch screen Y- position input and driver
J1.9	AGND	Analog ground
J1.10	VBAT	Battery monitor input
J1.11	AGND	Analog ground
J1.12	AUX1	First auxiliary input
J1.13	AGND	Analog ground
J1.14	NC	Not connected
J1.15	NC	Not connected
J1.16	AUX2	Second auxiliary input
J1.17	AGND	Analog ground
J1.18	AGND	Analog ground
J1.19	AGND	Analog ground
J1.20	REF+	Reference Voltage
J2.1	OUT32N	Receiver driver output (–)
J2.2	SPK1	Headset driver output (1) /receiver driver output (+)
J2.3	VGND	Virtual ground for audio outputs
J2.4	SPK2	Headset driver output (2)
J2.5	OUT8N	Loudspeaker driver output (–)
J2.6	OUT8P	Loudspeaker driver output (+)
J2.7	MICBIAS_HED	Headset microphone bias voltage
J2.8	MICIN_HED	Headset microphone input
J2.9	AGND	Analog ground

Table 3. Analog Interface Pinout (continued)

Pin Number	Signal	Description
J2.10	MIC_DETECT_IN	Microphone detect input
J2.11	AGND	Analog ground
J2.12	SPKFC	Driver feedback/speaker detect input
J2.13	AGND	Analog ground
J2.14	MICIN_HND	Handset microphone input
J2.15	NC	Not connected
J2.16	MICBIAS_HND	Handset microphone bias voltage
J2.17	AGND	Analog ground
J2.18	NC	Not connected
J2.19	AGND	Analog ground
J2.20	NC	Not connected

In addition to the J1-J2 analog headers, the analog inputs and outputs may also be accessed through alternate connectors, either screw terminals or audio jacks, listed in Table 4.

Description Pin1 Pin2 Pin3 Pin4 Pin5 X-Y-J6 J6 Touch Screen Y+ X+ J7 J7 External Inputs **VBAT** AUX1 AUX2 **AGND** J9 J9 Cell-phone In/Out CP_IN/CP_IN+ BZ_IN/CP_IN-CP_OUT+ CP_OUT-AGND J10 J10 External MIC Input MICIN_HND Onboard MIC Onboard MIC MICBIAS_HND AGND J11 J11 Headset MICIN_HED SPK2 SPK1 VGND/GND J12 J12 Receiver (OUT32) OUT32N OUT32P

OUT8P

Table 4. Analog Connectors

4.2 Digital Interface

J13 Loud-speaker (OUT8)

J13

The TSC2111EVM is designed to easily interface with multiple control platforms. Samtec part numbers SSW-110-22-F-D-VS-K and TSM-110-01-T-DV-P provide a convenient 2x10-pin dual-row header/socket combination at J4 and J5. These headers/sockets provide access to the digital control and serial data pins of the device. Table 5 summarizes the digital interface pinout for the TSC2111EVM.

OUT8N

Table 5. Digital Interface Pinout

Pin Number	Signal	Description
J4.1	NC	Not Connected
J4.2	GPIO1	General purpose I/O 1
J4.3	SCLK	SPI Interface serial clock input
J4.4	DGND	Digital ground
J4.5	NC	Not Connected
J4.6	GPIO2	General purpose I/O 2
J4.7	SS	SPI Interface slave select input
J4.8	RESET	Selectable to TSC2111 reset
J4.9	NC	Not Connected
J4.10	DGND	Digital ground
J4.11	MOSI	SPI serial data mater-OUT-slave-IN
J4.12	NC	Not Connected
J4.13	MISO	SPI serial data mater-IN-slave-OUT

Pin Signal Description Number J4.14 RESET TSC2111 reset J4.15 **PINTDAV** Pen-interrupt/data-available output SCL J4.16 I2C interface clock line J4.17 NC Not Connected J4.18 **DGND** Digital ground J4.19 PWR_DN Hardware power down input J4.20 SDA I2C interface data line NC J5.1 Not Connected J5.2 NC Not Connected J5.3 **BCLK** I2S interface audio bit clock J5.4 **DGND** Digital ground J5.5 NC Not Connected J5.6 NC Not Connected J5.7 WCLK I2S interface audio word clock J5.8 NC Not Connected J5.9 NC Not Connected J5.10 **DGND** Digital ground J5.11 DIN I2S interface data input J5.12 NC Not Connected J5.13 DOUT I2S interface data output J5.14 NC Not Connected J5.15 NC Not Connected SCL J5.16 I2C interface clock line J5.17 **MCLK** Master clock J5.18 **DGND** Digital ground J5.19 NC Not Connected J5.20 SDA I2C interface data line

Table 5. Digital Interface Pinout (continued)

4.3 Power Supplies

J3 provides power to the EVM on the pins listed in Table 6.

Table 6. Power Supply Pin Out

Signal	Pin N	Signal	
NC	J3.1	J3.2	NC
+5VA	J3.3	J3.4	NC
DGND	J3.5	J3.6	AGND
+1.8VD	J3.7	J3.8	NC
+3.3VD	J3.9	J3.10	+5VD

The TSC2111EVM-PDK motherboard (the USB-MODEVM Interface board) supplies power to J3 of the TSC2111EVM. Power for the motherboard is supplied either through its USB connection or via terminal blocks on that board.

4.3.1 Stand-Alone Operation

When used as a stand-alone EVM, power can be applied to J3 directly. The user must reference the supplies to the appropriate grounds on that connector.

CAUTION

Verify that all power supplies are within the safe operating limits shown on the TSC2111 data sheet before applying power to the EVM.

4.3.2 USB-MODEVM Interface Power

The USB-MODEVM Interface board can be powered from several different sources:

- USB
- 6 V 10 V dc external AC wall supply (not included)
- Lab power supply

When powered from the USB connection, JMP6 must have a shunt from pins 1–2 (this is the default factory configuration). When powered from 6 V - 10 V dc, either through the J8 terminal block or the J9 barrel jack, JMP6 must have a shunt installed on pins 2-3. If power is applied in any of these ways, onboard regulators provide the required supply voltages; no other power supplies are necessary.

If lab supplies are used to provide the individual voltages required by the USB-MODEVM Interface, JMP6 must have no shunt installed. Voltages are then applied to J2 (+5VA), J3 (+5VD), J4 (+1.8VD), and J5 (+3.3VD).

The +1.8VD and +3.3VD can also be generated on the board by the onboard regulators from the +5VD supply. To enable this configuration, the switches on SW1 must be set to enable the regulators by placing them in the ON position (lower position, looking at the board with text reading right-side up). If +1.8VD and +3.3VD are supplied externally, disable the onboard regulators by placing SW1 switches in the OFF position.

Each power supply voltage has an LED (D1-D7) that illuminates when the power supply is active.

4.4 External Voltage Reference

If the external voltage reference is used, the reference can be input to the TSC2111 device through the J8 terminal block.

5 Physical Description

This chapter contains the bill of materials, the TSC2111 EVM board layout, and the schematics.

5.1 Bill of Materials

Table 7. TSC2111EVM Bill of Materials

Item	Qty	Value	Ref. Des.	Description	Manufacturer	Part Number
1	6	0 Ω	R9-R14	1/8W 5% Chip Resistor	Panasonic	ERJ-6GEY0R00V
2	1	0 Ω	R25, R27	1/4W 5% Chip Resistor	Panasonic	ERJ-8GEY0R00V
3	1	220 Ω	R15	1/8W 5% Chip Resistor	Panasonic	ERJ-6GEYJ221V
4	1	2.2 KΩ	R26	1/4W 5% Chip Resistor	Panasonic	ERJ-8GEYJ222V
5	3	2.7 ΚΩ	R7, R28, R29	1/10W 5% Chip Resistor	Panasonic	ERJ-3GEYJ272V
6	1	2.7 ΚΩ	R8	1/4W 5% Chip Resistor	Panasonic	ERJ-8GEYJ272V
7	1	30.1 KΩ	R6	1/16W 1% Chip Resistor	Panasonic	ERJ-3EKF3012V
8	1	69.8 KΩ	R5	1/16W 1% Chip Resistor	Panasonic	ERJ-3EKF6982V
9	4	100 KΩ	R1, R2, R3, R4	1/10W 5% Chip Resistor	Panasonic	ERJ-3GEYJ104V
Not Installed	9	NI	R16-R24			
10	12	0.1 μF	C7-C9, C11-C19	25V Ceramic Chip Capacitor, +/ - 10%, X7R	TDK	C1608X7R1E104KT
Not Installed	7	0.1 μF	C20-C26	25V Ceramic Chip Capacitor, +/ - 10%, X7R	TDK	C2012X7R1E104KT
11	2	0.1 μF	C10, C35	100V Ceramic Chip Capacitor, +/ - 10%, X7R	TDK	C3216X7R2A104KT
12	1	0.33 μF	C1	10V Ceramic Chip Capacitor, +/ - 10%, X5R	TDK	C1608X5R1A334KT
13	10	10 μF	C2-C6, C27-C31	6.3V Ceramic Chip Capacitor, +/ - 10%, X5R	TDK	C3216X5R0J106KT
14	2	47 μF	C36, C37	6.3V Ceramic Chip Capacitor, +/ - 20%, X5R	TDK	C3225X5R0J476MT
Not Installed	3	NI	C32, C33, C34			
15	1		U3	Touch Screen Controller, Audio Codec	Texas Instruments	TSC2111IRGZG4
16	1		U2	64K, I2C EEPROM	Microchip	24AA64-I/SN
17	1		U1	Dual Output LDO Voltage Regulator	Texas Instruments	TPS767D301PWPG4
18	2		J6, J7	Screw Terminal Block, 4 Position	On Shore Technology	ED555/4DS
19	1		J9	Screw Terminal Block, 5 Position	On Shore Technology	ED555/5DS
20	3		J8, J12, J13	Screw Terminal Block, 2 Position	On Shore Technology	ED555/2DS
21	1		J10	3.5mm Audio Jack, T-R-S, SMD	CUI Inc.	SJ1-3515-SMT
22	1		J11	3.5mm Audio Jack, T-R-S-G, Thru-Hole	CUI Inc.	SJ-43514
23	4		J1A, J2A, J4A, J5A	20 Pin SMT Plug	Samtec	TSM-110-01-L-DV-P
24	4		J1B, J2B, J4B, J5B	20 pin SMT Socket	Samtec	SSW-110-22-F-D-VS-K
25	1		J3A	10 Pin SMT Plug	Samtec	TSM-105-01-L-DV-P
26	1		J3B	10 pin SMT Socket	Samtec	SSW-105-22-F-D-VS-K
27	1		N/A	TSC2111EVM PWB (must be RoHS compliant)	Texas Instruments	6478197
Not Installed	4	NI	D1, D2, D3, D4	Schottky Barrier Diode, Series Configuration	Diodes Inc.	BAT54S-7-F

Table 7. TSC2111EVM Bill of Materials (continued)

Item	Qty	Value	Ref. Des.	Description	Manufacturer	Part Number
28	3		JMP1, JMP2, JMP11	2 Position Jumper , 0 .1" spacing	Samtec	TSW-102-07-L-S
Not Installed	2		JMP3, JMP4	2 Position Jumper , 0 .1" spacing	Samtec	TSW-102-07-L-S
29	2		JMP13, JMP14	3 Position Jumper , 0 .1" spacing	Samtec	TSW-103-07-L-S
30	2		JMP10, JMP15	3 X 2 Position Header, 0 .1" spacing	Samtec	TSW-103-07-L-D
31	6		JMP5-JMP9, JMP12	Bus Wire, 18-22 Gauge		
32	1		MK1	Omnidirectional Microphone Cartridge	Knowles Acoustics	MD9745APZ-F
33	1		SW1	4PDT Right Angle Switch	E-Switch	EG4208
Not Installed	42		TP3-TP19, TP21-TP33, TP35-TP46	Miniature Test Point Terminal	Keystone Electronics	5000
34	4		TP1, TP2, TP20, TP34	Miniature Test Point Large Loop Terminal	Keystone Electronics	5011
35	10		N/A	Jumper Top	Samtec	SNT-100-BK-T

5.2 TSC2111 EVM (Daughter) Board Layout

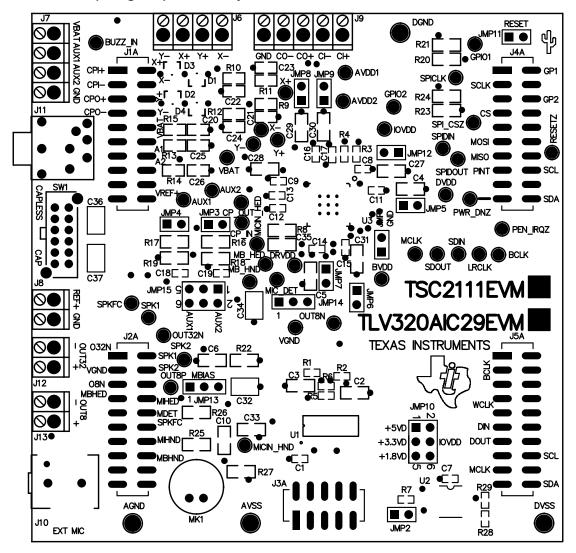


Figure 14. Component Layout

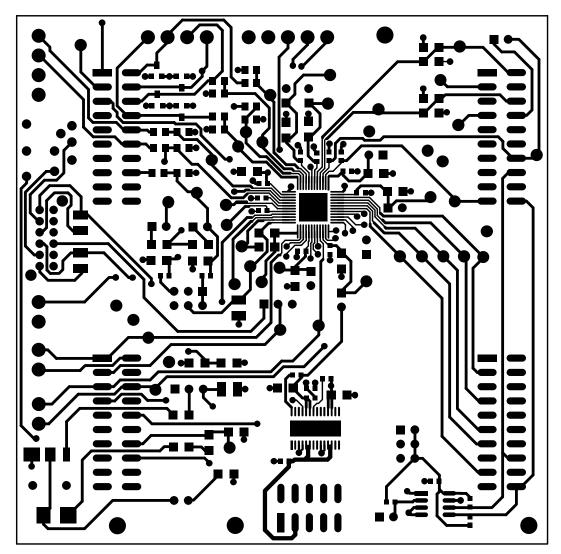


Figure 15. Top PCB Layer

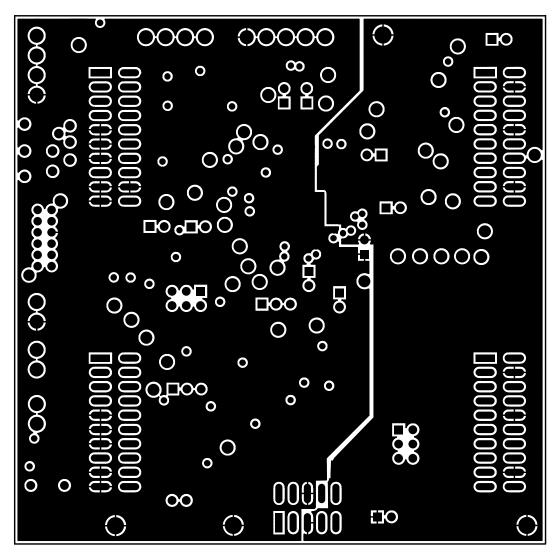


Figure 16. Power/Ground Plane 1

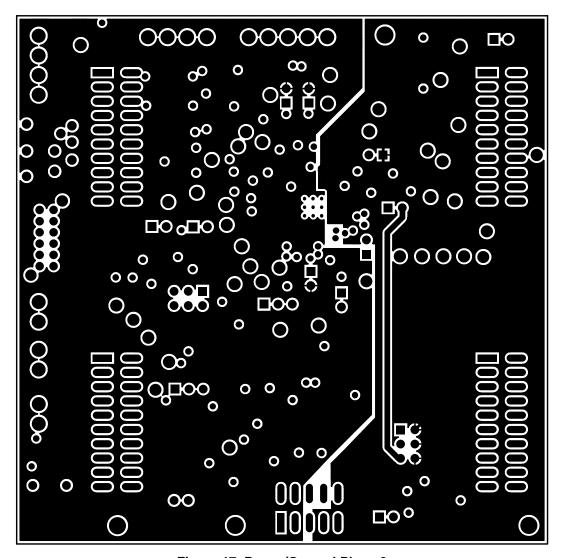


Figure 17. Power/Ground Plane 2

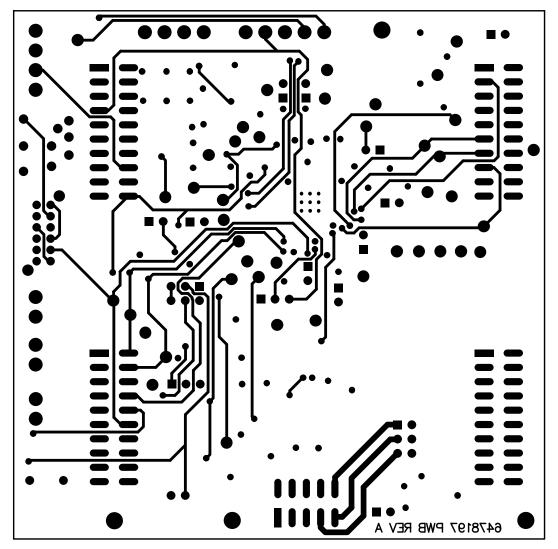


Figure 18. Bottom PCB Layer

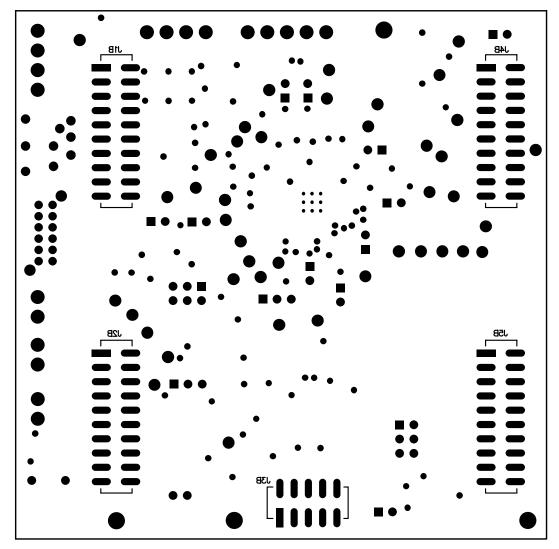


Figure 19. Bottom Silkscreen and Solder Mask

5.3 Schematics

Schematic diagrams of the TSC2111EVM/TLV320AlC29EVM daughter board show the TSC2111 analog connections to the external Input/output devices (such as the headphone, or microphone); and the digital connections to the USB-MODEVM board and other external digital devices through its connectors.

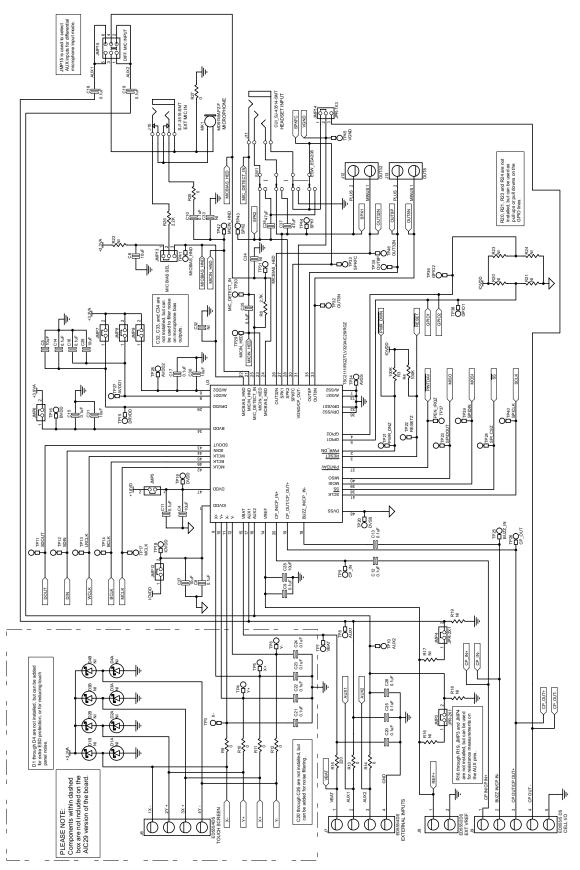


Figure 20. TSC2111EVM/TLV320AIC29EVM Schematic, Page 1

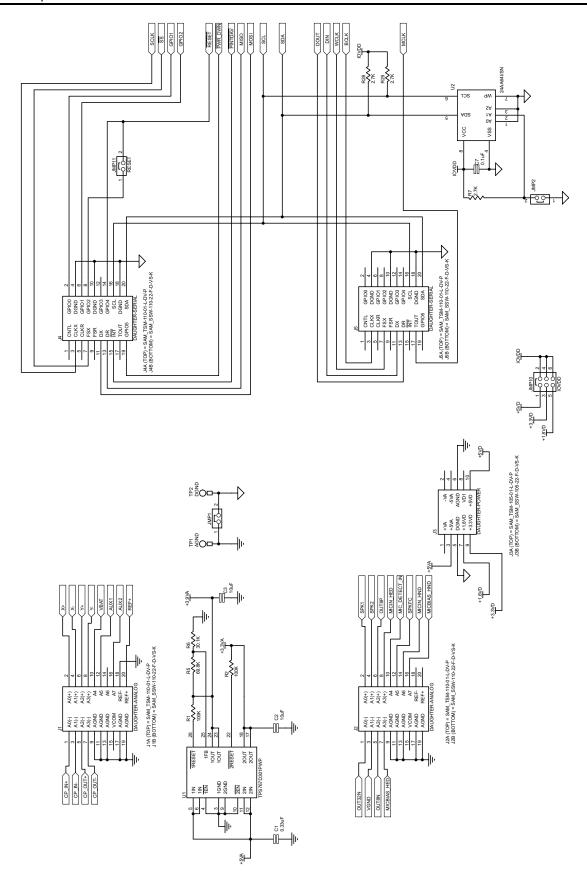


Figure 21. TSC2111EVM/TLV320AIC29EVM Schematic, Page 2

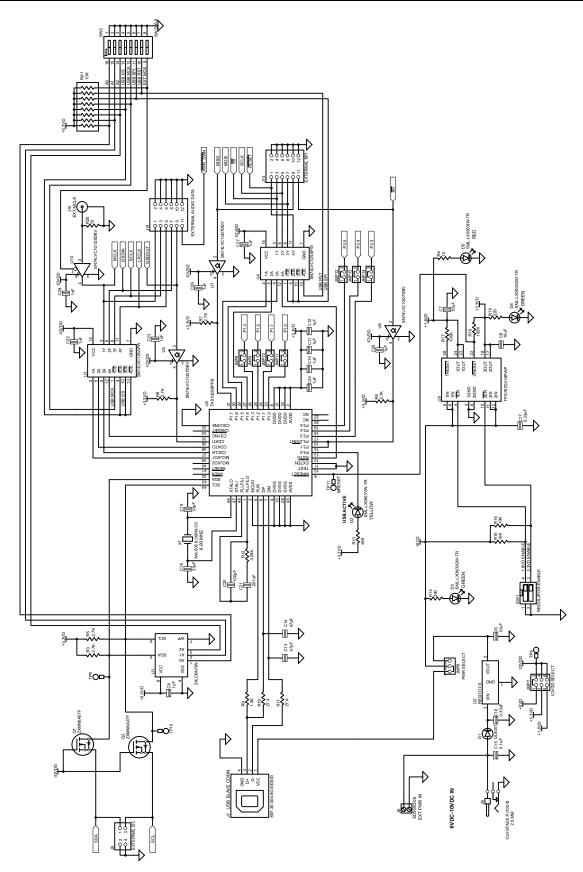


Figure 22. USB Board Schematic, Page 1

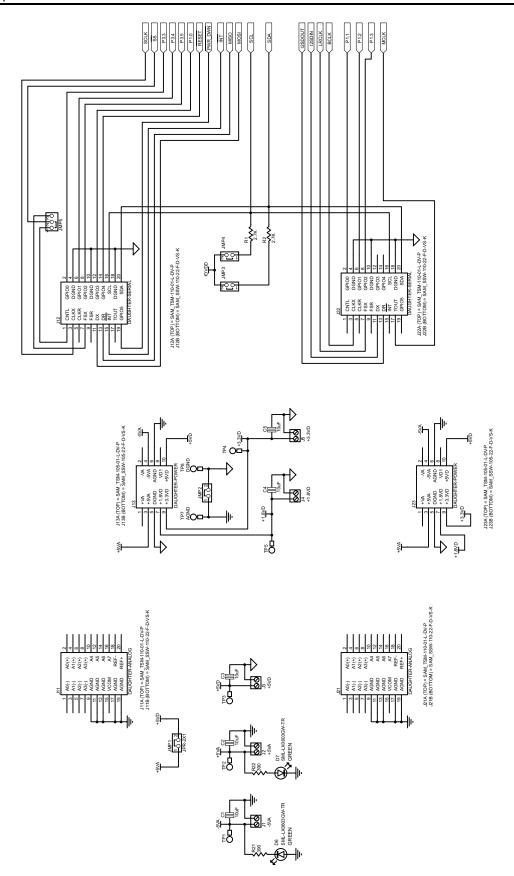


Figure 23. USB Board Schematic, Page 2

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated