

General Description

The MAX4539/MAX4540 low-voltage, CMOS 8-channel (MAX4539) and dual 4-channel (MAX4540) multiplexers are ideal for precision ADC calibration and system selfmonitoring applications. These calibration multiplexers (cal-muxes) have precision resistor-dividers to generate accurate voltage ratios from an input reference voltage. The reference ratios include 15/4096 and 4081/4096 of the external reference voltage, accurate to 15 bits, and 1/2V+ and 5/8(V+ - V-), accurate to 8 bits. The external reference voltage as well as ground can also be switched to the output. The MAX4539/MAX4540 have enable inputs and address latching. All digital inputs have 0.8V and 2.4V logic thresholds, ensuring both TTL- and CMOS-logic compatibility when using a ±5V or a single +5V supply. Protection diodes at all inputs provide an ESD rating >2kV.

The MAX4539/MAX4540 operate from a single +2.7V to +12V supply, or from dual supplies of $\pm 2.7V$ to $\pm 6V$. On-resistance (100 Ω max) is matched between switches to 6Ω max. Each switch can handle Rail-to-Rail[®] analog signals. The off leakage current is 0.1nA at $T_A = +25$ °C and 2nA at $T_A = +85$ °C.

The MAX4539/MAX4540 are available in small 20-pin DIP, SO, and SSOP packages.

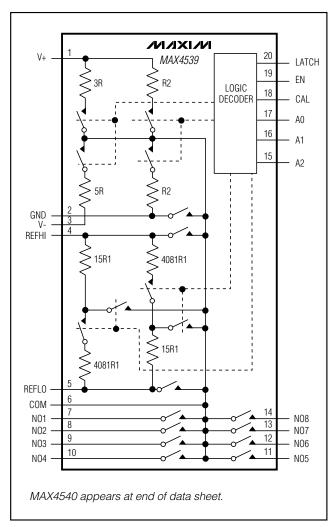
Applications

Battery-Operated Equipment **Avionics**

Data-Acquisition Systems Audio-Signal Routing

Test Equipment Networking

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
MAX4539CAP	0°C to +70°C	20 SSOP
MAX4539CWP	0°C to +70°C	20 Wide SO
MAX4539CPP	0°C to +70°C	20 Plastic DIP
MAX4539EAP	-40°C to +85°C	20 SSOP
MAX4539EWP	-40°C to +85°C	20 Wide SO
MAX4539EPP	-40°C to +85°C	20 Plastic DIP
MAX4540CAP	0°C to +70°C	20 SSOP
MAX4540CWP	0°C to +70°C	20 Wide SO
MAX4540CPP	0°C to +70°C	20 Plastic DIP
MAX4540EAP	-40°C to +85°C	20 SSOP
MAX4540EWP	-40°C to +85°C	20 Wide SO
MAX4540EPP	-40°C to +85°C	20 Plastic DIP

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- ♦ On-Chip Gain and Offset Divider Networks **Provide 15-Bit Accurate Output Ratios**
- ♦ On-Chip V+ to GND and V+ to V- Divider Networks **Provide 8-Bit Accurate Output Ratios**
- ♦ Ron: 100Ω max
- ♦ Ron Matching Between Channels: 6Ω max
- ♦ Charge Injection: 5pC max
- ♦ Low 0.1nA Off Leakage Current
- **♦ Small 20-Pin SSOP/SO/DIP Packages**

Pin Configurations/ **Functional Diagrams**

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+ to GND	0.3V to +13V
V- to GND	13V to +0.3V
V+ to V	0.3V to +13V
CAL, LATCH, A_, EN, NO_, COM_,	
REFHI, REFLO (Note 1)	(V0.3V) to $(V++0.3V)$
Continuous Current (any terminal)	±20mA
Peak Current, NO_ or COM_	
(pulsed at 1ms, 10% duty cycle max	x)±40mA

Continuous Power Dissipation ($I_A = +$	/0°C)
SSOP (derate 8mW/°C above +70°C)640mW
Wide SO (derate 8mW/°C above +70	0°C)800mW
Plastic DIP (derate 10.53mW/°C abo	ve +70°C)842mW
Operating Temperature Ranges	
MAX4539C_P/MAX4540C_P	0°C to +70°C
MAX4539E_P/MAX4540E_P	40°C to +85°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec).	+300° C

Note 1: Signals on NO_, COM_, EN, LATCH, CAL, A_ exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+ = +5V \pm 10\%, V- = -5V \pm 10\%, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A = +25$ °C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS	
SWITCH	'								
Analog-Signal Range	V _{COM} _, V _{NO} _	(Note 3)			V-		V+	V	
On-Resistance	Ron	ICOM_ = 1mA, VNO	_ = ±3.0V,	T _A = +25°C		45	75	Ω	
On-nesistance	TION	V+ = 4.5V, V- = -4.	5V	TA = TMIN to TMAX			100	52	
On-Resistance Matching Between Channels	ΔR _{ON}	I _{COM} _ = 1mA, V _{NO}	_	T _A = +25°C		1	4	Ω	
(Note 4)	2.101	V+ = 4.5V, V- = -4.5V		$T_A = T_{MIN}$ to T_{MAX}			6		
On-Resistance Flatness	R _{FLAT}	ICOM_ = 1mA; VNO	_ = -3V, 0, +3V;	T _A = +25°C		7	10	Ω	
(Note 5)	I I I I I I I I I I I I I I I I I I I I	V+ = 4.5V; V- = -4.5V		TA = TMIN to TMAX			13	32	
NO-Off Leakage Current	INO(OFF)	V _{COM} = ±4.5V, V _N	$V_{COM} = \pm 4.5V, V_{NO} = \mp 4.5V,$		-0.1	0.01	0.1	nA	
(Note 6)	INO(OFF)	V+ = 5.5V, V- = -5.	5V	$T_A = T_{MIN}$ to T_{MAX}	-2		2		
		$V_{COM} = \pm 4.5V$	MAX4539	T _A = +25°C	-0.2	0.01	0.2		
COM-Off Leakage	ICOM_(OFF)	VNO ==45V	IVIAX4333	$T_A = T_{MIN}$ to T_{MAX}	-10		10	nA	
Current (Note 6)	ICOM_(OFF)	V + = 5.5V,	MAX4540	T _A = +25°C	-0.1	0.01	0.1] IIA	
		V- = -5.5V	V- = -5.5V	IVIAX4540	TA = TMIN to TMAX	-5		5	
COM-On Leakage Current (Note 6)		$V_{COM_{-}} = \pm 4.5V,$	MAX4539	T _A = +25°C	-0.2	0.01	0.2		
	loom (ON)	V _{NO} = ±4.5V, V+ = 5.5V,	IVIANAUUU	TA = TMIN to TMAX	-10		10	nA	
	ICOM_(ON)		MAX4540	T _A = +25°C	-0.1	0.01	0.1] ''^	
		V- = -5.5V	IVIANAUAU	TA = TMIN to TMAX	-5		5		

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+=+5V\pm10\%, V-=-5V\pm10\%, V_{IH}=2.4V, V_{IL}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A=+25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
LOGIC INPUTS								
Input High Voltage	VIH			2.4	1.7		V	
Input Low Voltage	VIL				1.4	0.8	V	
Input Current with Input Voltage High	Iн	VEN = VA_ = VLATCH = VCAL = V+		-0.1	0.01	0.1	μA	
Input Current with Input Voltage Low	lıL	VEN = VA_ = VLATCH = VCAL = 0		-0.1	0.01	0.1	μΑ	
SUPPLY								
Power-Supply Range				±2.7		±6	V	
Positive Supply Current	l+	VEN = VA_ = VLATCH = VCAL = 0 or V+, V+ = 5.5V, V- = -5.5V	T _A = +25°C	-1	0.01	1	μA	
		(Note 7)	$T_A = T_{MIN}$ to T_{MAX}	-5		5		
Negative Supply Current	VEN = VA_ = VLATCH = VCAL = 0 TA = +25°C egative Supply Current I- or V+, V+ = 5.5V, V- = -5.5V	-1	0.01	1	μΑ			
Tragame cappe, carrent		(Note 7)	$T_A = T_{MIN}$ to T_{MAX}	-5		5		
GND Supply Current	IGND	VEN = VA_ = VLATCH = VCAL = 0 or V+, V+ = 5.5V, V- = -5.5V	T _A = +25°C	-1	0.01	1	μA	
анъ варру ванен	IGND	(Note 7)	TA = TMIN to TMAX	-5		5	μπ	
DYNAMIC CHARACTER	ISTICS							
Transition Time	trans	IA = IMIN to IMAX		100	150	ns		
	THANS		I I			200		
Break-Before-Make	topen	Figure 2	T _A = +25°C	4	10		ns	
Interval (Note 3)	-01 211	3	TA = TMIN to TMAX	1				
Enable Turn-On Time	ton	ton	I Figure 3 ⊢	$T_A = +25^{\circ}C$		75	115	ns
	-011	3	$T_A = T_{MIN}$ to T_{MAX}			175		
Enable Turn-Off Time	toff	OFF Figure 3	$T_A = +25^{\circ}C$		50	100	ns	
		3 - 1 -	$T_A = T_{MIN}$ to T_{MAX}			120		
Charge Injection (Note 3)	VCTE	C _L = 1nF, V _{NO} = 0, Figure 4	T _A = +25°C		1	5	рС	
Off-Isolation (Note 8)	V _{ISO}	V _{EN} = 0, f = 1MHz, Figure 5	T _A = +25°C		-75		dB	
Crosstalk Between Channels (Note 9)	VCT	V _{EN} = 2.4V, f = 1MHz, V _{GEN} = 1Vp-p, Figure 5	T _A = +25°C		-75		dB	
Logic Input Capacitance	CIN	f = 1MHz	T _A = +25°C		15		pF	
NO-Off Capacitance	Coff	f = 1MHz, V _{EN} = V _{COM} = 0, Figure 6	T _A = +25°C		3		рF	
COM-Off Capacitance	CCOM_(OFF)	f = 1MHz, V _{EN} = V _{COM} = 0, Figure 6	T _A = +25°C		15		pF	
COM-On Capacitance	CCOM_(ON)	f = 1MHz, V _{EN} = 2.4V, V _{COM} _ = 0, Figure 6	T _A = +25°C		26		pF	

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+ = +5V \pm 10\%, V- = -5V \pm 10\%, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A = +25$ °C.) (Note 2)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
LATCH TIMING (Note 3)			'				
Setup Time	to	Figure 7	T _A = +25°C		45	70	
Setup Time	ts	Figure 7	$T_A = T_{MIN}$ to T_{MAX}			80	ns
Hold Time	+	Figure 7	T _A = +25°C	-10	0		no
Hold Time	t _H	rigule /	TA = TMIN to TMAX	-10			ns
Pulse Width, Latch	tmpw	Figure 7	T _A = +25°C	30	15		ns
Enable	UVIPVV	rigule /	$T_A = T_{MIN}$ to T_{MAX}	40			110
Enable Setup Time	tes	Figure 8	$T_A = +25^{\circ}C$		15	30	ns
•	ıE3	Tiguic o	$T_A = T_{MIN}$ to T_{MAX}			40	113
INTERNAL DIVIDERS							
Offset Divider Output		V _{REF} = 4.096V, REFHI = 4.096V,	T _A = +25°C	14.9/ 4096	15/ 4096	15.1/ 4096	LSB
Oliset Divider Output		REFLO = GND	TA = TMIN to TMAX	14.9/ 4096	15/ 4096	15.1/ 4096	LOD
	V _{REF} = 4.096V,	1	T _A = +25°C	4080.9/ 4096	4081/ 4096	4081.1/ 4096	. 05
Gain Divider Output		REFHI = 4.096V, REFLO = GND T _A = T _{MIN}	$T_A = T_{MIN}$ to T_{MAX}	4080.9/ 4096	4081/ 4096	4081.1/ 4096	LSB
		Defended de OND	T _A = +25°C	2032/ 4096	2048/ 4096	2064/ 4096	1.00
(V+ / 2) Divider Output		Referenced to GND $T_{A} = T_{MIN} t$	$T_A = T_{MIN}$ to T_{MAX}	2032/ 4096	2048/ 4096	2064/ 4096	LSB
(V V) D: : 1		5.	T _A = +25°C	2544/ 4096	2560/ 4096	2576/ 4096	- 00
(V+ - V-) Divider Output		Referenced to V-	TA = TMIN to TMAX	2544/ 4096	2560/ 4096	2576/ 4096	LSB
Output Resistance Offset Divider		(Note 3)	T _A = +25°C		400	800	Ω
Output Resistance Gain Divider		(Note 3)	T _A = +25°C		400	800	Ω
Output Resistance (V+ / 2) Divider		(Note 3)	T _A = +25°C		6	9	kΩ
Output Resistance (V+ - V-) Divider		(Note 3)	T _A = +25°C		6	9	kΩ
Output Resistance (REFHI, REFLO, GND)		(Note 3)	T _A = +25°C		400	800	Ω
Additional Positive Supply Current		(V+ / 2) divider active, V _{IH} = V+, V _{IL} = 0 (Note 3)	T _A = +25°C		V+ / 24k	V+ / 13k	mA

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+=+5V\pm10\%, V-=-5V\pm10\%, V_{IH}=2.4V, V_{IL}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A=+25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Additional Positive Supply Current (Note 3)		(V+ - V-) divider active, V _{IH} = V+, V _{IL} = 0	T _A = +25°C		(V+ - V-)/ 24k	(V+ - V-)/ 13k	mA
Additional Negative Supply Current		(V+ - V-) divider active, VIH = V+, VIL = 0 (Note 3)	T _A = +25°C		(V+ - V-)/ 24k	(V+ - V-)/ 13k	mA
REFHI, REFLO Input Range (Note 3)				V- - 0.3		V+ + 0.3	V
Input Resistance (REFHI, REFLO) (Note 3)		Offset divider active, gain divider active	T _A = +25°C	25	40		kΩ

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+ = +5V \pm 10\%, V- = 0, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values at } T_A = +25^{\circ}\text{C.})$ (Note 2)

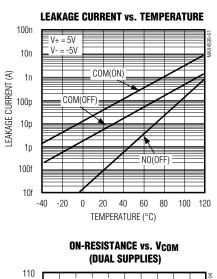
PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
SWITCH		I						
Analog-Signal Range	V _{NO_} , V _{COM_}	(Note 3)			0		V+	V
On-Resistance	Ron	I _{COM} _ = 1mA, V _{NO}	_ = 3.0V,	T _A = +25°C		80	150	Ω
On-nesistance	HON	V+ = 4.5V		$T_A = T_{MIN}$ to T_{MAX}			200	52
On-Resistance Matching Between Channels	ΔRon	I _{COM} _ = 1mA, V _{NO}	_ = 3.0V,	T _A = +25°C		2	8	Ω
(Notes 3, 4)	41.014	V+ = 4.5V		TA = TMIN to TMAX			12	12
On-Resistance Flatness (Note 5)	RFLAT	ICOM_ = 1mA; VNO V+ = 4.5V	I _{COM_} = 1mA; V _{NO_} = 3V, 2V, 1V; V+ = 4.5V			8		Ω
NO-Off Leakage Current	INO(OFF)	$V_{COM} = 1V, 4.5V;$		T _A = +25°C	-0.1		0.1	nA
(Notes 6, 10)	INO(OFF)	$V_{NO} = 4.5V, 1V; V$	+ = 5.5V	$T_A = T_{MIN}$ to T_{MAX}	-2		2	I IIA
			MAX4539	T _A = +25°C	-0.2		0.2	
COM-Off Leakage	loom (OFF)	$V_{COM} = 4.5V, 1V;$ $V_{NO} = 1V, 4.5V;$	MAX4339	$T_A = T_{MIN}$ to T_{MAX}	-10		10	nA
Current (Notes 6, 10)	I COM_(OFF)	$V_{HO} = 1V, 4.5V,$ $V_{+} = 5.5V$	MAX4540	T _A = +25°C	-0.1		0.1	1 11/4
				$T_A = T_{MIN}$ to T_{MAX}	-5		5	
COM-On Leakage Current (Notes 6, 10)	Voon – 4 5V MAX4539	T _A = +25°C	-0.2		0.2			
	loon (cr.)	$V_{COM} = 4.5V$	IVIAN4009	TA = TMIN to TMAX	-10		10	nA
	I COM_(ON)	$V_{NO} = 4.5V, V_{+} = 5.5V$	MAX4540	T _A = +25°C	-0.1		0.1	1 11/4
			IVIAN4340	$T_A = T_{MIN}$ to T_{MAX}	-5		5	1

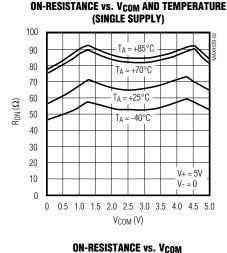
ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

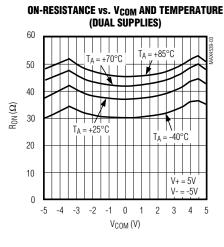
 $(V+ = +5V \pm 10\%, V- = 0, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A = +25$ °C.) (Note 2)

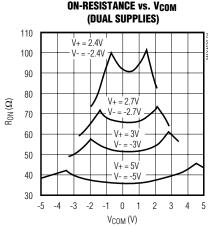
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUTS (Note 3)							L
Input High Voltage	VIH			2.4	1.6		V
Input Low Voltage	VIL				1.4	0.8	V
Input Current with Input Voltage High	ΙΗ	VEN = VA_ = VLATCH = VCAL = V+		-0.1		0.1	μΑ
Input Current with Input Voltage Low	lir	VEN = VA_ = VLATCH = VCAL = 0		-0.1		0.1	μΑ
SUPPLY			1				
Power-Supply Range				2.7		12	V
Positive Supply Current	l+	VEN = VA_ = VLATCH = VCAL = 0	T _A = +25°C	-1	0.01	1	μA
(Note 3)	1+	or $V+$, $V+=5.5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μΑ
GND Supply Current	love	VEN = VA_ = VLATCH = VCAL = 0	T _A = +25°C	-1	0.01	1	
(Note 3)	IGND	or $V+$, $V+ = 5.5V$	$T_A = T_{MIN}$ to T_{MAX}	-10		10	μΑ
DYNAMIC CHARACTER	ISTICS (Note	e 3)					
Transition Time	trans	Figure 1	T _A = +25°C		150	200	ns
Transition Time	THANS	rigule i	$T_A = T_{MIN}$ to T_{MAX}			250	110
Break-Before-Make	topen	Figure 2	T _A = +25°C	4	10		ns
Interval	OFEN	1 iguio 2	$T_A = T_{MIN}$ to T_{MAX}	1			110
Enable Turn-On Time	ton	Figure 3	T _A = +25°C		115	150	ns
Enable rain on hine	1011	rigare e	TA = TMIN to TMAX			200	110
Enable Turn-Off Time	toff	Figure 3	T _A = +25°C		60	100	ns
Litable fairi on filine	UFF	riguic o	TA = TMIN to TMAX			130	113
Charge Injection	VCTE	$C_L = 1nF$, $V_{NO} = 0$, Figure 4	T _A = +25°C		1	5	рС
LATCH TIMING (Note 3)							
Setup Time	ts	Figure 7	$T_A = +25^{\circ}C$			70	ns
Octop Time	1.0	riguio /	$T_A = T_{MIN}$ to T_{MAX}			80	110
Hold Time	t _H	Figure 7	T _A = +25°C	-10	0		ns
Tiola Timo	41	tн Figure /	$T_A = T_{MIN}$ to T_{MAX}	-10			110
Pulse Width, Latch	t _{MPW}	Figure 7	T _A = +25°C	30	15		ns
Enable	CIVII VV	90.0 /	$T_A = T_{MIN}$ to T_{MAX}	40			110
Enable Setup Time	tee	Figure 8	$T_A = +25^{\circ}C$		15	30	ns
Enable Setup Time	t _{ES} F	TA = TMIN to TMAX				40	ris

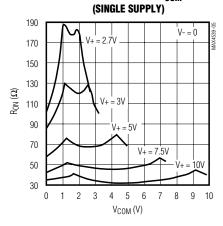
ELECTRICAL CHARACTERISTICS—Single +3V Supply

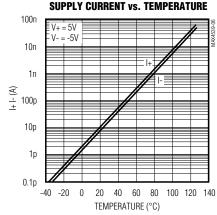

 $(V+=+2.7V \text{ to } +3.6V, V-=0, V_{IH}=2.4V, V_{IL}=0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values at } T_A=+25^{\circ}C.)$ (Note 2)

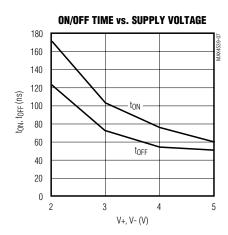

PARAMETER	SYMBOL	CONDITION	S	MIN	TYP	MAX	UNITS
SWITCH		ı					
Analog-Signal Range	VCOM_	(Note 3)		0		V+	V
On-Resistance	Ron	$I_{COM} = 0.2 \text{mA}, V_{NO} = 1.5 \text{V}, V_{+} = 2.7 \text{V}$	T _A = +25°C		220	500	Ω
		VT - 2.7 V	$T_A = T_{MIN}$ to T_{MAX}			600]
LOGIC INPUTS (Note 3)	<u>'</u>						•
Input High Voltage	VIH			2.4	1.1		V
Input Low Voltage	V _{IL}				1.1	0.5	V
DYNAMIC (Note 3)	•						•
Transition Time	trrans	V _{NO1} = 1.5V, V _{NO8} = 0, Figure 1	T _A = +25°C		260	400	ns
Enable Turn-On Time	ton	V _{NO1} = 1.5V, Figure 3	T _A = +25°C		220	350	ns
Enable Turn-Off Time	toff	V _{NO} = 1.5V, Figure 3	T _A = +25°C		100	150	ns
LATCH TIMING (Note 3))						
Setup Time	ts	Figure 7	T _A = +25°C			100	ns
Hold Time	tH	Figure 7	T _A = +25°C	-10	0		ns
Pulse Width, Latch Enable	tMPW	Figure 7	T _A = +25°C	40			ns
Enable Setup Time	tES	Figure 8	T _A = +25°C			50	ns

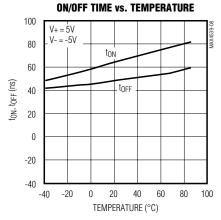

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at TA = +25°C.
- **Note 7:** If the logic inputs can float during power-on, connect a $1M\Omega$ pull-up from LATCH to V+; see *Applications Information* section.
- **Note 8:** Off Isolation = $20log_{10}$ (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to off switch.
- Note 9: Between any two switches.
- Note 10: Leakage testing with a single supply is guaranteed by testing with dual supplies.

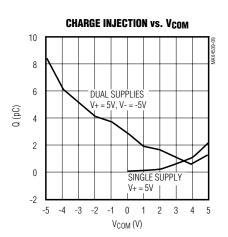

Typical Operating Characteristics


 $(T_A = +25$ °C, unless otherwise noted.)





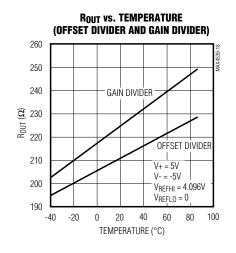


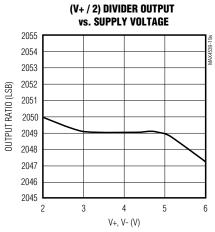


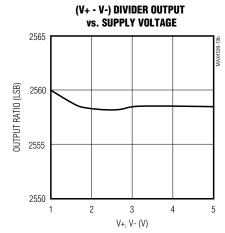


Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$


REFHI (V)


TEMPERATURE (°C)


REFHI (V)

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Descriptions

MAX4539 (Single 8-to-1 Cal-Mux)

PIN	NAME	FUNCTION
1	V+	Positive Supply Voltage
2	GND	Ground
3	V-	Negative Supply Voltage
4	REFHI	Reference High Voltage Input
5	REFLO	Reference Low Voltage Input
6	COM	Multiplexer Output
7	NO1	Channel Input 1
8	NO2	Channel Input 2
9	NO3	Channel Input 3
10	NO4	Channel Input 4
11	NO5	Channel Input 5
12	NO6	Channel Input 6
13	NO7	Channel Input 7
14	NO8	Channel Input 8
15	A2	Address Bit 2
16	A1	Address Bit 1
17	A0	Address Bit 0
18	CAL	Calibration Control Input
19	EN	Multiplexer Enable
20	LATCH	Address Latch Control Input

MAX4540 (Dual 4-to-1 Cal-Mux)

PIN	NAME	FUNCTION
1	V+	Positive Supply Voltage
2	GND	Ground
3	V-	Negative Supply Voltage
4	REFHI	Reference High Voltage Input
5	REFLO	Reference Low Voltage Input
6	COMA	Multiplexer Output A
7	NO1A	Channel Input 1A
8	NO2A	Channel Input 2A
9	NO3A	Channel Input 3A
10	NO4A	Channel Input 4A
11	NO1B	Channel Input 1B
12	NO2B	Channel Input 2B
13	NO3B	Channel Input 3B
14	NO4B	Channel Input 4B
15	COMB	Multiplexer Output B
16	A1	Address Bit 1
17	A0	Address Bit 0
18	CAL	Calibration Control Input
19	EN	Multiplexer Enable
20	LATCH	Address Latch Control Input

Truth Tables

MAX4539 (Single 8-to-1 Cal-Mux)

CAL	A2	A1	A0	EN	LATCH	СОМ	
X	Х	Х	Х	0	Х	All switches and dividers open. COM is high-Z. Latch contents set to all 1's.	
Х	Х	Х	Х	1	1	State is latched when LATCH is high.	
0	0	0	0	1	0	NO1	
0	0	0	1	1	0	NO2	
0	0	1	0	1	0	NO3	
0	0	1	1	1	0	NO4	
0	1	0	0	1	0	NO5	
0	1	0	1	1	0	NO6	
0	1	1	0	1	0	NO7	
0	1	1	1	1	0	NO8	
1	0	0	0	1	0	(V+ / 2) Divider Mode, V _{COM} = 2048/4096 V+	
1	0	0	1	1	0	REFHI	
1	0	1	0	1	0	REFLO	
1	0	1	1	1	0	(V+ - V-) Divider Mode , V _{COM} = 2560/4096 (V+ - V-)	
1	1	0	0	1	0	GND	
1	1	0	1	1	0	Gain Divider Mode, V _{COM} = 4081/4096 (V _{REFHI} - V _{REFLO})	
1	1	1	0	1	0	Offset Divider Mode, VCOM = 15/4096 (VREFHI - VREFLO)	
1	1	1	1	1	0	All switches and dividers open. COM is high-Z.	

X = Don't care

MAX4540 (Dual 4-to-1 Cal-Mux)

CAL	A 1	A0	EN	LATCH	COMA	СОМВ	
X	Х	Х	0	Х	All switches and dividers open. COMA is high-Z.	All switches and dividers open. COMB is high-Z.	
X	Х	Х	1	1	State is latched	State is latched	
0	0	0	1	0	NO1A	NO1B	
0	0	1	1	0	NO2A	NO2B	
0	1	0	1	0	NO3A	NO3B	
0	1	1	1	0	NO4A	NO4B	
1	0	0	1	0	GND	GND	
1	0	1	1	0	Gain Divider Mode	REFLO	
1	1	0	1	0	Offset Divider Mode	REFLO	
1	1	1	1	0	All switches and dividers open. COMA is high-Z.	All switches and dividers open. COMB is high-Z.	

X = Don't care

Detailed Description

The MAX4539/MAX4540 are multiplexers with additional calibration features. Internal resistor-dividers generate accurate voltage ratios from an external voltage reference, allowing zero- and full-scale calibration of ADC systems as well as facilitation of system self-monitoring. To access the resistor-dividers, assert the CAL pin. When CAL and ENABLE are asserted, the three address pins select one of the various resistor-divider or external reference outputs. The MAX4539/MAX4540 also contain a LATCH input that allows the state of the CAL and address signals to be captured.

Calibration Functions

The Gain Divider, Offset Divider, REFHI and REFLO modes allow calibration of offset and gain errors in ADC systems. The Gain Divider mode outputs a voltage ratio that is 4081/4096 of VREFHI - VREFLO, accurate to 0.1/4096, or better than 15 bits. The Offset Divider mode outputs a voltage ratio that is 15/4096 of VREFHI - VREFLO, also accurate to 0.1/4096. The REFHI mode allows the voltage on the REFHI pin to be switched to the output. The REFLO mode allows the voltage on the REFLO pin to be switched to the output.

Self-Monitoring Functions

The self-monitoring functions are intended to allow an ADC to measure its own supply voltage. The MAX4539 has an internal divide-by-two resistor string between V+ and GND that is accurate to 8 bits (16/4096). It also has a 5/8 resistor string between V+ and V- that is also accurate to 8 bits. This divider string allows measurement of the negative supply with a unipolar ADC. GND can also be switched to the output, eliminating the need for an additional multiplexer channel.

Applications Information

The MAX4539/MAX4540's construction is typical of most CMOS analog switches. There are three supply pins: V+, V-, and GND. The positive and negative power supplies provide drive to the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse-biased ESD protection diodes are internally connected between each analog signal pin and both V+ and V-. If the voltage on any pin exceeds V+ or V-, one of these diodes will conduct. During normal operation, these reverse-biased ESD diodes leak, forming the only current drawn from V-.

Virtually all the analog-leakage current is through the ESD diodes. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced, they are reverse-biased differently. Each is

biased by either V+ or V- and the analog signal. This means their leakage varies as the signal varies. The difference in the two-diode leakage from the signal path to the V+ and V- pins constitutes the analog-signal path leakage current. All analog-leakage current flows to the supply terminals, not to the other switch terminal, which explains how both sides of a given switch can show leakage currents of either the same or opposite polarity.

There is no connection between the analog-signal paths and GND. The analog-signal paths consist of an N-channel and P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase with V+ and V- by the logic-level translators.

V+ and GND power the internal logic and logic-level translators and set the input-logic thresholds. The logic-level translators convert the logic levels to switched V+ and V- signals to drive the gates of the analog switches. This drive signal is the only connection between the logic supplies and the analog supplies. All pins have ESD protection to V+ and to V-.

Increasing V- has no effect on the logic-level thresholds, but it does increase the drive to the P-channel switches, which reduces their on-resistance. V- also sets the negative limit of the analog-signal voltage.

The logic-level thresholds are CMOS- and TTL- compatible when V+ is +5V. As V+ is raised, the threshold increases slightly; when V+ reaches +12V, the level threshold is about 3.2V. Although that is above the TTL output high-level minimum of 2.4V, it is still compatible with CMOS outputs.

Bipolar-Supply Operation

The MAX4539/MAX4540 operate with bipolar supplies between ±2.7V and ±6V. The V+ and V- supplies need not be symmetrical, but their sum cannot exceed the absolute maximum rating of 13V.

Note: Do not connect the MAX4539/MAX4540 V+ pin to +3V AND connect the logic-level input pins to TTL logic-level signals. TTL logic-level outputs can exceed the absolute maximum ratings, which will cause damage to the part and/or external circuits.

Caution: The absolute maximum V+ to V- differential voltage is 13V. Typical "±6-Volt" or "12-Volt" supplies with ±10% tolerances can be as high as 13.2V. This voltage can damage the MAX4539/MAX4540. Even ±5% tolerance supplies may have overshoot or noise spikes that exceed 13V.

Single-Supply Operation

The MAX4539/MAX4540 operate from a single supply between +2.7V and +12V when V- is connected to GND. All of the bipolar precautions must be observed. However, these parts are optimized for ±5V operation, and most AC and DC characteristics are degraded significantly when departing from ±5V. As the overall supply voltage (V+ to V-) is lowered, switching speed, on-resistance, off isolation, and distortion will degrade. (see the *Typical Operating Characteristics* section).

Single-supply operation also limits signal levels and interferes with ground referenced signals. When V- = 0, AC signals are limited to -0.3V. Voltages below -0.3V can be clipped by the internal ESD-protection diodes, and the parts can be damaged if excessive current flows.

Power Up

During power up, on-chip latches will strobe whatever addresses are present if EN goes high before LATCH reaches a logic high. When this condition occurs, one of the internal dividers connected between the supplies may inadvertently turn on, causing higher supply current (~200µA supply current) when the enable input is toggled. Avoid this condition by ensuring that EN pin stays low until the remaining logic inputs are valid. To accomplish this, connect a resistor from EN to ground or apply a low voltage to EN before the other logic inputs go high.

Power Off

When power to the MAX4539/MAX4540 is off (i.e., V+ = V- = 0), the Absolute Maximum Ratings still apply. This means that neither logic-level inputs on NO_ nor signals on COM_ can exceed ± 0.3 V. Voltages beyond ± 0.3 V cause the internal ESD-protection diodes to conduct, and the parts can be damaged if excessive current flows.

Chip Information

TRANSISTOR COUNT: 561

Test Circuits/Timing Diagrams

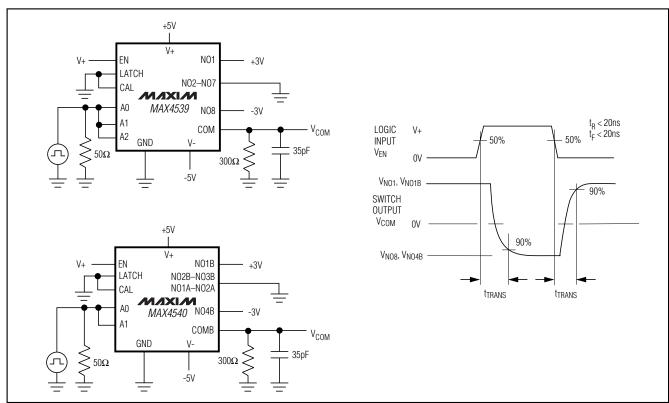


Figure 1. Transition Time

Test Circuits/Timing Diagrams (continued)

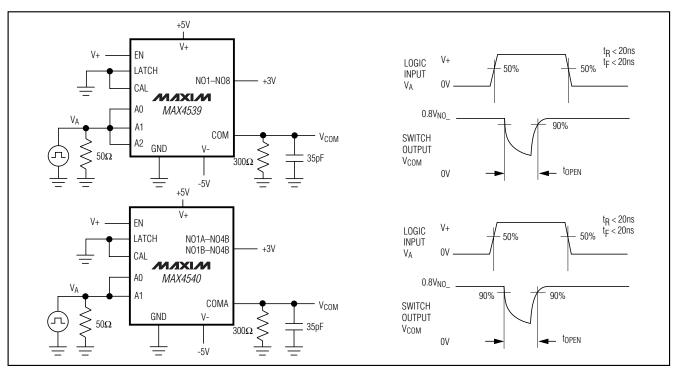


Figure 2. Break-Before-Make Interval

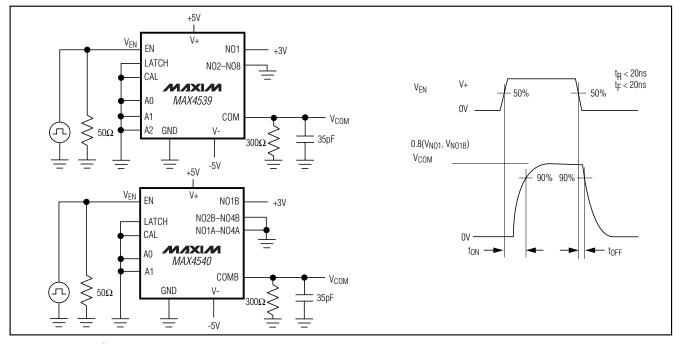


Figure 3. Enable Switching Time

Test Circuits/Timing Diagrams (continued)

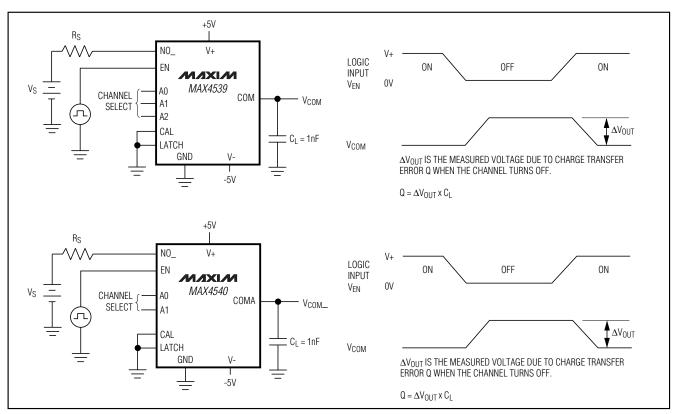


Figure 4. Charge Injection

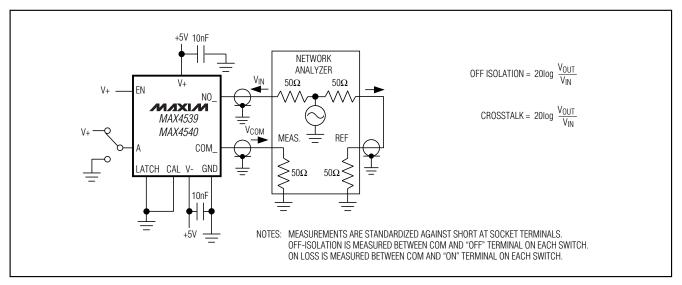


Figure 5. Off-Isolation/Crosstalk

Test Circuits/Timing Diagrams (continued)

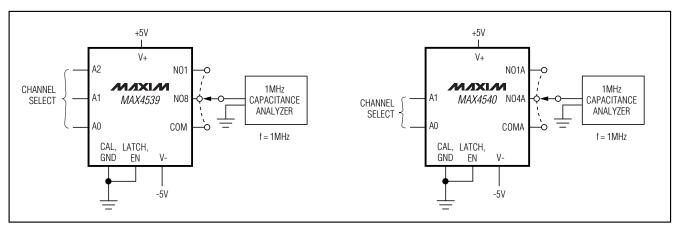


Figure 6. NO_/COM_ Capacitance

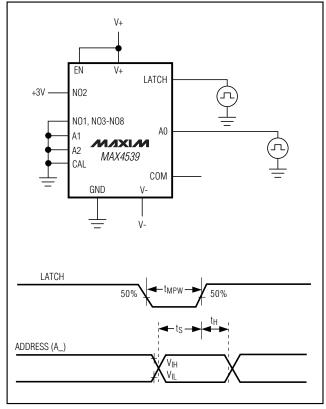


Figure 7. Setup Time, Hold Time, Latch Pulse Width

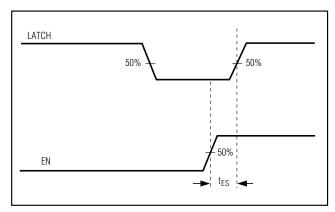
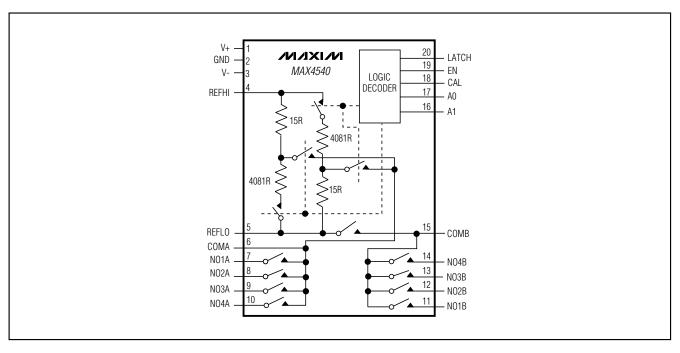
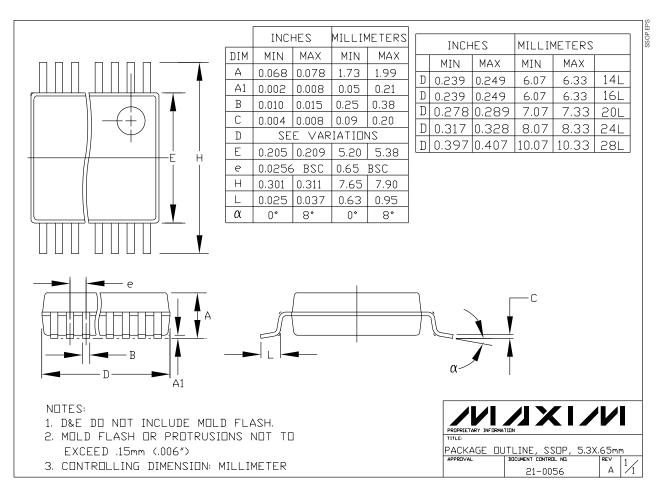
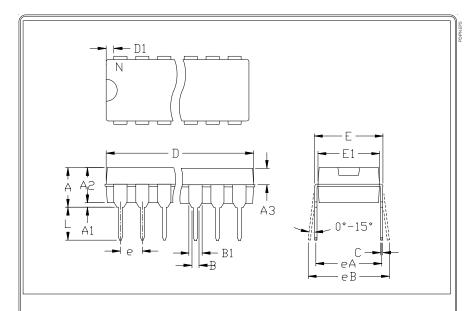




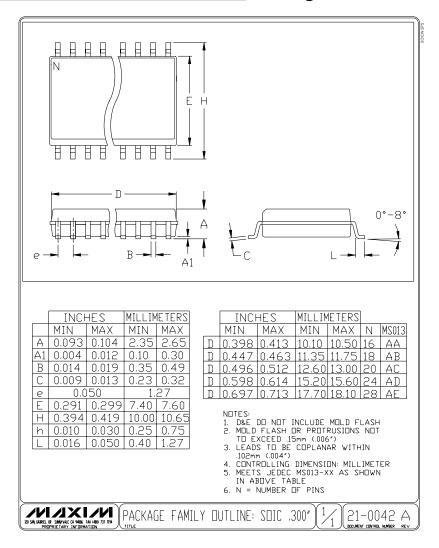
Figure 8. Enable Setup Time


Pin Configurations/Functional Diagrams (continued)

Package Information

Package Information (continued)

	INC	HES	MILLIM	1ETERS	
	MIN	MAX	MIN	MAX	
Α		0.200		5.08	
Α1	0.015		0.38		
Α2	0.125	0.175	3.18	4.45	
АЗ	0.055	0.080	1.40	2.03	
В	0.016	0.022	0.41	0.56	
B1	0.045	0.065	1.14	1.65	
С	0.008	0.012	0.20	0.30	
D1	0.005	0.080	0.13	2.03	
E	0.300	0.325	7.62	8.26	
E1	0.240	0.310	6.10	7.87	
6	0.100		2.54		
eΑ	0.300		7.62		
еΒ		0.400		10.16	
L	0.115	0.150	2.92	3.81	


	INC	HES	MILLIM			
	MIN	MAX	MIN	MAX	Ν	MS001
D	0.348	0.390	8.84	9.91	8	AB
D	0.735	0.765	18.67	19.43	14	AC
D	0.745	0.765	18.92	19.43	16	АΑ
D	0.885	0.915	22.48	23.24	18	ΑD
D	1.015	1.045	25.78	26.54	20	ΑE
D	1.14	1.265	28.96	32.13	24	AF
D	1.360	1.380	34.54	35.05	28	*5

- NOTES:
 1. D&E DO NOT INCLUDE MOLD FLASH
 2. MOLD FLASH OR PROTRUSIONS NOT
 TO EXCEED .15mm (.006")
 3. CONTROLLING DIMENSION: MILLIMETER
 4. MEETS JEDEC MS001-XX AS SHOWN
 IN ABOVE TABLE
 5. SIMILIAR TO JEDEC MO-058AB
 6. N = NUMBER OF PINS

PACKAGE FAMILY DUTLINE: PDIP ,300"

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.