

16-Mbit (1M × 16) Static RAM

Features

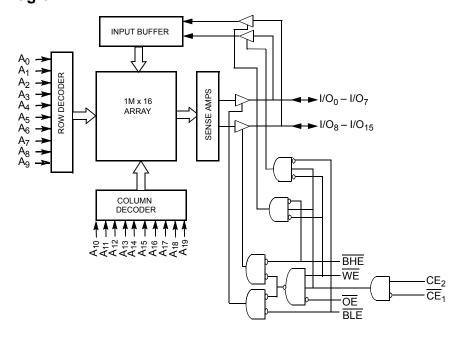
- High speed

 □ t_{AA} = 10 ns
- Low active power
 □ I_{CC} = 175 mA at 100 MHz
- Low CMOS standby power
 □ I_{SB2} = 25 mA
- Operating voltages of 3.3 ± 0.3 V
- 2.0 V data retention
- Automatic power down when deselected
- TTL compatible inputs and outputs
- Easy memory expansion with CE₁ and CE₂ features
- Available in Pb-free 54-pin TSOP II and 48-ball VFBGA packages
- Offered in single CE and dual CE options

Functional Description

The CY7C1061DV33 is a high performance CMOS Static RAM organized as 1,048,576 words by 16 bits.

To write to the device, take Chip Enables $(\overline{CE}_1 \text{ LOW})$ and $CE_2 \text{ HIGH}$) and Write Enable (\overline{WE}) input LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0 \text{ through } I/O_7)$, is written into the location specified on the address pins $(A_0 \text{ through } A_{19})$. If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8 \text{ through } I/O_{15})$ is written into the location specified on the address pins $(A_0 \text{ through } A_{19})$.


To read from the device, take <u>Chip</u> Enables ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) <u>and</u> Output Enable ($\overline{\text{OE}}$) LOW <u>while</u> forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified <u>by the</u> address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See <u>Truth Table on page 12</u> for a complete description of Read and Write modes.

The input or output pins (I/O $_0$ through I/O $_{15}$) are placed in a high impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH/ $\overline{\text{CE}}_2$ LOW), the outputs are disabled ($\overline{\text{OE}}$ HIGH), the BHE and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW, $\overline{\text{CE}}_2$ HIGH, and $\overline{\text{WE}}$ LOW).

The CY7C1061DV33 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout, and 48-ball VFBGA packages.

For a complete list of related documentation, click here.

Logic Block Diagram

Contents

Selection Guide	3
Pin Configurations	3
Maximum Ratings	5
Operating Range	5
DC Electrical Characteristics	5
Capacitance	6
Thermal Resistance	
AC Test Loads and Waveforms	6
Data Retention Characteristics	7
Over the Operating Range	7
Data Retention Waveform	7
AC Switching Characteristics	8
Switching Waveforms	9
Truth Table	
Truth Table	

Ordering information	13
Ordering Code Definitions	13
Package Diagrams	14
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	19
Worldwide Sales and Design Support	19
Products	19
PSoC®Solutions	19
Cypress Developer Community	19
Technical Support	

Selection Guide

Description	-10	Unit
Maximum access time	10	ns
Maximum operating current	175	mA
Maximum CMOS standby current	25	mA

Pin Configurations

Figure 1. 48-ball VFBGA (8 × 9.5 × 1 mm) Dual Chip Enable (-BVXI) pinout (Top View) [1, 2]

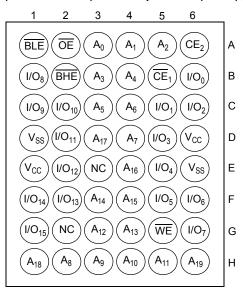
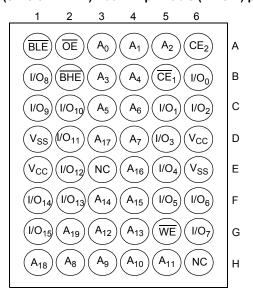



Figure 2. 48-ball VFBGA (8 × 9.5 × 1 mm) Dual Chip Enable (-BVJXI) pinout (Top View) [1, 2]

- 1. NC pins are not connected on the die.
- 2. In BVXI package, ball H6 is MSB address A19 and ball G2 is NC; in BVXI package, ball H6 is NC and ball G2 is MSB address A19.

Pin Configurations (continued)

Figure 3. 48-ball VFBGA (8 \times 9.5 \times 1 mm) Single Chip Enable (-BV1XI) pinout (Top View) $^{[3,4]}$

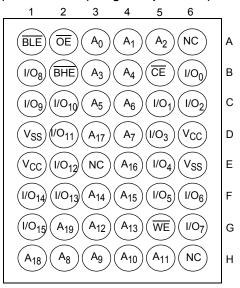
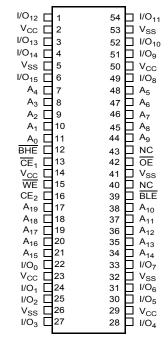



Figure 4. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) pinout (Top View) [3]

- NC pins are not connected on the die.
- 4. In BV1XI package, ball A6 is NC, ball H6 is NC and ball G2 is MSB address A19. BV1XI package has only single Chip Enable (CE).

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature-65 °C to +150 °C Ambient Temperature with Power Applied55 °C to +125 °C

Supply Voltage on V $_{CC}$ relative to GND $^{[5]}$ –0.5 V to +4.6 V

DC Input Voltage [5]	0.5 V to V _{CC} + 0.5 V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage (MIL-STD-883, Method 3015)	>2001 V
Latch Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}	
Industrial	–40 °C to +85 °C	$3.3~\textrm{V} \pm 0.3~\textrm{V}$	

DC Electrical Characteristics

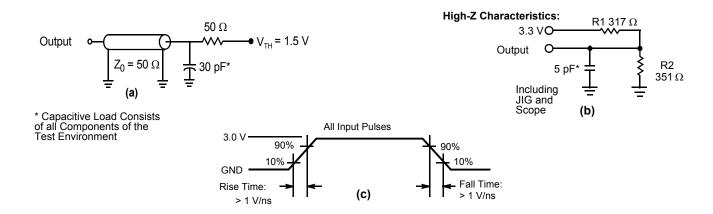
Over the Operating Range

Doromotor	Description	Test Conditions	-1	Unit	
Parameter	Description	rest conditions	Min	Max	Unit
V _{OH}	Output HIGH voltage	V _{CC} = Min, I _{OH} = -4.0 mA	2.4	-	V
V _{OL}	Output LOW voltage	V _{CC} = Min, I _{OL} = 8.0 mA	-	0.4	V
V _{IH}	Input HIGH voltage	-	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage [5]	-	-0.3	0.8	V
I _{IX}	Input leakage current	$GND \le V_I \le V_{CC}$	-1	+1	μΑ
l _{OZ}	Output leakage current	$GND \le V_{OUT} \le V_{CC}$, Output disabled	-1	+1	μΑ
I _{CC}	V _{CC} operating supply current	V_{CC} = Max, f = f _{MAX} = 1/t _{RC} , I _{OUT} = 0 mA, CMOS levels	_	175	mA
I _{SB1}	Automatic CE power down current – TTL inputs	$\begin{aligned} &\text{Max V}_{CC}, \ \overline{CE}_1 \geq V_{IH}, \ CE_2 \leq V_{IL}, \\ &V_{IN} \geq V_{IH} \ \text{or} \ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{aligned}$	_	30	mA
I _{SB2}	Automatic CE power down current – CMOS inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \ \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \ \text{CE}_2 \leq 0.3 \text{ V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V}, \text{ or V}_{\text{IN}} \leq 0.3 \text{ V}, \text{ f} = 0 \end{aligned}$	_	25	mA

Document Number: 38-05476 Rev. *K

^{5.} $V_{IL(min)} = -2.0 \text{ V}$ and $V_{IH(max)} = V_{CC} + 2 \text{ V}$ for pulse durations of less than 20 ns.

Capacitance


Parameter [6]	Description	Test Conditions	54-pin TSOP II	48-ball VFBGA	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	6	8	pF
C _{OUT}	I/O capacitance		8	10	pF

Thermal Resistance

Parameter [6]	Description	Test Conditions	54-pin TSOP II	48-ball VFBGA	Unit
Θ_{JA}		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	76.15	28.37	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		14.15	5.79	°C/W

AC Test Loads and Waveforms

Figure 5. AC Test Loads and Waveforms [7]

 ^{6.} Tested initially and after any design or process changes that may affect these parameters.
 7. Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0 V). 100 μs (t_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation begins including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0 V) voltage.

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V _{CC} for data retention	_	2	-	V
I _{CCDR}	Data retention current	$V_{CC} = 2 \text{ V}, \overline{CE}_1 \ge V_{CC} - 0.2 \text{ V}, CE_2 \le 0.2 \text{ V}, V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	_	25	mA
t _{CDR} ^[8]	Chip deselect to data retention time	_	0	_	ns
t _R ^[9]	Operation recovery time	-	t _{RC}	_	ns

Data Retention Waveform

Figure 6. Data Retention Waveform [10]

Document Number: 38-05476 Rev. *K

Notes

8. Tested initially and after any design or process changes that may affect these parameters.

9. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 50 μs or stable at V_{CC(min.)} ≥ 50 μs.

10. For all packages except -BV1XI, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH. For -BV1XI package, CE refers to CE.

AC Switching Characteristics

Over the Operating Range

Parameter [11]	Description	-1	-10		
Parameter	Description	Min	Min Max		
Read Cycle					
t _{power}	V _{CC} (typical) to the first access ^[12]	100	_	μS	
t _{RC}	Read cycle time	10	_	ns	
t _{AA}	Address to data valid	-	10	ns	
t _{OHA}	Data hold from address change	3	_	ns	
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to data valid	-	10	ns	
t _{DOE}	OE LOW to data valid	-	5	ns	
t _{LZOE}	OE LOW to low Z [13]	1	_	ns	
t _{HZOE}	OE HIGH to high Z [13]	-	5	ns	
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to low Z ^[13]	3	_	ns	
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to high Z [13]	-	5	ns	
t _{PU}	CE ₁ LOW/CE ₂ HIGH to power-up [14]	0	_	ns	
t _{PD}	CE ₁ HIGH/CE ₂ LOW to power-down [14]	-	10	ns	
t _{DBE}	Byte enable to data valid	-	5	ns	
t _{LZBE}	Byte enable to low Z	1	_	ns	
t _{HZBE}	Byte disable to high Z	-	5	ns	
Write Cycle [15	, 16]				
t _{WC}	Write cycle time	10	_	ns	
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to write end	7	_	ns	
t _{AW}	Address setup to write end	7	_	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address setup to write start	0	_	ns	
t _{PWE}	WE pulse width	7	_	ns	
t _{SD}	Data setup to write end	5.5	_	ns	
t _{HD}	Data hold from write end	0	_	ns	
t _{LZWE}	WE HIGH to low Z [13]	3	_	ns	
t _{HZWE}	WE LOW to high Z [13]	-	5	ns	
t _{BW}	Byte Enable to End of Write	7	_	ns	

^{11.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V. Test conditions for the read cycle use output loading shown in part (a) of Figure 5 on page 6, unless specified otherwise.

12. t_{POWER} gives the minimum amount of time that the power supply is at typical V_{CC} values until the first memory access is performed.

13. t_{HZOE}, t_{HZNE}, t_{HZNE}, t_{HZNE}, t_{LZOE}, t_{LZOE}, t_{LZOE}, and t_{LZBE} are specified with a load capacitance of 5 pF as in (b) of Figure 5 on page 6. Transition is measured ±200 mV from steady state voltage.

^{14.} These parameters are guaranteed by design and are not tested.

15. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. Chip enables must be active and WE and byte enables must be LOW to initiate a write, and the transition of any of these signals can terminate. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.

^{16.} The minimum write cycle time for Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

Switching Waveforms

Figure 7. Read Cycle No. 1 (Address Transition Controlled) [17, 18]

Figure 8. Read Cycle No. 2 (OE Controlled) [18, 19, 20]

^{17.} The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} .

^{18.} WE is HIGH for read cycle.

^{18.} We is find the degree.

19. For all packages except -BV1XI, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH. For -BV1XI package, $\overline{\text{CE}}$ refers to $\overline{\text{CE}}$.

20. Address valid before or similar to $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 9. Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled) [21, 22, 23]

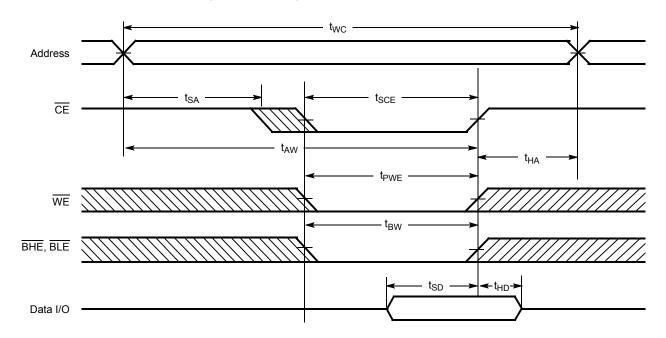
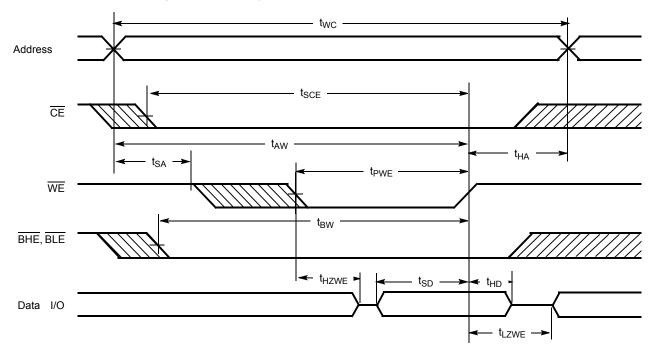
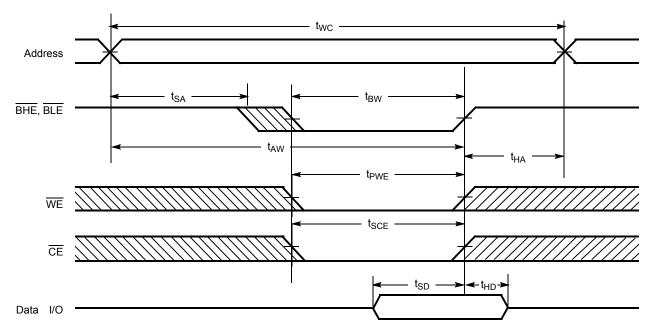



Figure 10. Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [21, 22, 23, 24]


- NOTES

 21. For all packages except -BV1XI, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, when \overline{CE}_1 is HIGH or \overline{CE}_2 is HIGH, \overline{CE}_2 is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, when \overline{CE}_1 is HIGH or \overline{CE}_1 is HIGH or \overline{CE}_1 is HIGH or \overline{CE}_1 is HIGH or \overline{CE}_1 is LOW, when \overline{CE}_1 is HIGH or \overline{CE}_1 i

Switching Waveforms (continued)

Figure 11. Write Cycle No. 3 (BLE or BHE Controlled) [25]

Note

^{25.} For all packages except -BV1XI, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH. For -BV1XI package, $\overline{\text{CE}}$ refers to $\overline{\text{CE}}$.

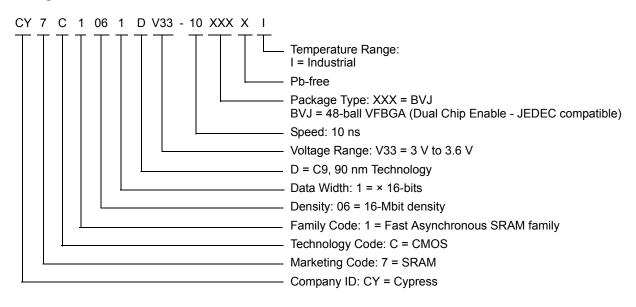
Truth Table

For all packages except -BV1XI

CE ₁	CE ₂	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	High Z	Power down	Standby (I _{SB})
Х	L	Χ	X	X	X	High Z	High Z	Power down	Standby (I _{SB})
L	Н	L	Ι	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	Н	L	Н	L	Н	Data out	High Z	Read lower bits only	Active (I _{CC})
L	Н	L	Η	Η	L	High Z	Data out	Read upper bits only	Active (I _{CC})
L	Н	Χ	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Н	Х	L	L	Н	Data in	High Z	Write lower bits only	Active (I _{CC})
L	Н	X	L	Η	L	High Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Н	Х	Х	High Z	High Z	Selected, outputs disabled	Active (I _{CC})

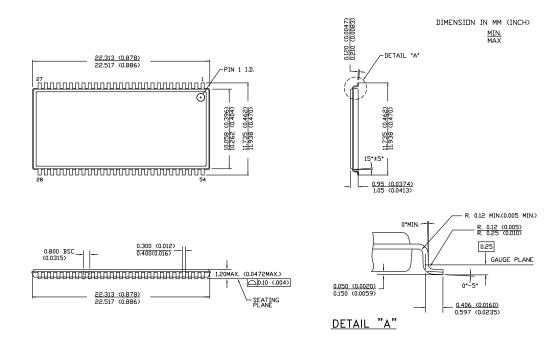
Truth Table

For -BV1XI package only


CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Χ	Χ	Х	High Z	High Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	L	Н	L	Н	Data out	High Z	Read lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data out	Read upper bits only	Active (I _{CC})
L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Х	L	L	Н	Data in	High Z	Write lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, outputs disabled	Active (I _{CC})

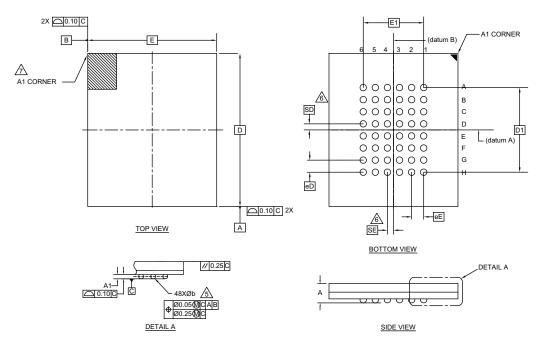
Ordering Information

Speed (ns)	Ordering Code	Package Diagram		Operating Range
10	CY7C1061DV33-10BVJXI		48-ball VFBGA (8 \times 9.5 \times 1 mm) (Pb-free) (Dual Chip Enable - JEDEC compatible)	Industrial


Ordering Code Definitions

Package Diagrams

Figure 12. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Z54-II Package Outline, 51-85160



51-85160 *E

Package Diagrams (continued)

Figure 13. 48-ball VFBGA (8 × 9.5 × 1.0 mm) VCG048/BZ48B Package Outline, 51-85178

O)/MPOI	DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.		
А	-	-	1.00		
A1	0.16	0.21	0.26		
D	9.50 BSC				
E	8.00 BSC				
D1	5.25 BSC				
E1	3.75 BSC				
MD	8				
ME	6				
N		48			
Ø b	0.25 0.30 0.35				
eD	0.75 BSC				
eE	0.75 BSC				
SD	0.38				
SE	0.38				

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

 N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.

- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
 - 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.

51-85178 *D

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS Complementary Metal Oxide Semiconduc	
I/O Input/Output	
OE Output Enable	
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
TTL	Transistor-Transistor Logic
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μΑ	microampere
μS	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Rev.	Number: 38-	Orig. of Change	Submission Date	Description of Change
**	201560	SWI	See ECN	Advance data sheet for C9 IPP
*A	233748	RKF	See ECN	Updated AC and DC parameters as per EROS (Specification Number 01-02165).
*B	469420	NXR	See ECN	Updated Ordering Information (Added Pb-free devices). Changed status from Advance Information to Preliminary. Updated Document Title (Corrected typo). Removed 8 ns and 12 ns speed bins related information in all instances acro the document. Removed Commercial Temperature Range related information in all instance across the document. Updated Selection Guide: Changed value of "Maximum Operating Current" corresponding to 10 ns speed bin from 176 mA to 125 mA. Changed value of "Maximum CMOS Standby Current" corresponding to 10 speed bin from 40 mA to 25 mA. Updated Pin Configurations: Changed ball 2G of FBGA and pin 40 of TSOP II from DNU to NC. Updated Maximum Ratings: Included details corresponding to "Static Discharge Voltage" and "Latch-Up Current". Updated DC Electrical Characteristics: Updated Note 5 (Specified the Overshoot specification). Changed maximum value of I _{CC} parameter corresponding to 10 ns speed by from 176 mA to 125 mA. Changed maximum value of I _{SB1} parameter corresponding to 10 ns speed by from 70 mA to 30 mA. Changed maximum value of I _{SB2} parameter corresponding to 10 ns speed by from 40 mA to 25 mA. Updated Disconfigurations:
*C	499604	NXR	See ECN	Updated Pin Configurations: Added Note 1 and referred the same note in Pin Configurations. Updated DC Electrical Characteristics: Updated details in "Test Condition" column corresponding to I _{CC} parameter Updated Package Diagrams: Updated figure corresponding to 48-ball FBGA Package (Removed spec 51-85150 *D and added spec 51-85178 **).
*D	1462583	VKN / AESA	See ECN	Changed status from Preliminary to Final. Updated Selection Guide: Changed value of "Maximum Operating Current" from 125 mA to 175 mA corresponding to 10 ns speed bin. Updated DC Electrical Characteristics: Changed maximum value of I _{CC} parameter from 125 mA to 175 mA corresponding to 10 ns speed bin. Updated Thermal Resistance: Replaced TBD with values for all packages.
*E	2704415	VKN / PYRS	05/11/09	Included 48-ball FBGA Dual Chip Enable - JEDEC compatible package relatinformation in all instances across the document. Updated Pin Configurations: Added Note 2 and referred the same note in Figure 1 and Figure 2.
*F	3109102	AJU	12/13/2010	Added Ordering Code Definitions under Ordering Information. Updated Package Diagrams.

Document History Page (continued)

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*G	3126531	PRAS	01/03/2011	Added 48-ball VFBGA Single Chip Enable package related information in all instances across the document. Updated Ordering Information. Added Acronyms.
*H	3414708	TAVA	10/19/2011	Updated Features. Updated DC Electrical Characteristics. Updated Switching Waveforms. Updated Package Diagrams. Added Units of Measure. Updated to new template.
*	4574311	TAVA	11/19/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated Package Diagrams: spec 51-85160 – Changed revision from *C to *E. spec 51-85178 – Changed revision from *A to *C.
*J	4990813	NILE	10/27/2015	Updated Thermal Resistance: Changed value of Θ_{JA} parameter corresponding to 54-pin TSOP II package from 24.18 °C/W to 76.15 °C/W. Changed value of Θ_{JC} parameter corresponding to 54-pin TSOP II package from 5.40 °C/W to 14.15 °C/W. Updated Switching Waveforms: Added Note 24 and referred the same note in Figure 10. Updated to new template. Completing Sunset Review.
*K	5529600	VINI	11/22/2016	Updated Ordering Information: Updated part numbers. Updated Package Diagrams: spec 51-85178 – Changed revision from *C to *D. Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC®Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems of the medical devices or systems (including resuscitation equipment and surjoical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-05476 Rev. *K Revised November 22, 2016 Page 19 of 19