

32 Gbps LIMITING AMPLIFIER

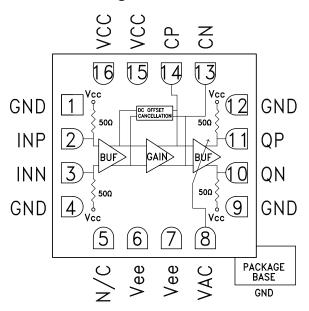
Typical Applications

The HMC865LC3 is ideal for:

- 100 Gbps Ethernet
- · 100 Gbps Long Haul
- 40 Gbps (D)QPSK Receivers
- Broadband Gain Block for Test & Measurement Equipment

Features

Supports Data Rates up to 43 Gbps.


Low Power Dissipation: 300 mW @ Vcc = +3.3V

Differential Small Signal Gain: 30 dB

High Input Sensitivity: 10 mVp-p Differential

3-dB Bandwidth: 26.5 GHz
Adjustable Output Voltage Swing up to 800 mVp-p Differential
16 Lead 3x3mm SMT package: 9mm²

Functional Diagram

General Description

The HMC865LC3 is a Limiting Amplifier packaged in a leadless 3x3 mm ceramic surface mount package which supports up to 43 Gbps operation. The amplifier provides 30 dB of differential gain. Output voltage swing is adjustable up to 800 mVp-p differential by using the VAC analog control input. Additive rms jitter is less than 300 fs for 32 Gbps operation. HMC865LC3 has an internal DC offset correction circuit which provides differential 10 mVpp input sensitivity.

All input/output RF signals of the HMC865LC3 are terminated with 50 Ohms to +3.3V on chip and may be either AC or DC coupled. The outputs of the device can be operated either differentially or single-ended. Outputs can be connected directly to 50 Ohm terminated system referenced to 3.3V, while DC blocking capacitors may be used if the terminating system is 50 Ohms to a non 3.3V level.

Electrical Specifications, $T_A = +25$ °C, Vcc = +3.3V, Vee = 0V, Icc = 90mA

Parameter	Conditions	Min.	Тур.	Max.	Units
Differential Small Signal Gain	VAC = 1.6V		30		dB
Data Rate		32			Gbps
Small Signal Bandwidth	3-dB cutoff		26.5		GHz
Input Return Loss	Up to 26.5 GHz	10			dB
Output Return Loss	Up to 26.5 GHz	10			dB
Input Sensitivity	Differential		10		mVp-p
Maximum Input Swing	Differential		1,000		mVp-p
Differential Output Swing	Adjustable by using VAC	250		800	mVp-p
Rise Time [1]	20% - 80% @ 32 Gbps		13		ps

[1] Vin = Differential 50 mVp-p, fin = 32 Gbps PRBS 2^{23} -1 pattern

HMC865* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· HMC865LC3 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC865 Data Sheet

REFERENCE MATERIALS -

Quality Documentation

- Package/Assembly Qualification Test Report: LC3, LC3B, LC3C (QTR: 2014-00376 REV: 01)
- Semiconductor Qualification Test Report: BiCMOS-C (QTR: 2013-00241)

DESIGN RESOURCES 🖵

- HMC865 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC865 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

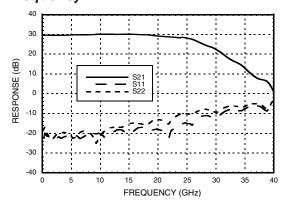
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

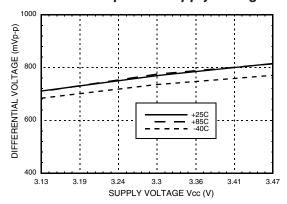
DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

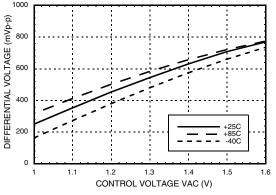
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

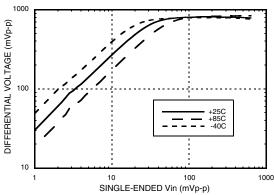

32 Gbps LIMITING AMPLIFIER

Electrical Specifications (Continued)


Parameter	Conditions	Min.	Тур.	Max.	Units
Fall Time [1]	20% - 80% @ 32 Gbps		13		ps
Additive Random Jitter [2]	Vin = 50 mVp-p (Differential)			300	fs
Input referred voltage noise	@ 15 GHz @ 25 GHz		31 32		nV/rtHz nV/rtHz
VAC		1		1.6	V
Output P1dB	@ 16 GHz		-6		dBm
Power Supply Voltage		3.13	3.3	3.47	V
Supply Current	VAC = 1.6V		90		mA
Operating Temperature		-40	25	85	°C
Low Frequency Cut-Off	100 nF off chip capacitor is used		10		kHz

^[1] Vin = Differential 50 mVp-p, fin = 32 Gbps PRBS 2²³-1 pattern


Differential Gain & Return Loss vs. Frequency [1][2]

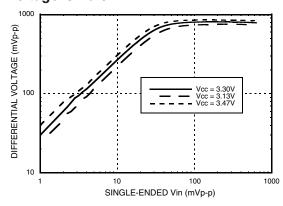

Differential Output vs. Supply Voltage [1]

Differential Output vs. Control Voltage [2]

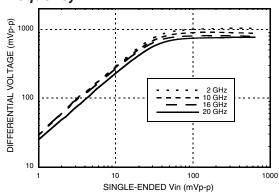
Differential Output vs. Vinput & Temperature @ 16 GHz [1][2]

[1] VAC = 1.6V [2] Vcc = 3.3V

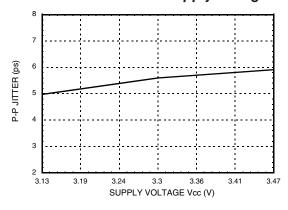
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

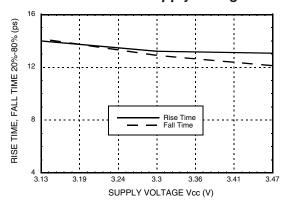

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

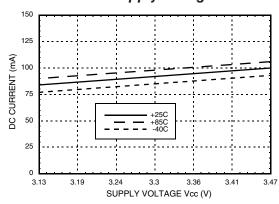
^[2] Random jitter is measured with 32 Gbps 10101... pattern

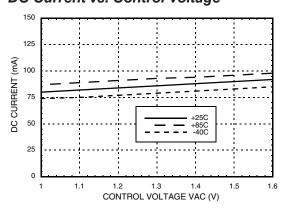


32 Gbps LIMITING AMPLIFIER


Differential Output vs. Vinput & Supply Voltage @ 16 GHz [1]

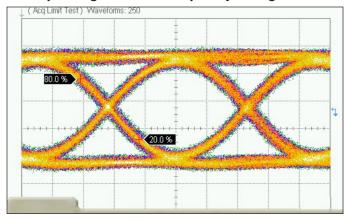

Differential Output vs. Vinput & Frequency [1] [2]


Peak to Peak Jitter vs. Supply Voltage [1][3]


Rise & Fall Time vs. Supply Voltage [1][3]

DC Current vs. Supply Voltage [1][3]

DC Current vs. Control Voltage [2][3]

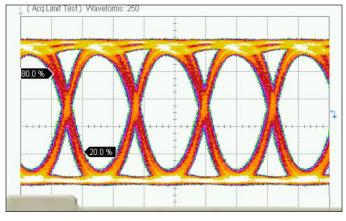

[1] VAC = 1.6V [2] Vcc = 3.3V [3] Input Data: Differential 50 mVp-p 32 Gbps NRZ PRBS 2^{23} -1 pattern

32 Gbps LIMITING AMPLIFIER

32 Gbps Single-Ended Output Eye Diagram

	Measurements					
	Current	Minimum	Maximum	Total Meas		
Eye Amp	362 mV	361 mV	362 mV	63		
Jitter p-p	4.978 ps	4.822 ps	5.444 ps	63		
Rise Time	13.84 ps	13.84 ps	14.00 ps	63		
Fall Time	13.22 ps	11.20 ps	13.53 ps	63		

Time Scale: 7 ps/div Amplitude Scale:100 mV/div


Test Conditions:

VAC = 1.6V, Vcc = 3.3V

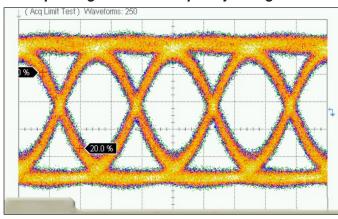
Input Data: Differential 50 mVp-p 32 Gbps NRZ PRBS

223-1 pattern

22.5 Gbps Single-Ended Output Eye Diagram

Measurements				
	Current	Minimum	Maximum	Total Meas
Eye Amp	388 mV	387 mV	388 mV	83
Jitter p-p	8.000 ps	5.778 ps	8.000 ps	83
Rise Time	14.22 ps	13.78 ps	14.67 ps	83
Fall Time	13.78 ps	13.33 ps	13.78 ps	83

Time Scale: 20 ps/div Amplitude Scale: 81.6 mV/div


Test Conditions:

VAC = 1.6V, Vcc = 3.3V

Input Data: Differential 50 mVp-p 22.5 Gbps NRZ PRBS

2²³-1 pattern

40 Gbps Single-Ended Output Eye Diagram

	Measurements					
	Current	Minimum	Maximum	Total Meas		
Eye Amp	352 mV	352 mV	352 mV	60		
Jitter p-p	5.333 ps	4.444 ps	5.333 ps	60		
Rise Time	11.78 ps	11.33 ps	12.00 ps	60		
Fall Time	12.00 ps	11.56 ps	12.00 ps	60		

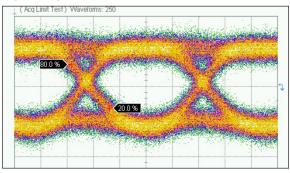
Time Scale: 10 ps/div Amplitude Scale: 80.1 mV/div

Test Conditions:

VAC = 1.6V, Vcc = 3.3V

Input Data: Differential 80 mVp-p 40 Gbps NRZ PRBS

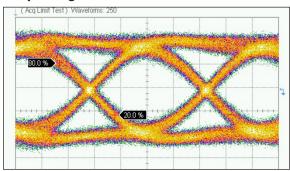
223-1 pattern



32 Gbps LIMITING AMPLIFIER

32 Gbps Input & Output Eye Diagrams

Input Signal


	Current	Minimum	Maximum	Total Meas
Eye Amp	9.27 mV	9.25 mV	9.27 mV	36
Jitter p-p	10.733 ps	7.933 ps	10.733 ps	51
Rise Time	8.56 ps	8.24 ps	40.13 ps	51
Fall Time	10.11 ps	4.04 ps	10.27 ps	51

Time Scale: 7 ps/div Amplitude Scale: 2.8 mV/div

Test Conditions:

VAC = 1.6V, Vcc = 3.3V

Output Signal

	Current	Minimum	Maximum	Total Meas
Eye Amp	219 mV	219 mV	220 mV	55
Jitter p-p	5.444 ps	4.822 ps	5.444 ps	55
Rise Time	11.93 ps	14.78 ps	15.40 ps	55
Fall Time	14.78 ps	14.78 ps	15.40 ps	55

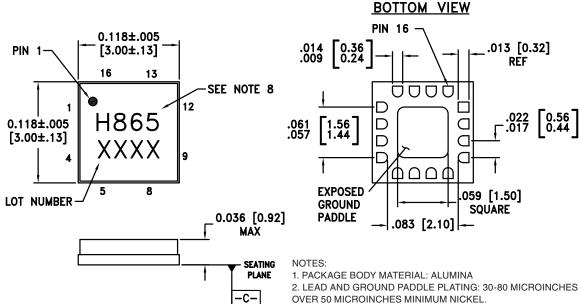
Time Scale: 7 ps/div Amplitude Scale: 60 mV/div

Test Conditions:

VAC = 1.6V, Vcc = 3.3V

Absolute Maximum Ratings

	<u> </u>
Power Supply Voltage (Vcc)	-0.5V to +3.6V
Input Voltage	(Vcc -1.3V) to (Vcc +0.5)
Output Voltage	(Vcc -1V) to (Vcc +0.5)
Output Amplitude Control Voltage (VAC)	-0.5V to +2.5V
Junction Temperature	125 °C
Continuous Pdiss (T = 85°C) (Derate 13.10 mW/°C above 85°C)	0.52W
Thermal Resistance (R _{th}) (junction to ground paddle)	76.32 °C/W
Storage Temperature	-65 to 125 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A



32 Gbps LIMITING AMPLIFIER

Outline Drawing

- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. CHARACTERS TO BE BLACK INK MARKED WITH .018"MIN TO .030"MAX HEIGHT REQUIREMENTS. UTILIZE MAXIMUM CHARACTER HEIGHT BASED ON LID DIMENSIONS AND BEST FIT. LOCATE APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM -C-
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 8. PART NUMBER MARKING CONFIGURATION:
- HXXX FOR 3 DIGIT HMC #'S (IE. H123)
- XXXX FOR 4 DIGIT HMC #'S (IE. 1234)

Package Information

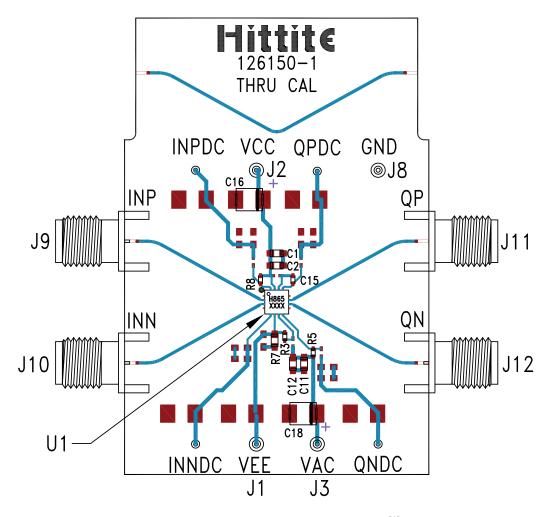
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC865LC3	Alumina, White	Gold over Nickel	MSL3 ^[1]	H865 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

32 Gbps LIMITING AMPLIFIER

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 4, 9, 12	GND	Signal grounds should be connected to 0V.	Vcc → GND =
2, 3	INP, INN	Data Inputs	Vcc O 5000 INP O INN Vee
6, 7	Vee	Supply grounds should be connected to 0V.	Vec VEE
8	VAC	Output amplitude control voltage	VAC VAC VVee 1000 Vee
10, 11	QN, QP	Data outputs.	Vcc O QP QN Vee
13, 14	CN, CP	Filter capacitor for offset correction. Connect 100nF capacitor between CP and CN	CP Ο————————————————————————————————————
15, 16	Vcc	Positive Supply	Vcc VEE
Ground Paddle	GND	Ground paddle must be connected to DC ground.	⊖ GND =

32 Gbps LIMITING AMPLIFIER

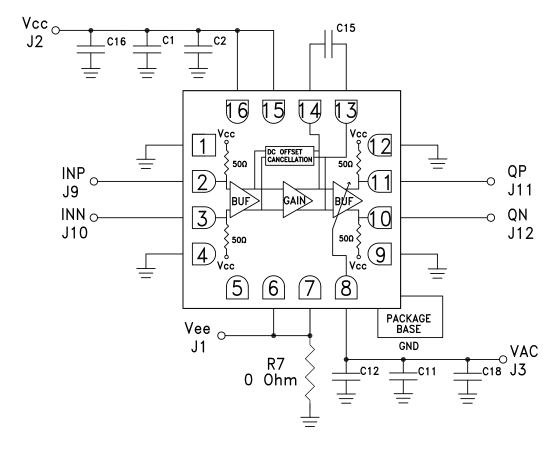
Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC865LC3[1]

Item	Description
J1 -J3, J8	DC Pin
J9 - J12	K-type Connector
C1, C11	0.1 μF Capacitor, 0603 Pkg.
C2, C12	1000 pF Capacitor, 0603 Pkg.
C15	0.1 μF Capacitor, 0402 Pkg.
C16, C18	4.7 μF Capacitor, Tantalum
R3, R5, R8	0 Ohm Resistor, 0402 Pkg.
R7	0 Ohm Resistor, 0603 Pkg.
U1	HMC865LC3 Limiting Amplifier
PCB [2]	126150 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

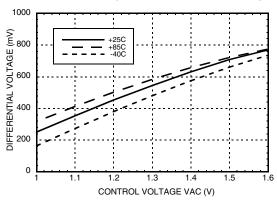
[2] Circuit Board Material: Arlon 25FR or Rogers 4350


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

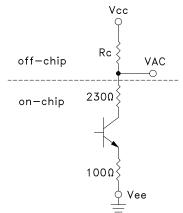
32 Gbps LIMITING AMPLIFIER

Application Circuit

Component	Value
C2, C12	1 nF
C1, C11, C15	0.1 μF
C16, C18	4.7 μF


32 Gbps LIMITING AMPLIFIER

Application Information


Setting the output swing using external resistor Rc

The HMC865LC3 features output swing level adjustment by using VAC pin. Output swing can be adjusted to the desired level by applying a DC voltage to VAC pin. Differential output swing vs. control voltage relationship is given in the plot below.

Differential Output vs. Control Voltage

In order to adjust the DC voltage on VAC pin a resistor, Rc, should be connected between VAC pin and VCC as shown in the figure below.

The value of the resistor can be chosen using the following equation as a function of VAC. VAC DC voltage value can be chosen by using the plot given above.

$$Rc = \frac{330(Vcc-VAC)}{VAC-0.86}$$