

SN75ALS053

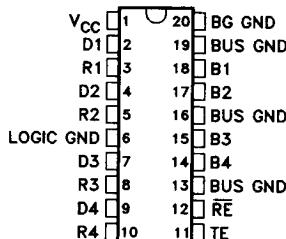
QUAD FUTUREBUS TRANSCEIVER

TI0267—D3077, JANUARY 1988—REVISED SEPTEMBER 1989

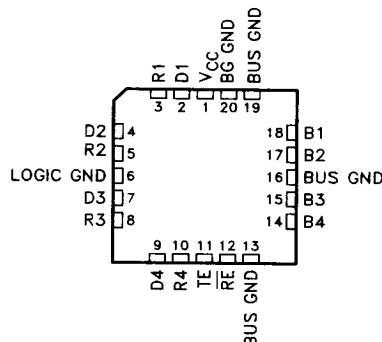
- High Speed Quad Transceiver
- Fully Compatible with IEEE Standard 896.1-1987 Futurebus Requirements
- Drives Load Impedances as Low as $10\ \Omega$
- High-Speed Advanced Low-Power Schottky Circuits
- Low Power Dissipation ... 81 mW Max per Channel
- High-Impedance P-N-P Inputs
- BTL™ Logic Level 1-V Bus Swing Reduces Power Consumption
- Low Bus-Port Capacitance
- Power-Up/Power-Down Protection (Glitch-Free)
- Open-Collector Driver Outputs Allows Wired-OR Connections
- Multiple Bus Channel Ground Returns to Reduce Channel Noise Interference
- Designed to Be a Faster, Lower Power Functional Equivalent of National DS3893

description

The SN75ALS053 is a four-channel, monolithic, high-speed, advanced low-power Schottky device designed for two-way data communication in a densely populated backplane. The SN75ALS053 has independent driver input (Dn) and receiver output (Rn) pins and separate driver and receiver disables. This transceiver is designed for use in high-speed bus systems and is similar to the SN75ALS057 transceiver except that the trapezoidal feature has been eliminated to speed up the propagation delays.


These transceivers feature open-collector driver outputs, each with a series Schottky diode to reduce capacitive loading to the bus. By using a 2-V pullup on the bus, the output signal swing will be approximately 1 V, which reduces the power necessary to drive the bus load capacitance. The driver outputs are capable of driving an equivalent dc load of as low as $10\ \Omega$.

The receivers have a precision threshold set by an internal bandgap reference to give accurate input thresholds over V_{CC} and temperature variations.


These transceivers are compatible with Backplane Transceiver Logic (BTL™) technology at significantly reduced power dissipation per channel.

The SN75ALS053 is characterized for operation from 0°C to 70°C.

N PACKAGE (TOP VIEW)

FN CHIP CARRIER PACKAGE (TOP VIEW)

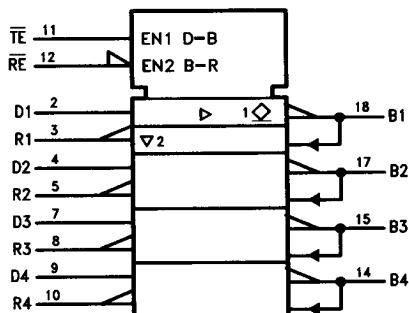
BTL is a trademark of National Semiconductor Corporation.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1989, Texas Instruments Incorporated

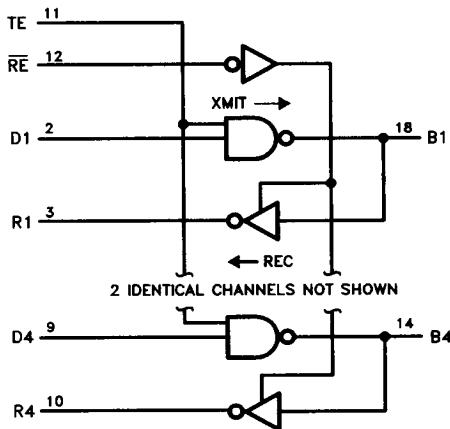
**TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN75ALS053 QUAD FUTUREBUS TRANSCEIVER

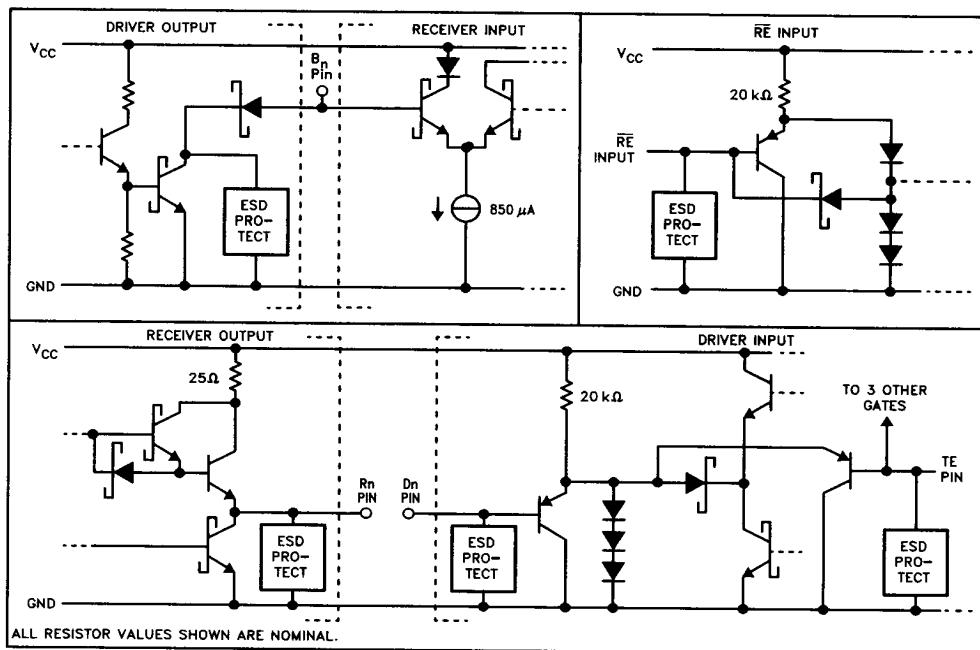

D3077, JANUARY 1988—REVISED SEPTEMBER 1989—TI0267

FUNCTION TABLE
TRANSMIT/RECEIVE

CONTROLS		CHANNELS	
TE	RE	D → B	B → R
L	L	D	R
L	H	D	D
H	L	T	R
H	H	T	D


H = high level, L = low level, R = receive, T = transmit,
D = disable
Direction of data transmission is from Dn to Bn, direction of data
reception is from Bn to Rn.

logic symbol†



† This symbol is in accordance with ANSI/IEEE Std 91-1984 and
IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	6 V
Control input voltage	5.5 V
Driver input voltage	5.5 V
Driver output voltage	2.5 V
Receiver input voltage	2.5 V
Receiver output voltage	5.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range	0°C to 70°C
Storage temperature range	-65°C to 150°C
Case temperature for 10 seconds: FN package	260°C
Lead temperature 1.6mm (1/16 in.) from case for 10 seconds: N package	260°C

NOTE 1: Voltage values are with respect to network ground terminal.

SN75ALS053
QUAD FUTUREBUS TRANSCEIVER

D3077, JANUARY 1988—REVISED SEPTEMBER 1989—TI0267

DISSIPATION RATING TABLE

PACKAGE	TA ≤ 25°C		DERATING FACTOR ABOVE TA = 25°C	TA = 70°C POWER RATING
	POWER RATING			
FN	1400 mW		11.2 mW/°C	896 mW
N	1150 mW		9.2 mW/°C	736 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.75	5	5.25	V
V _{IH}	High-level driver and control input voltage		2		V
V _{IL}	Low-level driver and control input voltage			0.8	V
	Bus termination voltage		1.9	2.1	V
T _A	Operating free-air temperature	0	70		°C

electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IK} Input clamp voltage at D _n , D _E , or R _E		I _I = - 18 mA			- 1.5	V
V _T Receiver input threshold at B _n			1.426	1.674		V
V _{OH} High-level output voltage at R _n		B _n at 1.2 V, R _E at 0.8 V, I _{OH} = - 1 mA	2.5			V
V _{OL} Low-level output voltage	R _n	B _n at 2 V, R _E at 0.8 V, I _{OL} = 20 mA			0.5	V
	B _n	D _n at 2.4 V, TE at 2.4 V, V _L = 2 V, R _L = 10 Ω, See Figure 1	0.75	1.2		
I _{IH} High-level input current	D _n , TE or R _E	V _I = V _{CC}		40		μA
	B _n	V _I = 2 V, V _{CC} = 0 or 5.25 V, D _n at 0.8 V, TE at 0.8 V,		100		
I _{IL} Low-level input current at D _n , TE or R _E		V _I = 0.4 V		- 400		μA
I _{OS} Short-circuit output current at R _n		R _n at 0 V, B _n at 1.2 V, R _E at 0.8 V	- 70	- 200		mA
I _{CC} Supply current				65		mA
C _{O(B)} Driver output capacitance		V _{CC} = 5 V, T _A = 25°C		6.5		pF

switching characteristics over recommended ranges of operating free-air temperature and V_{CC} (unless otherwise noted)

driver

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
t_{PLH} Propagation delay time, low-to-high-level output	Dn	Bn	TE at 3 V, See Figure 2	2	7	ns
t_{PHL} Propagation delay time high-to-low-level output	Dn	Bn	Dn at 3 V, See Figure 2	2	7	ns
t_{PLH} Propagation delay time, low-to-high-level output	Dn	Bn	Dn at 3 V, See Figure 2	2	7	ns
t_{PHL} Propagation delay time high-to-low-level output	Dn	Bn	TE at 3 V, See Figure 2	0.5	5	ns
Transition time, low-to-high-level output	Dn	Bn	TE at 3 V, See Figure 2	0.5	5	ns
Skew between driver channels [†]	Dn	Bn	TE at 3 V, $V_L = 2 V$	1	ns	

receiver

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
t_{PLH} Propagation delay time, low-to-high-level output	Bn	Rn	RE at 0.3 V, TE at 0.3 V, See Figure 3	2	8	ns
t_{PHL} Propagation delay time high-to-low-level output	RE	Rn	Bn at 2 V, TE at 0.3 V, $V_L = 5 V$, $C_L = 5 pF$, $R_{L1} = 500 \Omega$, See Figure 4	2	8	ns
t_{PLZ} Output disable time from low level	RE	Rn	Bn at 2 V, TE at 0.3 V, $V_L = 5 V$, $C_L = 5 pF$, $R_{L1} = 500 \Omega$, See Figure 4	6	ns	
t_{PZL} Output enable time to low level	RE	Rn	Bn at 2 V, TE at 0.3 V, $V_L = 5 V$, $C_L = 5 pF$, $R_{L1} = 500 \Omega$, See Figure 4	12	ns	
t_{PHZ} Output disable time from high level	RE	Rn	Bn at 1 V, TE at 0.3 V, $V_L = 0$, $C_L = 5 pF$, $R_{L1} = 500 \Omega$, See Figure 4	6	ns	
t_{PZH} Output enable time to high level	RE	Rn	Bn at 1 V, TE at 0.3 V, $V_L = 0$, $C_L = 5 pF$, $R_{L1} = 500 \Omega$, See Figure 4	12	ns	
Skew between receiver channels [†]	Bn	Rn	RE at 0.3 V, TE at 0.3 V	1	ns	

[†] Skew is the difference between the propagation delay time (t_{PLH} or t_{PHL}) of one receiver channel and that same propagation delay time of any other receiver channel. It applies for both t_{PLH} and t_{PHL} .

SN75ALS053 QUAD FUTUREBUS TRANSCEIVER

D3077, JANUARY 1988—REVISED SEPTEMBER 1989—TI0267

PARAMETER MEASUREMENT INFORMATION

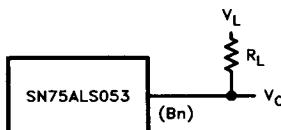
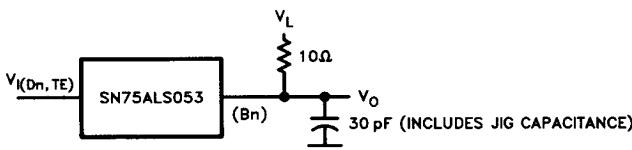
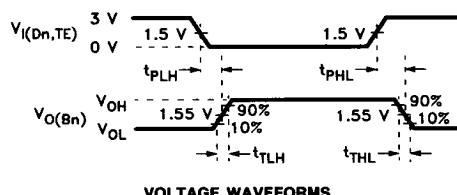
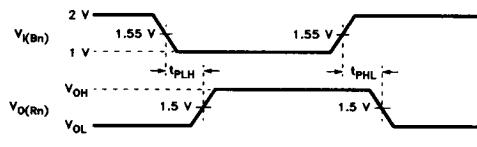
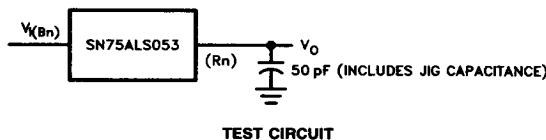
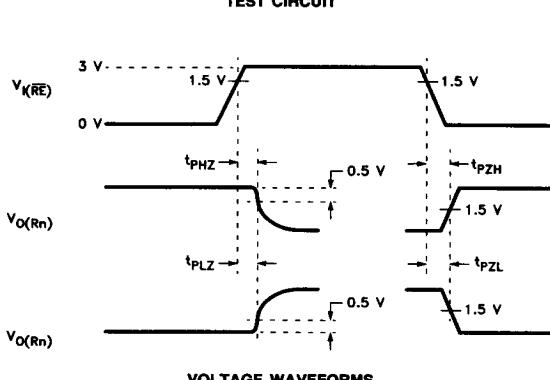
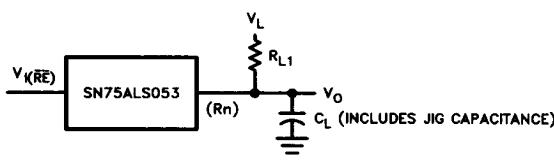




FIGURE 1. DRIVER LOW-LEVEL-OUTPUT-VOLTAGE TEST CIRCUIT



TEST CIRCUIT

NOTE: $t_r = t_f \leq 5$ ns from 10% to 90%



FIGURE 2. DRIVER PROPAGATION DELAY TIMES

PARAMETER MEASUREMENT INFORMATION

NOTE: $t_r = t_f \leq 10$ ns from 10% to 90%

FIGURE 3. RECEIVER PROPAGATION DELAY TIMES

NOTE: $t_r = t_f \leq 5$ ns from 10% to 90%

FIGURE 4. PROPAGATION DELAY FROM \overline{RE} TO R_n