

Schottky Rectifier, 2 x 30 A

TO-247AC

FEATURES

- 175 °C T_J operation
- Center tap TO-247 package
- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified for industrial level

DESCRIPTION

The 63CPQ100 center tap Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

PRODUCT SUMMARY	
$I_{F(AV)}$	2 x 30 A
V_R	100 V

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
$I_{F(AV)}$	Rectangular waveform	60	A
V_{RRM}		100	V
I_{FSM}	$t_p = 5 \mu s$ sine	2200	A
V_F	30 Apk, $T_J = 125$ °C (per leg)	0.64	V
T_J	Range	- 55 to 175	°C

VOLTAGE RATINGS			
PARAMETER	SYMBOL	63CPQ100	UNITS
Maximum DC reverse voltage	V_R		
Maximum working peak reverse voltage	V_{RWM}	100	V

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current per leg See fig. 5	$I_{F(AV)}$	50 % duty cycle at $T_C = 153$ °C, rectangular waveform		30	A
Maximum peak one cycle non-repetitive surge current per leg See fig. 7		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V_{RRM} applied	2200	
Non-repetitive avalanche energy per leg	E_{AS}	$T_J = 25$ °C, $I_{AS} = 1$ A, $L = 30$ mH		15	mJ
Repetitive avalanche current per leg	I_{AR}	Current decaying linearly to zero in 1 μs Frequency limited by T_J maximum $V_A = 1.5 \times V_R$ typical		1	A

63CPQ100

Vishay High Power Products Schottky Rectifier, 2 x 30 A

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum forward voltage drop per leg See fig. 1	$V_{FM}^{(1)}$	30 A	$T_J = 25 \text{ }^\circ\text{C}$	0.77	V	
		60 A		0.92		
		30 A	$T_J = 125 \text{ }^\circ\text{C}$	0.64		
		60 A		0.76		
Maximum reverse leakage current per leg See fig. 2	$I_{RM}^{(1)}$	$T_J = 25 \text{ }^\circ\text{C}$	$V_R = \text{Rated } V_R$	0.3	mA	
		$T_J = 125 \text{ }^\circ\text{C}$		25		
Threshold voltage	$V_{F(TO)}$	$T_J = T_J \text{ maximum}$		0.38	V	
Forward slope resistance	r_t			5.75	$\text{m}\Omega$	
Maximum junction capacitance per leg	C_T	$V_R = 5 \text{ V}_\text{DC}$ (test signal range 100 kHz to 1 MHz) $25 \text{ }^\circ\text{C}$		1300	pF	
Typical series inductance per leg	L_S	Measured lead to lead 5 mm from package body		7.5	nH	
Maximum voltage rate of change	dV/dt	Rated V_R		10 000	$\text{V}/\mu\text{s}$	

Note(1) Pulse width < 300 μs , duty cycle < 2 %**THERMAL - MECHANICAL SPECIFICATIONS**

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T_J, T_{Stg}		- 55 to 175	$^\circ\text{C}$
Maximum thermal resistance, junction to case per leg	R_{thJC}	DC operation See fig. 4	0.8	$^\circ\text{C}/\text{W}$
Maximum thermal resistance, junction to case per package		DC operation	0.4	
Typical thermal resistance, case to heatsink	R_{thCS}	Mounting surface, smooth and greased	0.25	
Approximate weight			6	g
			0.21	oz.
Mounting torque	minimum		6 (5)	$\text{kgf} \cdot \text{cm}$ (lbf · in)
	maximum		12 (10)	
Marking device		Case style TO-247AC (JEDEC)	63CPQ100	

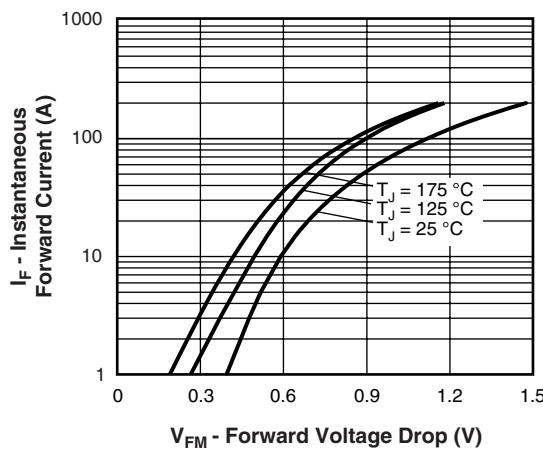


Fig. 1 - Maximum Forward Voltage Drop Characteristics

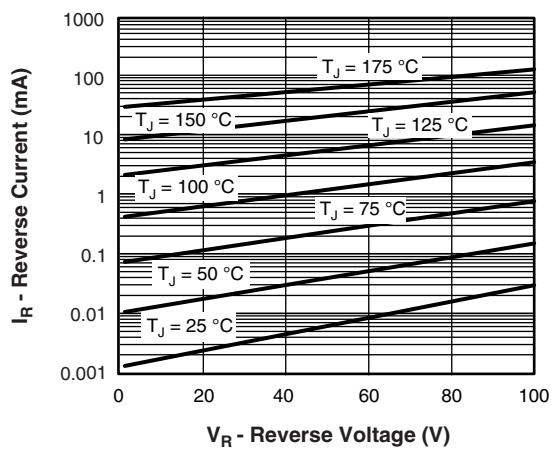


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

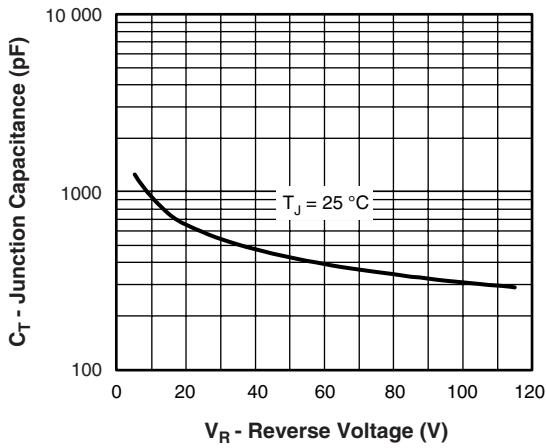


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

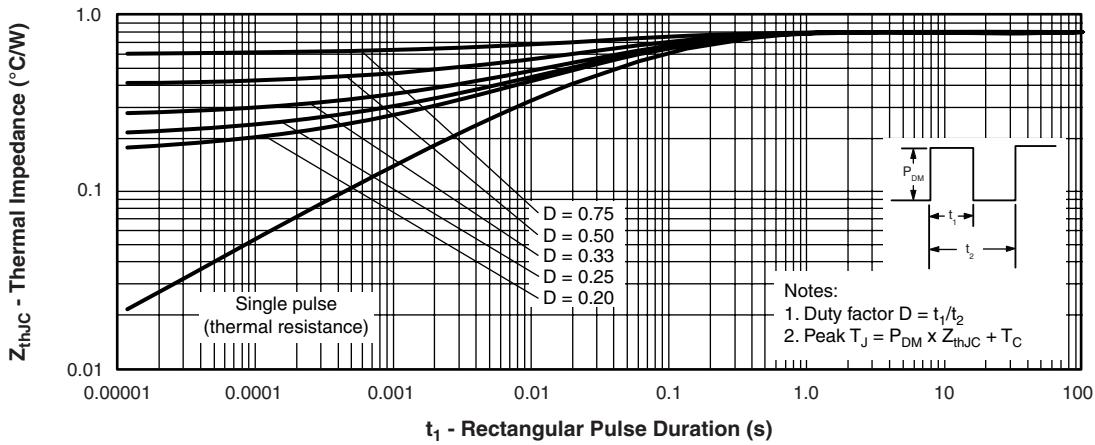


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

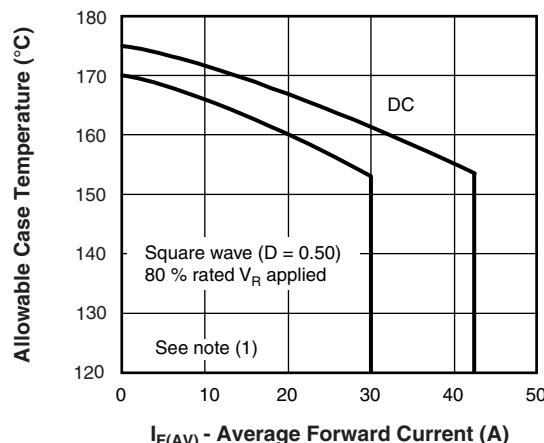


Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current

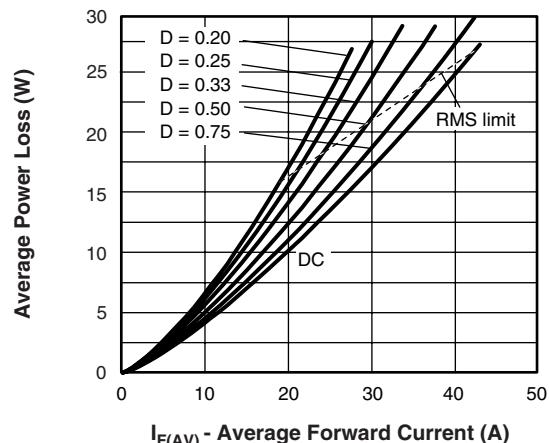


Fig. 6 - Forward Power Loss Characteristics

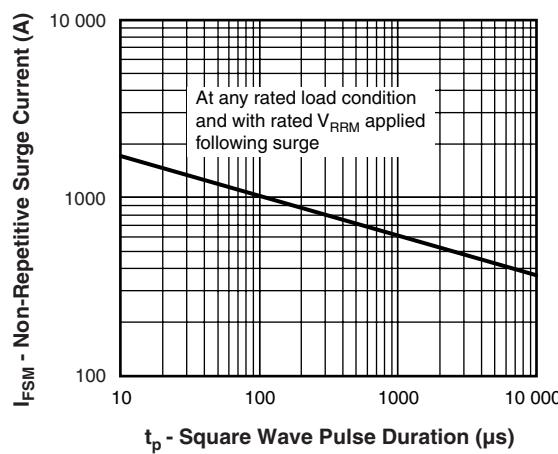


Fig. 7 - Maximum Non-Repetitive Surge Current

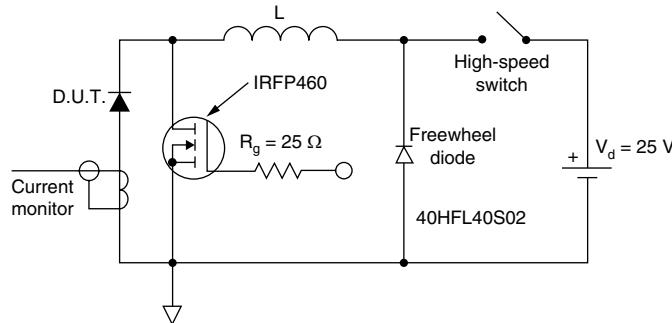


Fig. 8 - Unclamped Inductive Test Circuit

Note

(1) Formula used: $T_C = T_J - (P_d + P_{d,REV}) \times R_{th,JC}$;
 $P_d = \text{Forward power loss} = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6);}$
 $P_{d,REV} = \text{Inverse power loss} = V_{R1} \times I_R (1 - D); I_R \text{ at } V_{R1} = 80\% \text{ rated } V_R$

ORDERING INFORMATION TABLE

Device code	63	C	P	Q	100	-
	(1)	(2)	(3)	(4)	(5)	(6)

- (1)** - Current rating (60 A)
- (2)** - Circuit configuration:
C = Common cathode
- (3)** - Package:
P = TO-247
- (4)** - Schottky "Q" series
- (5)** - Voltage code
- (6)** - • None = Standard production
• PbF = Lead (Pb)-free

Tube standard pack quantity: 25 pieces

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95223
Part marking information	http://www.vishay.com/doc?95226

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.