4-channel temperature sensor IC for PCs with I²C BUS interface

BU9817FV

The BU9817FV is a 4-channel, 8-bit, A / D converter / overvoltage detector that is perfect for temperature sensors with built-in I²C BUS interfaces. The host can access the BU9817FV anytime for the voltage data.

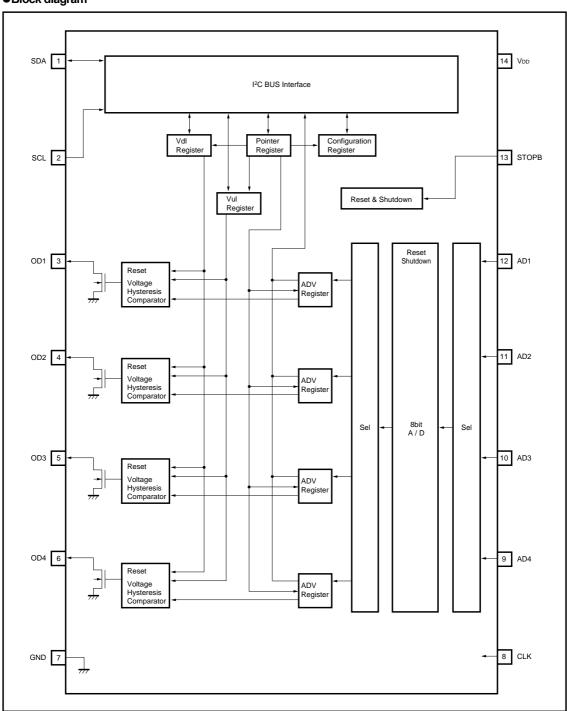
Applications

Notebook computers, desktop computers, household electric appliances

Features

- 1) By attaching a thermistor, a maximum four-channel temperature sensor is possible.
- 2) Can set comparison voltages independently.
- 3) Built-in I²C BUS interface.
- 4) Detection level and operating mode settings are programmable.
- 5) Extremely low operating current perfect for portable equipment.
- 6) Operating voltage of VDD = 3V to 5.5V.

● **Absolute maximum ratings** (Ta = 25°C)


Parameter	Symbol	Limits	Unit
Power supply voltage	V _{DD}	7.0	V
Power dissipation	Pd	350	mW
Operating temperature	Topr	- 15 ~ + 75	°C
Storage temperature	Tstg	- 55 ~ +12 5	°C
Voltage applied to pins	Vin	GND - 0.5 ~ VDD + 0.5	V

^{*} Reduced by 3.5mW for each increase in Ta of 1 $^{\circ}\text{C}$ over 25 $^{\circ}\text{C}.$

● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating power supply voltage	V _{DD}	3.0		5.5	V

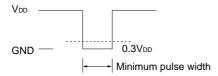
●Block diagram

●Pin descriptions

Pin No.	Pin name	Function
1	SDA	I ² C BUS Serial Data Line
2	SCL	I ² C BUS Serial Clock Input
3	OD1	Open Drain Output 1
4	OD2	Open Drain Output 2
5	OD3	Open Drain Output 3
6	OD4	Open Drain Output 4
7	GND	Ground
8	CLK	Clock for Logic Input
9	AD4	Analog-to-Digtal Converter Input 4
10	AD3	Analog-to-Digtal Converter Input 3
11	AD2	Analog-to-Digtal Converter Input 2
12	AD1	Analog-to-Digtal Converter Input 1
13	STOPB	Reset & Power save mode set
14	VDD	Supply Voltage 3.0V to 5.5V

•Input / output equivalent circuits

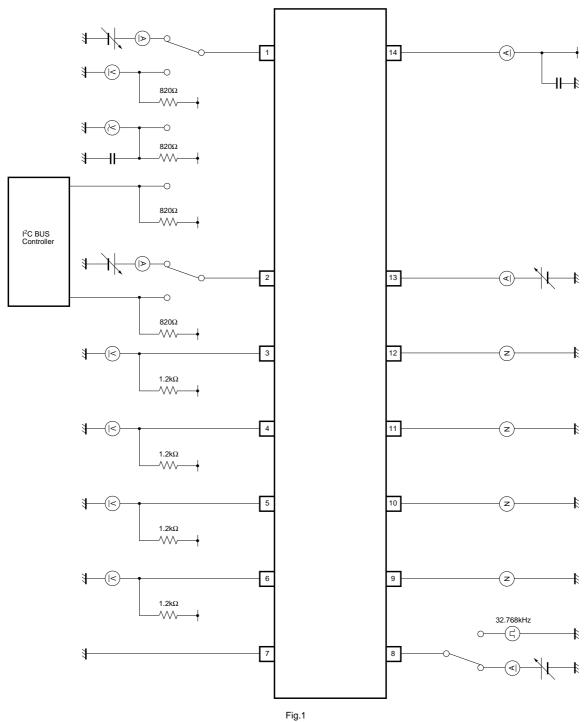
Pin. No	Pin name	Input / output circuits	Function
1	SDA		I ² C BUS serial data input / output. When only input address accords slave address (BU9817FV's), register data is inputted or outputted.
2	SCL		I ² C BUS serial clock input.
3 4 5 6	OD1 OD2 OD3 OD4		Open-drain output corresponds to AD1 to AD4 input. Connect this pin a pull-up resister. The pull-up resister should be above V_{DD} / 4mA (Ω) .
7	GND		Ground terminal.
8	CLK		Clock input for ADC block. Input clock is 32.768kHz. AD converter and voltage hysteresis comparator use this clock to operate.


●Input / output equivalent circuits

Pin. No	Pin name	Input / output circuits	Function
9 10 11 12	AD1 AD2 AD3 AD4		AD input. Each channel is converted in order. (AD1, AD2, AD3, AD4, AD1,AD2)
13	STOPB		Reset and power save mode setting. High: Operation mode Operation follows the setting of configuration register. Low: Reset & Power save mode Reset the all internal circuit and stop the ADC operation. Go into power save mode. * Be sure to set STOPB pin low for initial reset of the internal circuit, when the BU9816FV is power up.
14	Vod		Power supply. Supply voltage 3.0V to 5.5V.

ullet Electrical characteristics (unless otherwise noted, VDD = 5.0V, Ta = 25°C)

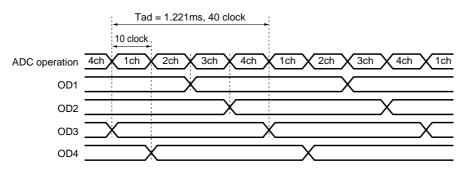
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Circuit current (normal)	Icc	0.2	0.75	2.0	mA	SDA, SCL = "H" CLK = 32.768kHz
Circuit current (shutdown / reset / STOPB)	Icc.sd	_	1.0	2.0	μΑ	SDA, SCL = "H" CLK = 32.768kHz Mode setting or STOPB = Low
Input high level voltage	ViH	$V_{DD} \times 0.7$	V_{DD}	VDD + 0.5	V	_
Input low level voltage	ViL	- 0.5	0.0	$V_{DD} \times 0.3$	V	_
Input high level current	liн	_	0.0	1.0	μΑ	_
Input low level current	li∟	- 1.0	0.0	_	μΑ	_
Input capacity	Ci	_	_	10	рF	_
Open drain output low level voltage	VoLod	0.0	0.2	0.6	V	loL = 4.0mA
SDA output low level voltage	VoLsda	0.0	0.2	0.6	V	loL = 6.0mA
SDA output fall time	tfsda	_	_	250	ns	CL = 400pF loL = 6.0mA
STOPB minimum pulse width	pwstopb	10	_	_	μs	_


$\langle {\rm STOPB\ minimum\ pulse\ width} \rangle$

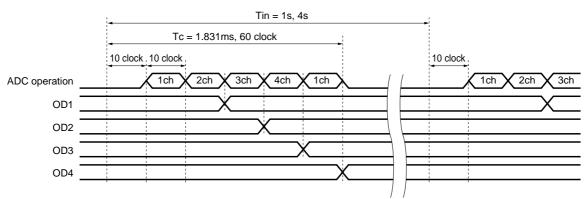
$\langle A / D \rangle$

AD resolution	RES	_	8	_	bits	_
Non-linearity error	Nle	-2	_	2	LSB	_
Differential non-linearity error	Ndle	– 1	_	1	LSB	2 points connected
1-channel conversion time	Tc	_	305	_	μs	fCLK = 32.768kHz
Input range	Ai	GND	_	V _{DD}	V	_

Measurement circuit


Explanation of operating mode

Operating mode	Configuration register settings	ADC operation conversion interval	Open drain operation timing	Register status	Current consumption (typ.)
Normal mode	00000**0b	1.221ms	10th clock after A / D conversion	Normal operation	0.75mA
Interval High mode	00110**0b	1 second intervals	10th clock after A / D conversion	Normal operation	Note: average less than 3μA
Interval Low mode	00100**0b	4 second intervals	10th clock after A / D conversion	Normal operation	Note: average less than 2μA
Shutdown mode	00000**1b	Stopped	Hold status	Hold data	Less than 1µA
Reset mode	00**1***b	Stopped	Reset fixed at high	Data reset	Less than 1µA


The asterisk can be either 0 or 1.

Explanation of ADC / open drain operation

(Normal mode)

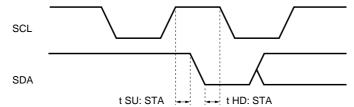
(Interval mode)

^{*} Conversion time is for fCLK = 32.768kHz.

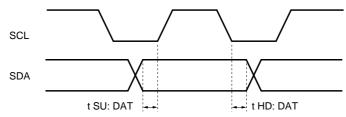
^{*} These mode setting bits (bit 0 and bits 3 to 5) are common for each channel, the last setting of bits (bit0 and bits3 to 5) is effective for all channels. Furthermore, bits 1 and 2 are independent and can be set for each channel.

* Note: These parameters are reference values derived through calculations and are not guaranteed characteristic values.

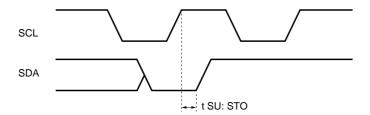
Explanation of I²C BUS interface


Slave address

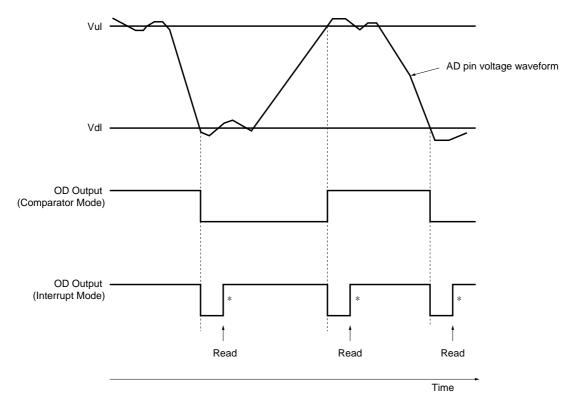
1	0	0	1	1	1	1	R/W
MSB							LSB


• Conforms to I²C BUS standards

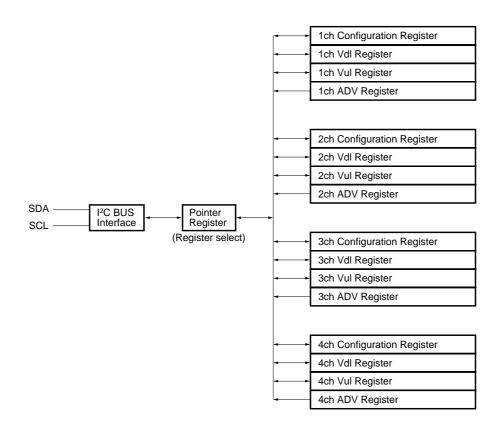
Parameter	Symbol	Min.	Max.	Unit
SCL clock frequency	f SCL	0	400	kHz
Start condition hold time	t HD: STA	0.6	_	μs
Start condition setup time	t SU: STA	0.6	_	μs
Data setup time	t SU: DAT	100	_	ns
Data hold time	t HD: DAT	0	0.9	μs
Stop condition setup time	t SU: STO	0.6	_	μs


(Start conditions)

(Data conditions)



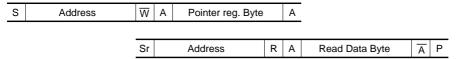
(Stop conditions)


OD output voltage response diagram

(Example: open-drain output is set active low)

^{*} Note: Resetting OD output under interrupt mode occurs at only shutdown mode or reset mode or STOPB or when data read generated from host. Except for these cases, OD output is kept setting.

Register structure


I²C Bus data structure

(1) Write Mode

S Address W A Pointer reg. Byte A Write Data Byte A

(2) Read Mode

1) Pointer register set

2) Preset pointer register

S	Address	R	Α	Read Data Byte	\overline{A}	Р

- S: Start condition
- P: Stop condition
- Sr: Restart condition
- A: acknowledge
- $\overline{\mathsf{A}}$: acknowledge bar

Mode settings table 1 / 2

(1) Pointer register (selects which registers will be read from or written to)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	Channel Select		Registe	r Select

D4 to D7: These bits are used for test mode and must be kept zero for normal operation.

Channel Select

D3	D2	Channel		
0	0	Channel 1		
0	1	Channel 2		
1	0	Channel 3		
1	1	Channel 4		

Register Select

D1	D0	Register
0	0	ADV Register (Read only) (Power on Reset default)
0	1	Configuration Register (Read / Write)
1	0	Vdl Register (Read / Write)
1	1	Vul Register (Read / Write)

(2) ADV Register (Read only)

Channel	D7	D6	D5	D4	D3	D2	D1	D0
1 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB
2 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB
3 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB
4 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB

D0 to D7: Voltage data
The defaults for the power-on-reset and reset modes are 1 for all bits.

(3) Configuration Register (Read / Write)

Channel	D7 D6 D5 D4 D3 I		D2	D1	D0			
1 ch	0	0		Interval Speed		Opendrain Polarity	Comp. / Int.	- Shutdown
2 ch	0	0	Interval		Reset	Opendrain Polarity	Comp. / Int.	
3 ch	0	0	Mode			Opendrain Polarity	Comp. / Int.	
4 ch	0	0				Opendrain Polarity	Comp. / Int.	

The defaults for the power-on-reset and reset modes are 0 for all bits.

Mode settings table 2 / 2

D0: Shutdown

"0" - Operation mode.

"1" - The BU9817FV stops A / D operation and goes into low power shutdown mode.

D0 bit of each channel is common bit.

D1: Comparator / Interrupt mode

"0" - Comparator mode.

"1" - Interrupt mode.

D2: Open Drain Polarity

"0" - active low.

"1" - active high.

D3: Reset

"0" - Operation mode.

"1" - Reset any bits except D3 bit of the configuration register, any registers, the A / D converter, and the voltage hysteresis comparator.

D3 bit of each channel is common bit.

D4: Interval Speed

Set the conversion cycle time of the 8bit A / D and the voltage hysteresis comparator when D5 bit (Interval Mode) is "1".

"0" - conversion cycle time is 4s.

"1" - conversion cycle time is 1s.

D4 bit of each channel is common bit.

D5: Interval Mode

"0" - normal mode.

"1" - Interval mode.

D5 bit of each channel is common bit.

(4) Vul and Vdl Register (Read / Write)

Channel	D7	D6	D5	D4	D3	D2	D1	D0
1 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB
2 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB
3 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB
4 ch	MSB	bit6	bit5	bit4	bit3	bit2	bit1	LSB

D0 to D7: Voltage limit data of Vul and Vdl.

Default after power on reset and reset mode is Vul = 80h, Vdl = 66h.

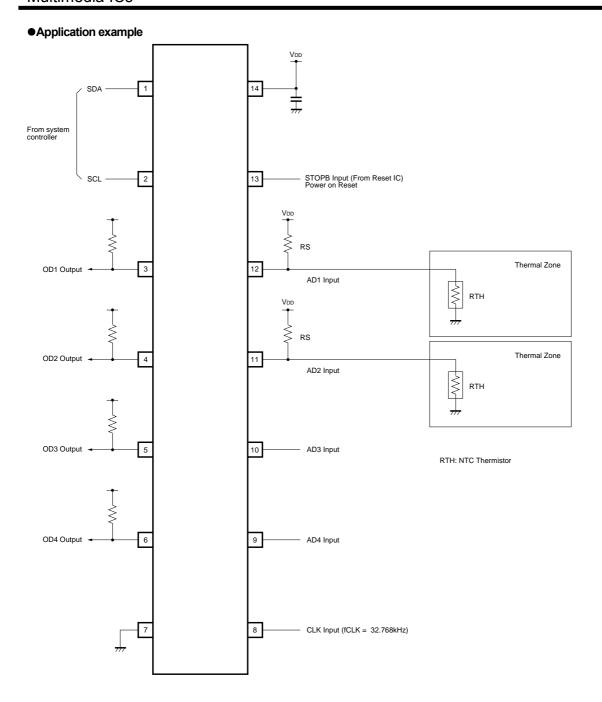
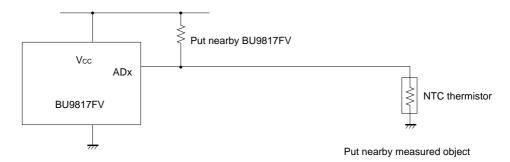
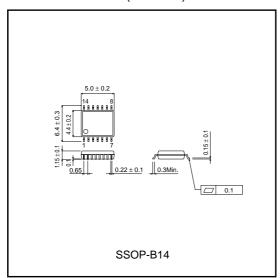



Fig.2

Explanation for external components


(1) AD input pin (example when used as a temperature sensor)

To the AD input pin, input a voltage with divided resistance from a resistor and NTC thermistor. For the sensor to measure the temperature, the NTC thermistor is used. The thermistor is a p-type semiconductor and as the temperature increases, the resistance value becomes lower. In other words, the resistance temperature coefficient is negative, and so the AD input pin voltage temperature characteristics are also negative.

GND is required common and stability.

●External dimensions (Units : mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

