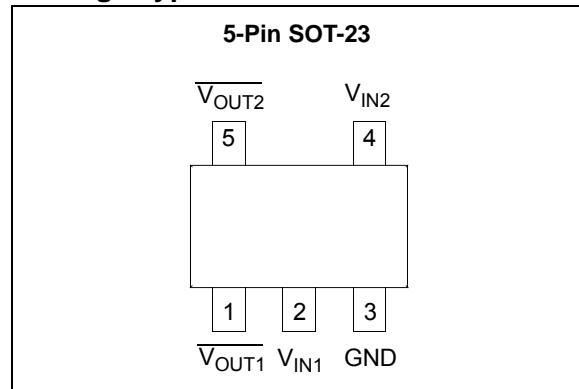


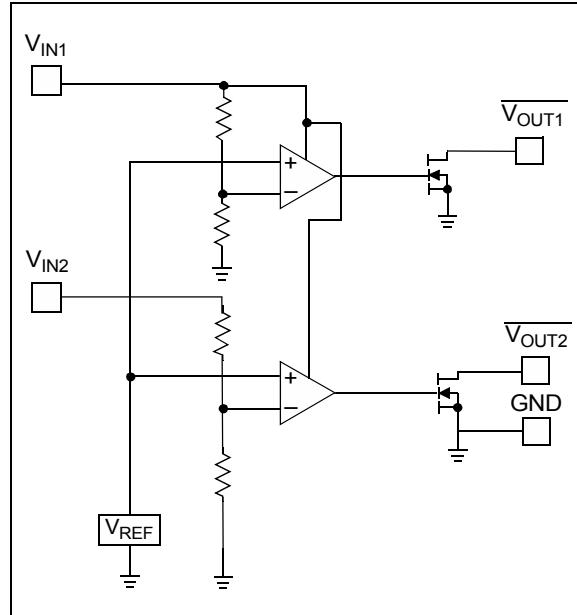
Dual-Channel Voltage Detector

Features

- Two Independent Voltage Detectors in One Package
- Highly Accurate: $\pm 2\%$
- Low Power Consumption: 2.0 μA , typical
- Channel 1 Detect Voltage: 3.0V, 4.5V
- Channel 2 Detect Voltage: 2.7V
- Operating Voltage: 1.5V to 10.0V
- Output Configuration: N-Channel Open-Drain
- Space-Saving 5-Pin SOT-23 Package


Description

The TC52 consists of two independent low-power voltage detectors in a space-saving 5-pin SOT-23 package. Typical supply current consumption is only 2 μA at an input voltage of 2V. The voltage detection threshold settings are factory-programmed and guaranteed to $\pm 2\%$ accuracy. The TC52 is available with open drain (NMOS) configurations. Small-size, high-precision, low-supply current, and low installed cost makes the TC52 the ideal voltage detector for a wide variety of voltage monitoring applications.


Typical Applications

- Battery Life Monitors and Recharge Voltage Monitors
- Memory Battery Backup Circuitry
- Power-On Reset Circuits
- Power Failure Detection
- Delay Circuitry

Package Type

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage	+12V
Output Current	50 mA
Output Voltage	$V_{IN} + 0.3V$ to $V_{SS} - 0.3V$
Power Dissipation		
5-Pin SOT-23	100 mW
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-40°C to +125°C

† **Notice:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $T_A = 25^\circ\text{C}$, unless otherwise specified. Note 1.

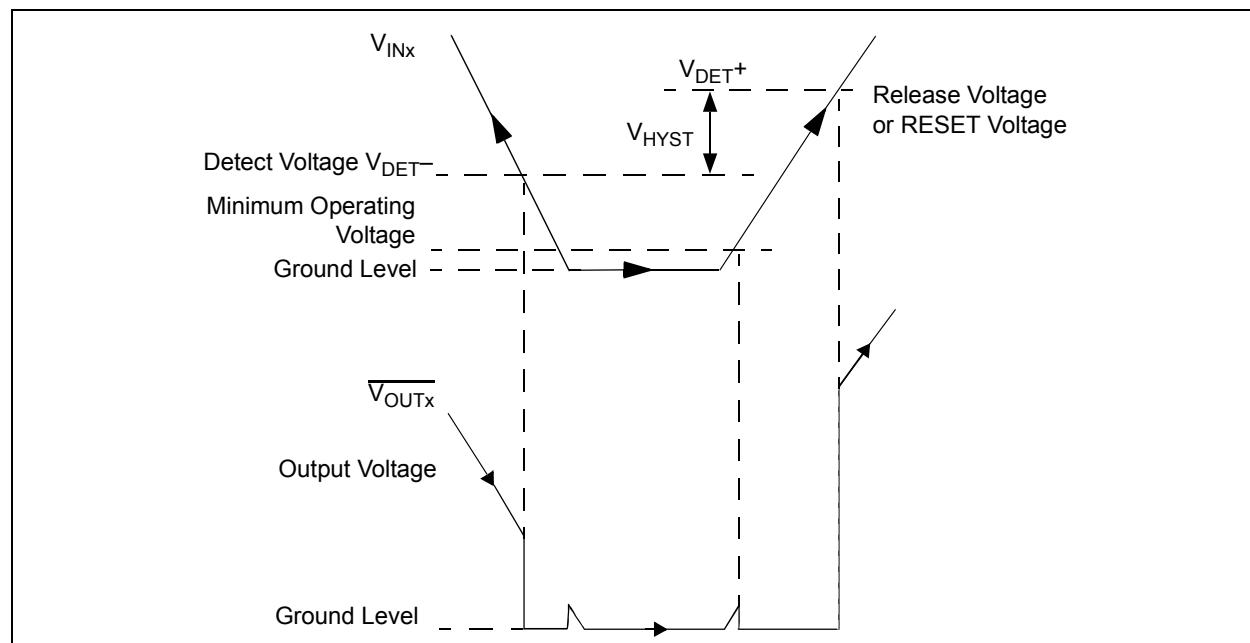
Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions
Operating Voltage	V_{IN}	1.5	—	10.0	V	$V_{DF}(T) = 1.5$ to 5.0V
Supply Current	I_{SS}	—	1.35	3.90	μA	$V_{IN1} = 1.5\text{V}$
		—	1.50	4.50		$V_{IN1} = 2.0\text{V}$
		—	1.95	5.10		$V_{IN1} = 3.0\text{V}$
		—	2.40	5.70		$V_{IN1} = 4.0\text{V}$
		—	3.00	6.30		$V_{IN1} = 5.0\text{V}$
Input Current V_{IN2}	I_{IN2}	—	0.45	1.30	μA	$V_{IN1} = 1.5\text{V}$
		—	0.50	1.50		$V_{IN1} = 2.0\text{V}$
		—	0.65	1.70		$V_{IN1} = 3.0\text{V}$
		—	0.80	1.90		$V_{IN1} = 4.0\text{V}$
		—	1.00	2.10		$V_{IN1} = 5.0\text{V}$
Channel 1 Detect Voltage	V_{DET1^-}	$V_{T1} \times 0.98$	$V_{T1} \pm 0.5\%$	$V_{T1} \times 1.02$	V	Note 2
Channel 2 Detect Voltage	V_{DET2^-}	$V_{T2} \times 0.98$	$V_{T2} \pm 0.5\%$	$V_{T2} \times 1.02$	V	Note 2
Hysteresis Range 1	V_{HYS1}	$V_{DET1^-} \times 0.02$	$V_{DET1^-} \times 0.05$	$V_{DET1^-} \times 0.08$	V	
Hysteresis Range 2	V_{HYS2}	$V_{DET2^-} \times 0.02$	$V_{DET2^-} \times 0.05$	$V_{DET2^-} \times 0.08$	V	
Output Current	I_{OUT}	0.3	2.2	—	mA	$V_{OL} = 0.5\text{V}, V_{IN1} = 1.0\text{V}$
		3.0	7.7	—		$V_{OL} = 0.5\text{V}, V_{IN1} = 2.0\text{V}$
		5.0	10.1	—		$V_{OL} = 0.5\text{V}, V_{IN1} = 3.0\text{V}$
		6.0	11.5	—		$V_{OL} = 0.5\text{V}, V_{IN1} = 4.0\text{V}$
		7.0	13.0	—		$V_{OL} = 0.5\text{V}, V_{IN1} = 5.0\text{V}$
Temperature Characteristics	$\Delta V_{DET^-}/(\Delta T_{OPR} V_{DET^-})$	—	± 100	—	ppm/°C	$-40^\circ\text{C} \leq T_{OPR} \leq 85^\circ\text{C}$
Detection Time	t_{DLY}	—	—	0.2	usec	Time from $V_{IN} = V_{DET^-}$ to $V_{OUT} = V_{OL}$

Note 1: Additional resistance between the V_{IN1} pin and the supply voltage may alter the electrical characteristics.

2: V_{T1}, V_{T2} are the factory-programmed voltage detection thresholds.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in [Table 2-1](#).


TABLE 2-1: PIN FUNCTION TABLE

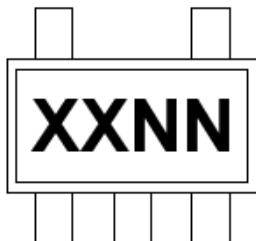
Pin No. (5-Pin SOT-23)	Symbol	Description
1	V_{OUT1}	Detector #1 output
2	V_{IN}	Supply voltage input, detect voltage 1
3	GND	Ground terminal
4	V_{IN2}	Detect voltage 2
5	V_{OUT2}	Detector #2 output

3.0 DETAILED DESCRIPTION

In normal steady-state operation and for either channel, when $V_{IN} > V_{DET^-}$, the output is high, see [Figure 3-1](#). (In the case of the TC52N, this is an open-drain condition.) If and when the input falls below V_{DET^-} , the output pulls down (Logic 0) to V_{SS} . Generally, V_{OUT} can pull down to within 0.5V of V_{SS} at rated output current and input voltages. (Also see [Section 1.0, Electrical Characteristics](#)).

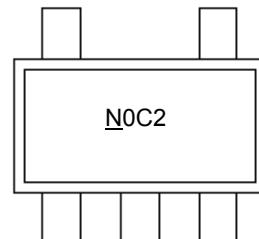
The output, V_{OUT} , stays valid until the input voltage falls below the minimum operating voltage, V_{INMIN} , of 0.7V. Below this minimum operating voltage, the output is undefined. During power-up or anytime V_{IN} has fallen below V_{INMIN} , V_{OUT} will remain undefined until V_{IN} rises above V_{INMIN} , at which time the output becomes valid. V_{OUT} is maintained in its active low state while $V_{INMIN} < V_{IN} < V_{DET^+}$. ($V_{DET^+} = V_{DET^-} + V_{HYST}$). If and when the input rises above V_{DET^+} , the output will assume its inactive state (open-drain for TC52N).

FIGURE 3-1: Timing Diagram.


4.0 APPLICATION INFORMATION

Pin 2 (V_{IN1}) acts as both the input to Voltage Detector #1 and the power supply input for the chip. As such, always assign V_{IN1} to monitor voltages between 1.5V and 10V. Failure to do this will result in unreliable detector operation due to an out-of-tolerance supply voltage. In high-noise environments, it may be necessary to install a small input bypass capacitor (0.01 μ F to 0.1 μ F) from V_{IN1} to ground to minimize on-chip power supply noise.

5.0 PACKAGING INFORMATION


5.1 Package Marking Information

5-Lead SOT-23

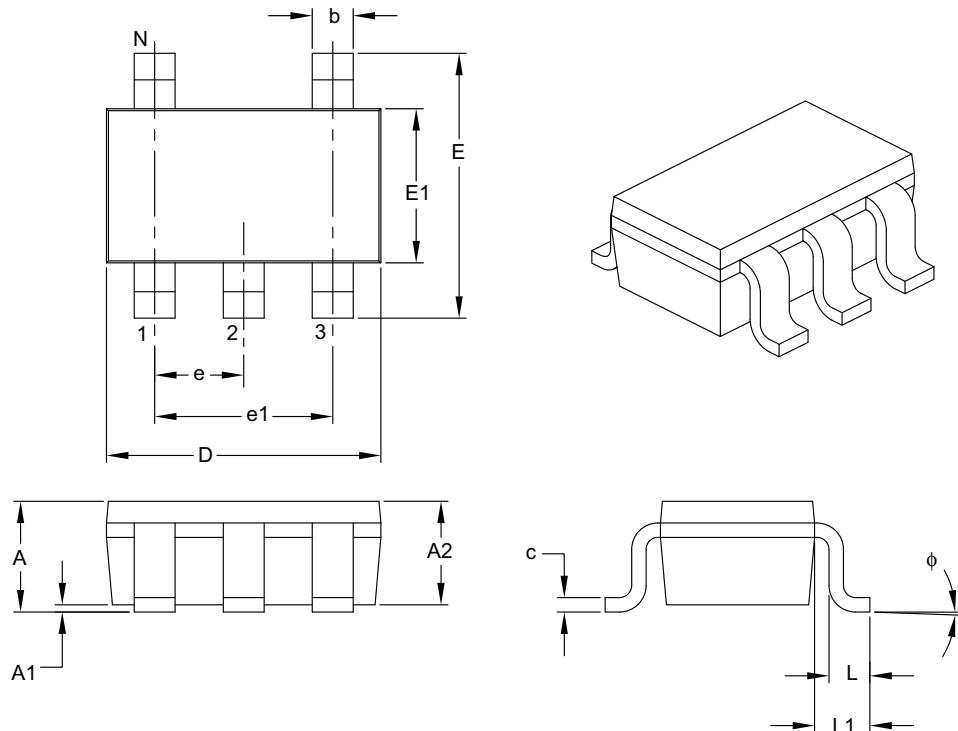
Standard Markings for SOT-23	
Part Number	Code
TC52N3027ECTTR	<u>N</u> 0C#
TC52N4527ECTTR	<u>N</u> 0P#

Example

N-channel Indication and Integer Part of Output Voltage

Symbol	Output
<u>N</u>	Nch

Registration Serial Number


Symbol	Detected Voltage 1	Detected Voltage 2
0C	3.0	2.7
0P	4.5	2.7

Legend:	XX...X	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	(e3)	Pb-free JEDEC designator for Matte Tin (Sn)
*		This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

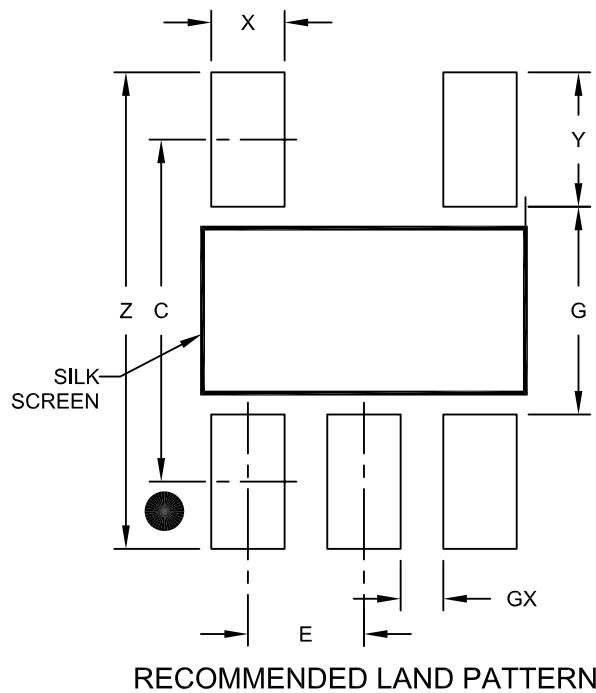
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension Limits		MILLIMETERS		
		MIN	NOM	MAX
Number of Pins	N	5		
Lead Pitch	e		0.95 BSC	
Outside Lead Pitch	e1		1.90 BSC	
Overall Height	A	0.90	—	1.45
Molded Package Thickness	A2	0.89	—	1.30
Standoff	A1	0.00	—	0.15
Overall Width	E	2.20	—	3.20
Molded Package Width	E1	1.30	—	1.80
Overall Length	D	2.70	—	3.10
Foot Length	L	0.10	—	0.60
Footprint	L1	0.35	—	0.80
Foot Angle	ϕ	0°	—	30°
Lead Thickness	c	0.08	—	0.26
Lead Width	b	0.20	—	0.51

Notes:


1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B

5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension	Limits	UNITS MILLIMETERS		
		MIN	NOM	MAX
Contact Pitch	E		0.95 BSC	
Contact Pad Spacing	C		2.80	
Contact Pad Width (X5)	X			0.60
Contact Pad Length (X5)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091A

TC52

NOTES:

APPENDIX A: REVISION HISTORY

Revision E (February 2015)

- Updated device status to Obsolete.

Revision D (August 2013)

The following is the list of modifications:

1. Updated the detect voltage values in **“Features”**.
2. Updated the **“Package Type”** drawing.
3. Updated **Section 5.0, "Packaging Information"** with the latest package specification drawings.
4. Updated the **“Product Identification System”** section.

Revision C (December 2012)

- Added a note to each package outline drawing.

Revision B (May 2002)

- Undocumented changes.

Revision A (March 2001)

- Original Release of this Document.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X	XX	XX	-X	XX	XX
Device Configuration	Output Voltage	Detected Voltage 1	Detected Voltage 2	Temperature Range	Package	Tape and Reel
Device: TC52N3027ECTTR: 3.0V and 2.7V Dual Channel Voltage Detector (Tape and Reel) TC52N4527ECTTR: 4.5V and 2.7V Dual Channel Voltage Detector (Tape and Reel)						
Output Configuration: N = Open Drain						
Detected Voltage 1: 30 = 3.0V 45 = 4.5V						
Detected Voltage 2: 27 = 2.7V						
Temperature Range: E = -40°C to +125°C						
Package: CT = Plastic Small Outline Transistor (CT), 5-Lead						

Examples:

- a) TC52N3027ECTTR: 3.0V and 2.7V Dual Channel Voltage Detector, 5LD SOT-23 package, Tape and Reel
- b) TC52N4527ECTTR: 4.5V and 2.7V Dual Channel Voltage Detector, 5LD SOT-23 package, Tape and Reel

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. **MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.** Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQL, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-069-1

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

= ISO/TS 16949 =

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMS, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Canada - Toronto

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200

Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820