

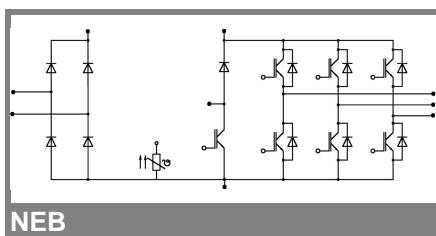
MiniSKiiP® 0

1-phase bridge rectifier +
brake chopper + 3-phase
bridge inverter
SKiiP 03NEB066V3

Features

- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications*


- Inverter up to 5,6 kVA
- Typical motor power 3,0 kW

Remarks

- Case temperature limited to $T_C = 125^\circ\text{C}$ max.
- Product reliability results are valid for $T_j = 150^\circ\text{C}$
- SC data: $t_p \leq 6 \mu\text{s}$; $V_{GE} \leq 15 \text{ V}$; $T_j = 150^\circ\text{C}$; $V_{CC} = 360 \text{ V}$
- V_{CEsat} , V_F = chip level value

Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT - Inverter, Chopper				
V_{CES}		600		V
I_C	$T_s = 25 (70)^\circ\text{C}$, $T_j = 150^\circ\text{C}$	25 (17)		A
I_C	$T_s = 25 (70)^\circ\text{C}$, $T_j = 175^\circ\text{C}$	27 (21)		A
I_{CRM}	$t_p = 1 \text{ ms}$	30		A
V_{GES}		± 20		V
Diode - Inverter, Chopper				
I_F	$T_s = 25 (70)^\circ\text{C}$, $T_j = 150^\circ\text{C}$	24 (16)		A
I_F	$T_s = 25 (70)^\circ\text{C}$, $T_j = 175^\circ\text{C}$	28 (21)		A
I_{FRM}	$t_p = 1 \text{ ms}$	30		A
Diode - Rectifier				
V_{RRM}		800		V
I_F	$T_s = 70^\circ\text{C}$	35		A
I_{FSM}	$t_p = 10 \text{ ms}$, $\sin 180^\circ$, $T_j = 25^\circ\text{C}$	220		A
i_{t}	$t_p = 10 \text{ ms}$, $\sin 180^\circ$, $T_j = 25^\circ\text{C}$	240		A ² s
I_{IRMS}	per power terminal (20 A / spring)	20		A
T_j	IGBT, Diode	-40...+175		°C
T_{stg}		-40...+125		°C
V_{isol}	AC, 1 min.	2500		V

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT - Inverter, Chopper				
$V_{CE(\text{sat})}$	$I_{Cnom} = 15 \text{ A}$, $T_j = 25 (150)^\circ\text{C}$	1,45 (1,65)	1,85 (2,05)	V
$V_{GE(\text{th})}$	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5,8		V
$V_{CE(\text{TO})}$	$T_j = 25 (150)^\circ\text{C}$	0,9 (0,85)	1 (0,9)	V
r_{CE}	$T_j = 25 (150)^\circ\text{C}$	40 (57)	60 (80)	mΩ
C_{ies}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$	0,86		nF
C_{oes}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$	0,18		nF
C_{res}	$V_{CE} = 25 \text{ V}$, $V_{GE} = 0 \text{ V}$, $f = 1 \text{ MHz}$	0,12		nF
$R_{CC'EE'}$	spring contact-chip $T_s = 25 (150)^\circ\text{C}$			mΩ
$R_{th(j-s)}$	per IGBT	1,8		K/W
$t_{d(on)}$	under following conditions	20		ns
t_r	$V_{CC} = 300 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$	30		ns
$t_{d(off)}$	$I_{Cnom} = 15 \text{ A}$, $T_j = 150^\circ\text{C}$	155		ns
t_f	$R_{Gon} = R_{Goff} = 22 \Omega$	45		ns
E_{on} (E_{off})	inductive load	0,6 (0,5)		mJ
Diode - Inverter, Chopper				
$V_F = V_{EC}$	$I_F = 15 \text{ A}$, $T_j = 25 (150)^\circ\text{C}$	1,4 (1,4)	1,7 (1,7)	V
$V_{(TO)}$	$T_j = 25 (150)^\circ\text{C}$	1 (0,9)	1,1 (1)	V
r_T	$T_j = 25 (150)^\circ\text{C}$	27 (34)	40 (47)	mΩ
$R_{th(j-s)}$	per diode	2,5		K/W
I_{RRM}	under following conditions	19,8		A
Q_{rr}	$I_{Fnom} = 15 \text{ A}$, $V_R = 300 \text{ V}$	1,9		μC
E_{rr}	$V_{GE} = 0 \text{ V}$, $T_j = 150^\circ\text{C}$	0,5		mJ
di_F/dt	$= 930 \text{ A}/\mu\text{s}$			
Diode - Rectifier				
V_F	$I_{Fnom} = 15 \text{ A}$, $T_j = 25^\circ\text{C}$	1,1		V
$V_{(TO)}$	$T_j = 150^\circ\text{C}$	0,8		V
r_T	$T_j = 150^\circ\text{C}$	20		mΩ
$R_{th(j-s)}$	per diode	1,5		K/W
Temperature Sensor				
R_{ts}	3% , $T_r = 25 (100)^\circ\text{C}$	1000(1670)		Ω
Mechanical Data				
w		21,5		g
M_s	Mounting torque	2	2,5	Nm

NEB

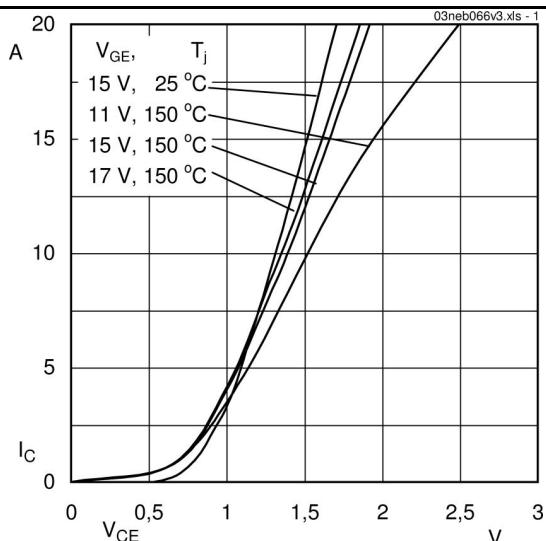


Fig. 1 Typ. output characteristic

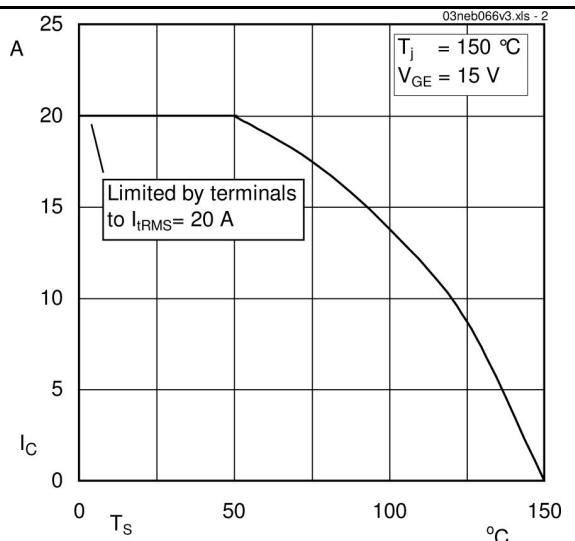


Fig. 2 Typ. rated output current

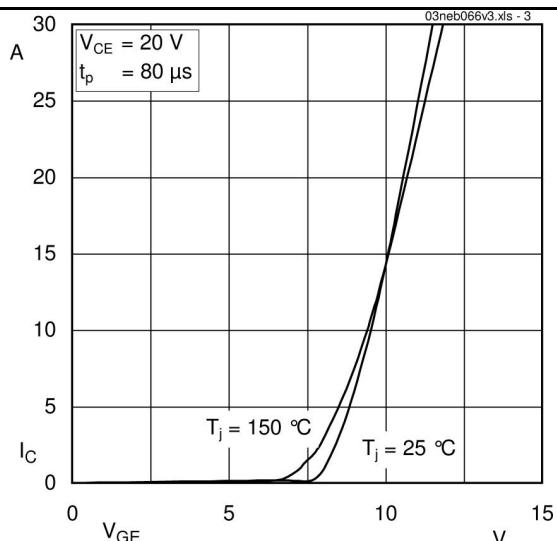


Fig. 3 Typ. transfer characteristic

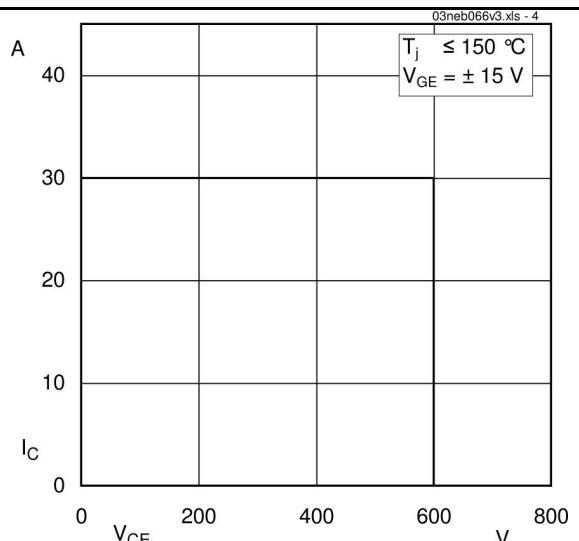


Fig. 4 Reverse bias safe operating area

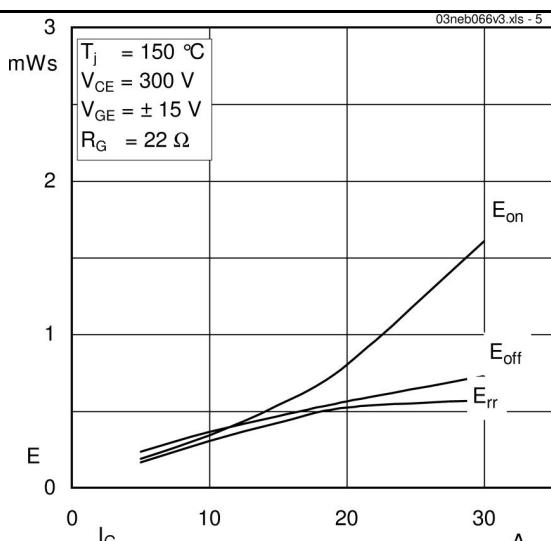


Fig. 5 Typ. Turn-on /-off energy = $f(I_C)$

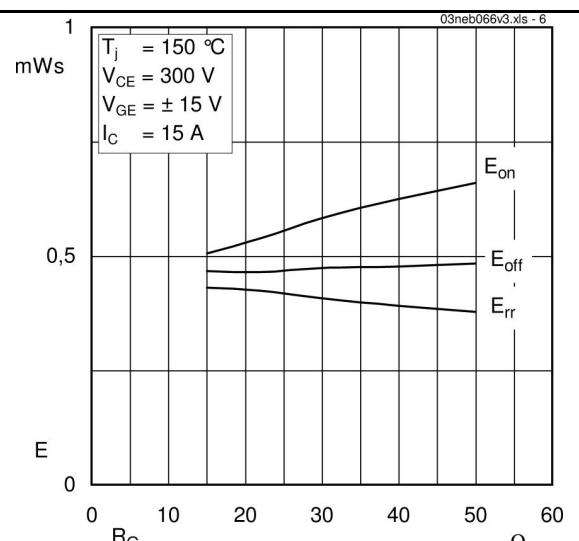


Fig. 6 Typ. Turn-on /-off energy = $f(R_G)$

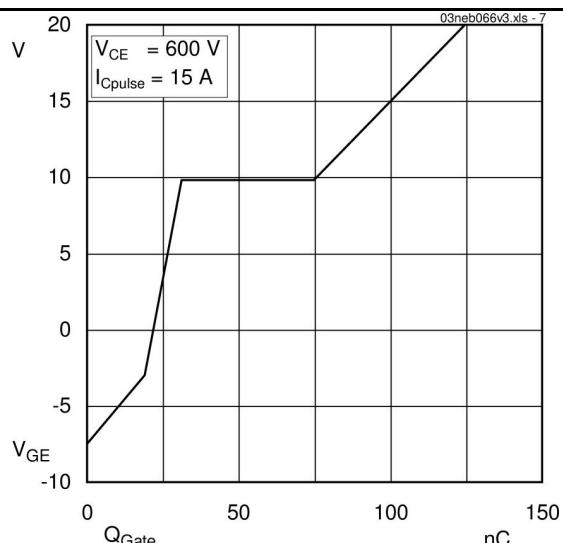


Fig. 7 Typ. gate charge characteristic

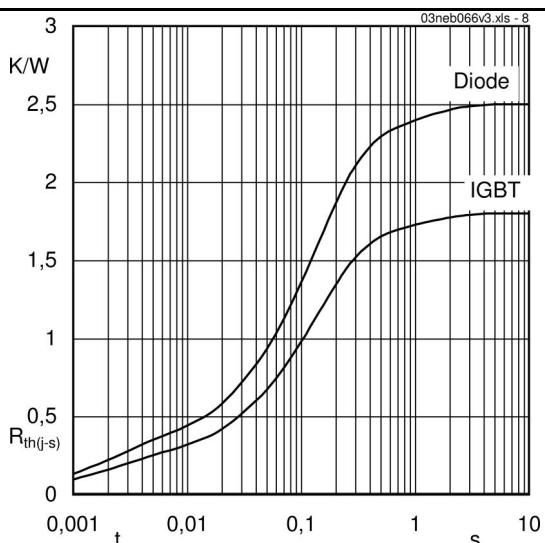


Fig. 8 Typ. thermal impedance

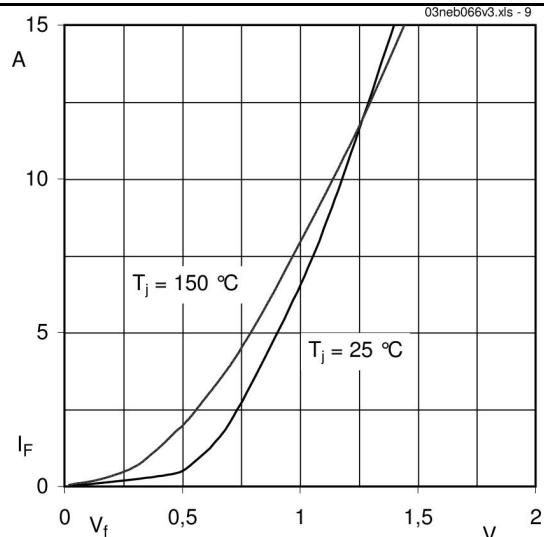


Fig. 9 Typ. freewheeling diode forward characteristic

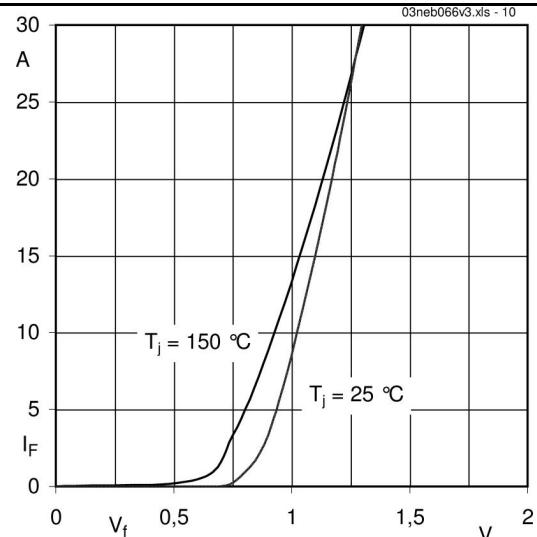
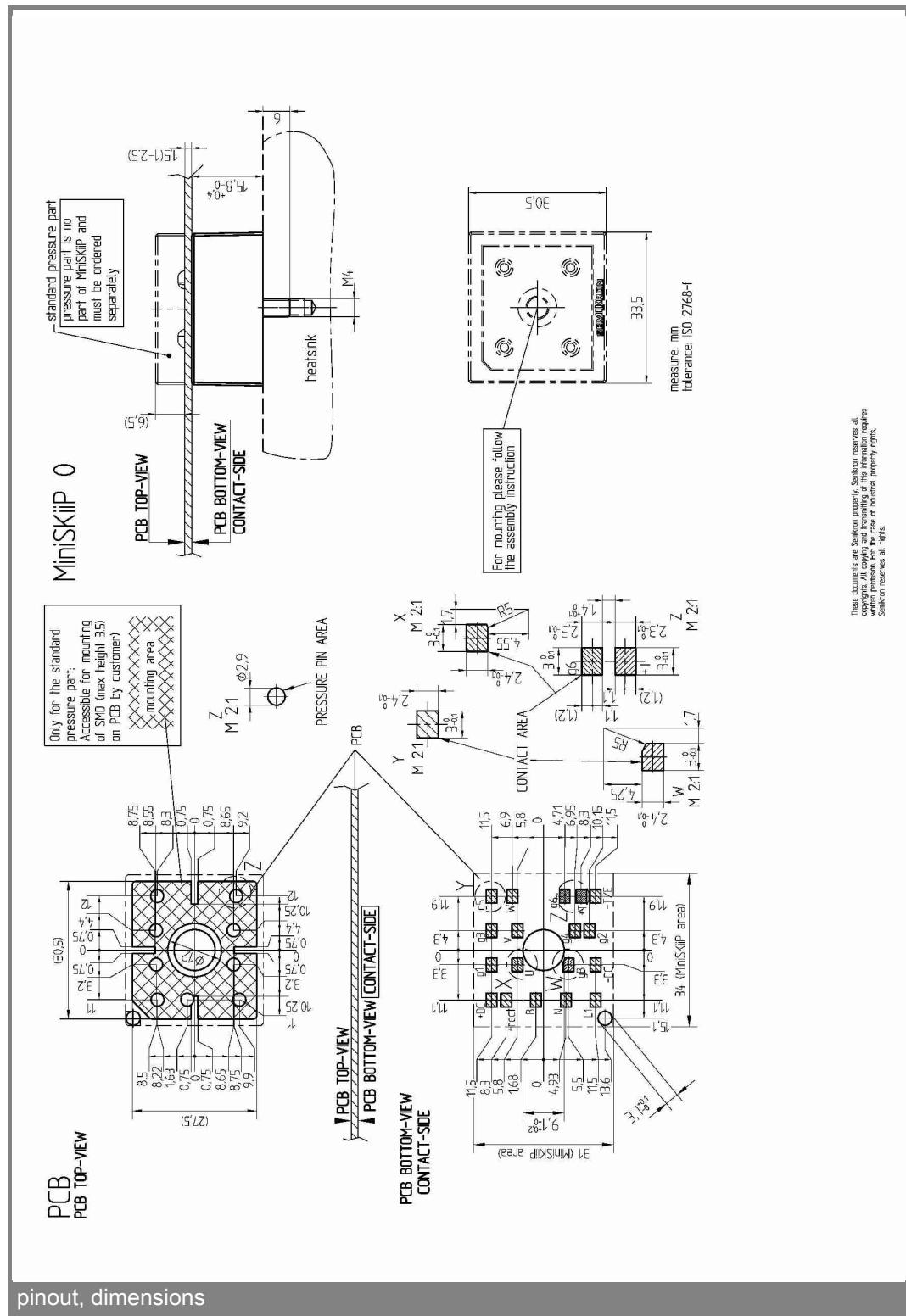
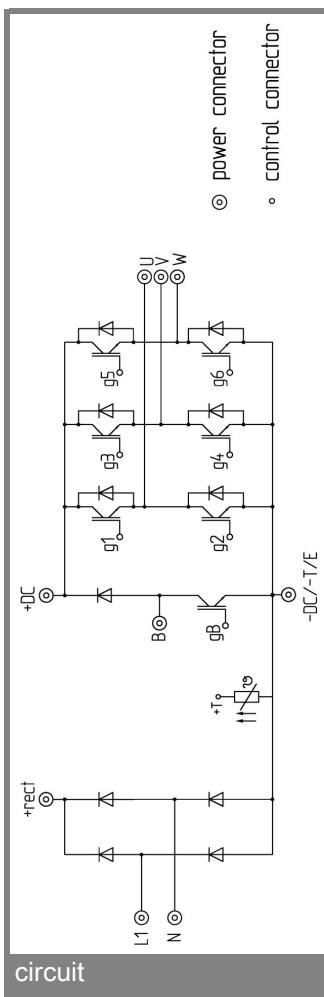




Fig. 10 Typ. input bridge forward characteristic

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.