

# High Temperature Quad Operational Amplifier HT1104

The High Temperature Quad Operational Amplifier, HT1104, is a versatile performer over an extremely wide temperature range. It is fabricated with Honeywell's dielectrically isolated high-temperature linear (HTMOS™) process, and is designed specifically for use in systems operating in severe high temperature environments. All parts are burned in at 250°C.



These amplifiers provide guaranteed performance over the full -55 to 225°C temperature range. Typically, parts will operate up to +300°C for a year, with derated performance. The HT1104 will operate with both single and split supplies. High temperature applications such as transducer interfacing, amplification, active filtering, and signal buffering are all possible with the HT1104.

### **APPLICATIONS:**

- Down-Hole Oil Well
- > Turbine Engine Control
- Avionics
- Industrial Process Control
- Electric Power Conversion
- > Heavy Duty Internal Combustion Engine

### **FEATURES**

- Specified Over -55 to +225°C
- Single or Split Supply Operation
- Common-Mode Input Voltage Range Includes Negative Rail
- Low Input Bias and Offset Parameters

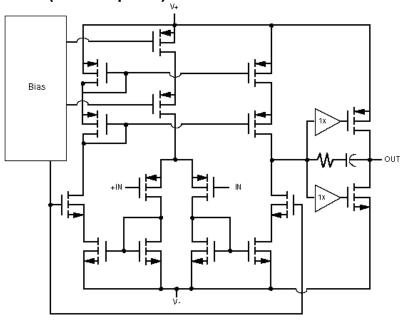
- Input/Output Overload Protection
- ESD Protection Circuitry
- Latch-up Free Design with Dielectric Isolation
- Hermetic 14-Lead Ceramic DIP

### HT1104

### **ELECTRICAL CHARACTERISTICS**

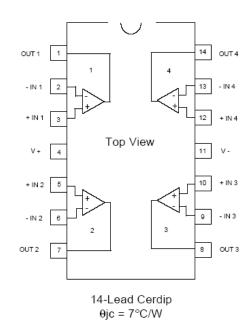
| Symbol   | Parameter                      | Conditions (1)                                  | Тур      | Min  | Max             | Units   |
|----------|--------------------------------|-------------------------------------------------|----------|------|-----------------|---------|
| $V_{DD}$ | Supply Voltage (2)             | -55 to +225°C                                   |          | 5.0  | 11              | V       |
| IDD      | Supply Current (total package) | -55 to +225°C                                   | 2 (25°C) |      | 10 (225°C)      | mA      |
| VO       | Output Voltage Swing           | Vs ±5V, R =10kΩ, C =20pF                        |          | -4.8 | +4.6<br>(225°C) | V       |
| lO       | Output Short Circuit Current   | Sink/Source (3)                                 | 15       |      |                 | mA      |
| VIO      | Input Offset Voltage           | @ 25°C                                          | 2        |      |                 | mV      |
|          |                                | -55 to +225°C                                   |          |      | 7               | mV      |
|          |                                | Drift with Temperature (4)                      | 10       |      | 15              | μV/°C   |
|          |                                | Drift with Time (4)                             | 100      |      |                 | μV/Year |
| N        | Noise                          | fo = 10 Hz (4)                                  | 200      |      |                 | nv/√Hz  |
|          |                                | fo = 1 kHz (4)                                  | 30       |      |                 | nv/√Hz  |
|          |                                | f = 0 to 10 Hz (4)                              | 8        |      |                 | μV, p-p |
| lΟ       | Input Offset Current           | @ 25°C                                          | 0.01     |      |                 | nA      |
|          |                                | -55 to +225°C (5)                               | 5        |      | 50              |         |
| lΒ       | Input Bias Current             | @ 25°C                                          | 0.01     |      |                 | nA      |
|          |                                | -55 to +225°C (5)                               | 10       |      | 50              |         |
| $V_{CM}$ | Input Voltage Range            | $25^{\circ}$ to $+225^{\circ}$ C, $Vs = \pm 5V$ |          | -Vs  | +Vs -2.2        | V       |
|          |                                | -55°C to 25°C                                   |          | -Vs  | +Vs-2.4         |         |
| AVOL     | Open Loop Gain                 | R = $10kΩ$ , C = $20pF$                         | 115      | 100  |                 | dB      |
| CMRR     | Common Mode Rejection Ratio    |                                                 | 95       | 80   |                 | dB      |
| PSRR     | Power Supply Rejection Ratio   | ±Vs (6)                                         | 95       | 66   |                 | dB      |
| SR       | Slew Rate                      | $R = 10k\Omega, C = 20pF, 25^{\circ}C (4)$      | 1.4      |      |                 | V/µsec  |
| UGB      | Unity Gain Bandwidth           | $R = 10k\Omega, C = 20pF, 25^{\circ}C (4)$      | 1.4      |      |                 | MHz     |
| ØM       | Phase Margin                   | C = 20pF (4)                                    | 60       | 50   |                 | °C      |
| AM       | Gain Margin                    | C = 20pF (4)                                    |          | 8    |                 | dB      |
| ESD      | ESD Protection                 | (4)                                             |          | 2000 |                 | V       |

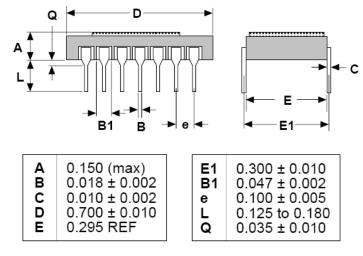
- (1) Unless otherwise noted, specifications apply for  $\pm 5V$  supply from -55 to 225°C.
- (2) Recommended supplies are  $\pm 5$ V or 0-10V. Contact factory for low-voltage operation specifications.
- (3) Rating for a single amplifier of the quad. For steady state biasing conditions, 10mA is the maximum recommended.
- (4) These parameters are guaranteed by design and not tested on each device. Human body model, 1.5k $\Omega$  in series with 100pF.
- (5) Guaranteed by characterization. Limit is below manufacturing tester resolution at 225°C.
- (6) PSRR is calculated from data taken at VDD-VSS=10V±0.5V. PSRR typically >90dB at room temp,


# **ABSOLUTE MAXIMUM RATINGS (1)**

| Total Supply Voltage (V+ to V-) | 13V                          |  |  |  |  |
|---------------------------------|------------------------------|--|--|--|--|
| Input Voltage                   | 0.5 to V <sub>DD</sub> +0.5V |  |  |  |  |
| Output Short Circuit Duration   | Continuous                   |  |  |  |  |
| Input Current (each input)      | ±5 mA                        |  |  |  |  |
| Output Current (each output)    | ±50 mA                       |  |  |  |  |
| Storage Temperature             | 65Process                    |  |  |  |  |
| T = Hi Temp SOI                 |                              |  |  |  |  |

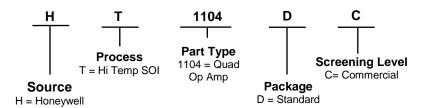
(1) Stresses in excess of those listed above may result in permanent damage. These are stress ratings only, and operation at these levels is not implied. Frequent or extended exposure to absolute maximum conditions may affect device reliability.


# HT1104


# **SIMPLIFIED SCHEDMATIC (each amplifier)**



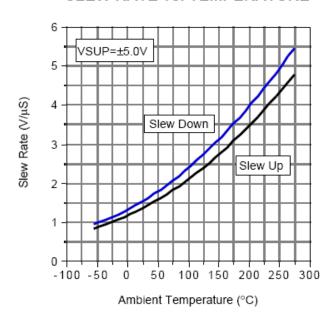
### **PACKAGE PINOUT**


# PACKAGE DETAIL

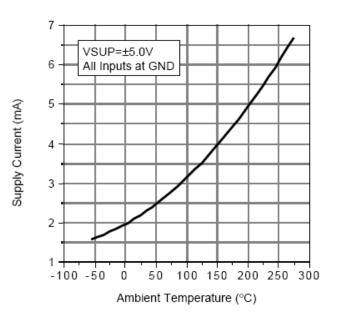




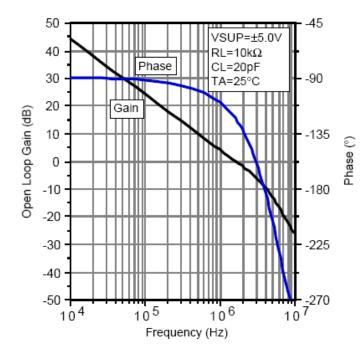
All dimensions in inches Leads are Gold Plated Nickel


### **ORDERING INFORMATION**

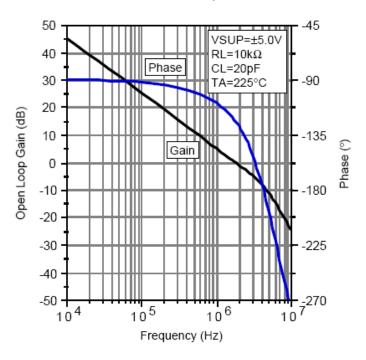



### Find out more

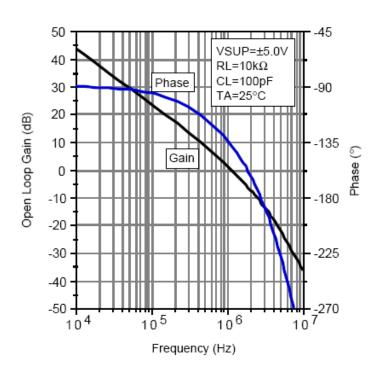
For more information on Honeywell's High Temperature Electronics visit us online at <a href="www.honeywell.com/hightemp">www.honeywell.com/hightemp</a>, or contact us at 800-323-8295 or 763-954-2474. Customer Service Email: ps.customer.support@honeywell.com.


### SLEW RATE vs. TEMPERATURE

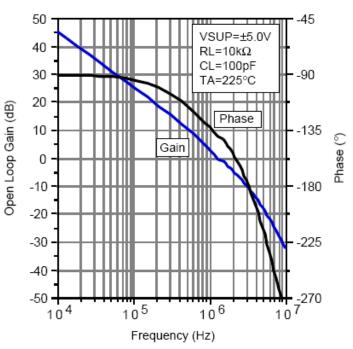



### SUPPLY CURRENT vs. TEMPERATURE

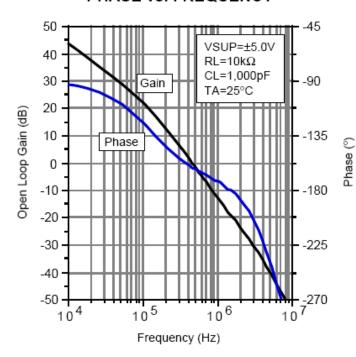



# OPEN LOOP GAIN and PHASE vs. FREQUENCY

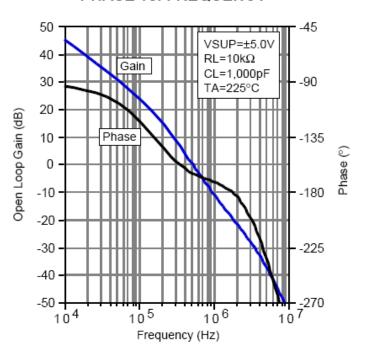



# OPEN LOOP GAIN and PHASE vs. FREQUENCY



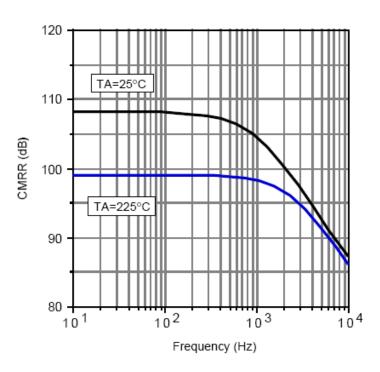

# OPEN LOOP GAIN and PHASE vs. FREQUENCY

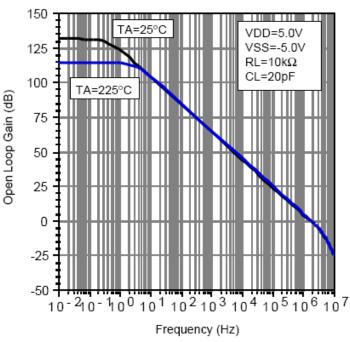



# OPEN LOOP GAIN and PHASE vs. FREQUENCY



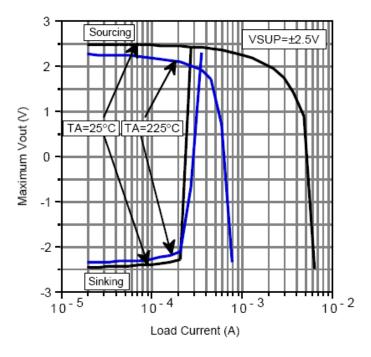
# OPEN LOOP GAIN and PHASE vs. FREQUENCY

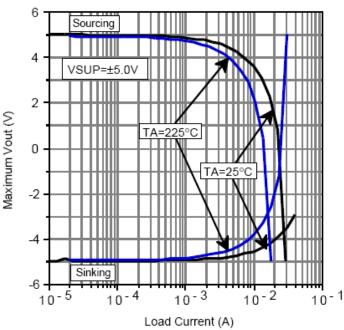




# OPEN LOOP GAIN and PHASE vs. FREQUENCY



# COMMON MODE REJECTION RATIO vs. FREQUENCY

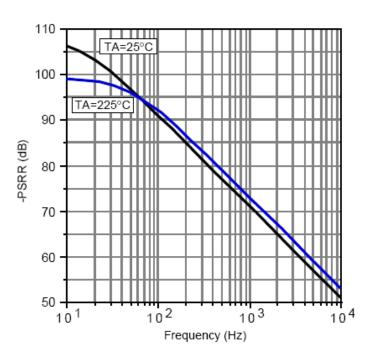

### OPEN LOOP GAIN vs. FREQUENCY



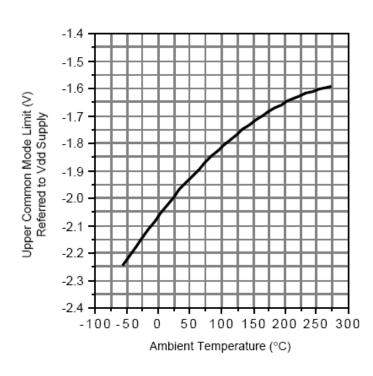



# MAXIMUM OUTPUT SWING vs. LOAD CURRENT

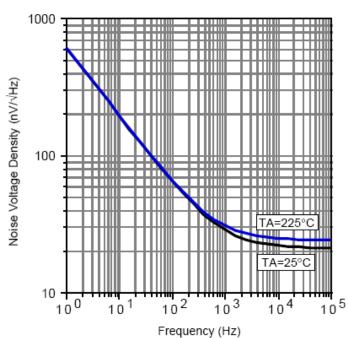
# MAXIMUM OUTPUT SWING vs. LOAD CURRENT





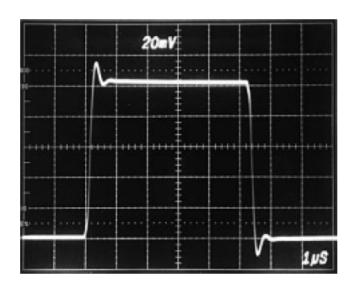


# POSITIVE POWER SUPPLY REJECTION vs. FREQUENCY

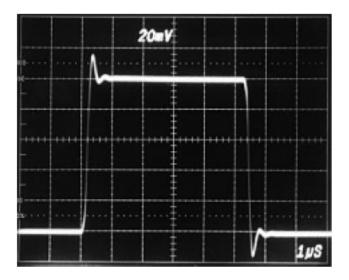
# 120 TA=25°C 100 TA=225°C 80 TA=225°C 101 102 103 104 Frequency (Hz)


# NEGATIVE POWER SUPPLY REJECTION vs. FREQUENCY



# UPPER COMMON MODE LIMIT vs. TEMPERATURE





# INPUT REFERRED NOISE VOLTAGE vs. FREQUENCY

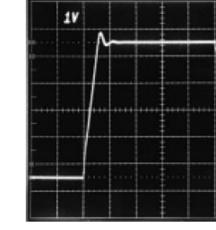


# SMALL SIGNAL PULSE RESPONSE

# SMALL SIGNAL PULSE RESPONSE

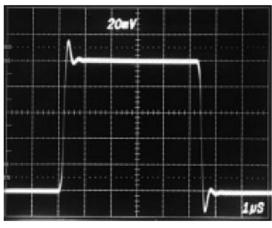





TA=25°C, CL=20pF, Av=+1

TA=225°C, CL=20pF, Av=+1

Large Signal Step Response

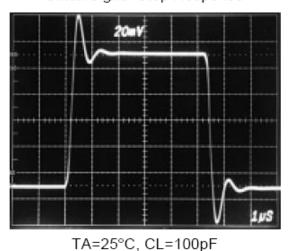

# Small Signal Step Response

# 20=1/





TA=225°C, CL=100pF Large Signal Step Response







TA=225°C, CL=20pF

TA=225°C, CL=20pF

# Small Signal Step Response



# Large Signal Step Response



TA=25°C, CL=100pF

Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.