

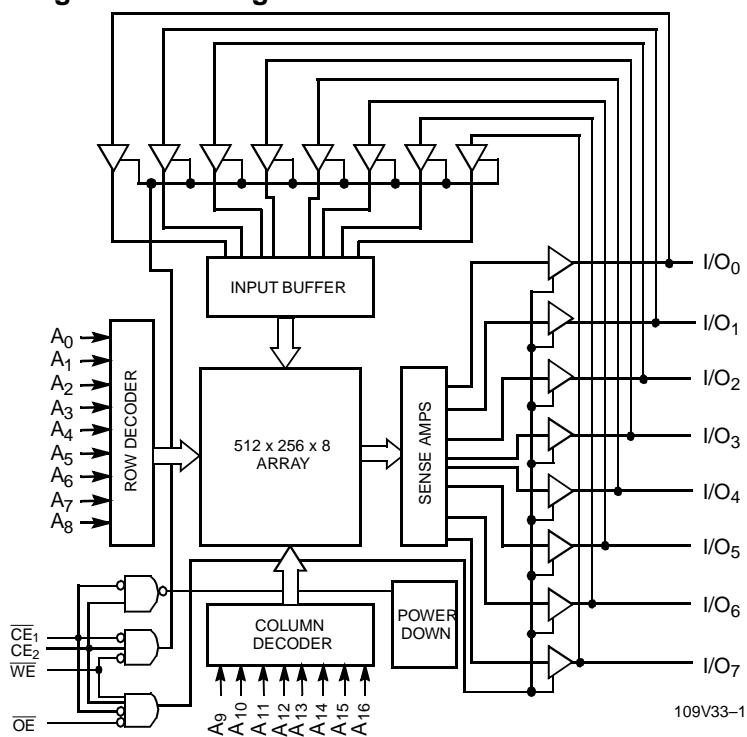
128K x 8 Static RAM

Features

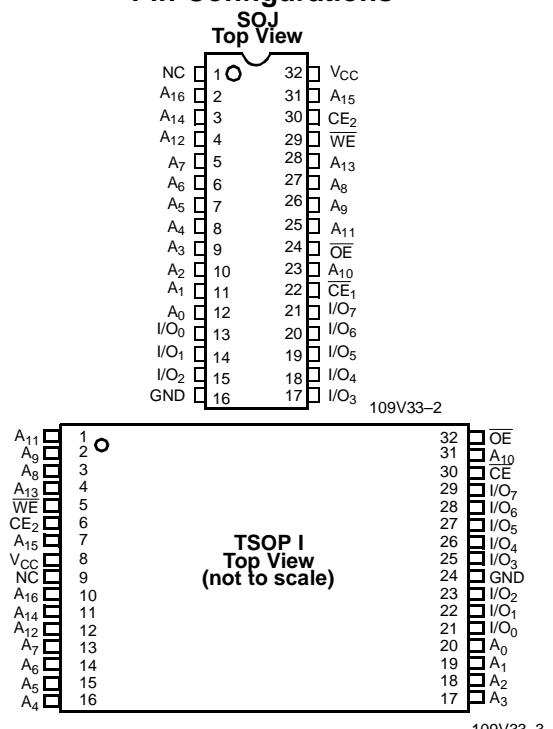
- **High speed**
— $t_{AA} = 15, 20, 25\text{ns}$
- $V_{CC} = 3.3V \pm 10\%$
- **Low active power**
— 432 mW (max.)
— 288 mW (L version)
- **Low CMOS standby power**
— 18 mW (max.)
— 7.2 mW (L version)
- **2.0V Data Retention**
- **Automatic power-down when deselected**
- **TTL-compatible inputs and outputs**
- **Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options**

Functional Description

The CY7C109V33/CY7C1009V33 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy


memory expansion is provided by an active LOW Chip Enable (\overline{CE}_1), an active HIGH Chip Enable (CE_2), an active LOW Output Enable (\overline{OE}), and three-state drivers. Writing to the device is accomplished by taking Chip Enable one (\overline{CE}_1) and Write Enable (WE) inputs LOW and Chip Enable two (CE_2) input HIGH. Data on the eight I/O pins (I/O_0 through I/O_7) is then written into the location specified on the address pins (A_0 through A_{16}).

Reading from the device is accomplished by taking Chip Enable one (\overline{CE}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) and Chip Enable two (CE_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.


The eight input/output pins (I/O_0 through I/O_7) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH, and WE LOW).

The CY7C109V33 is available in standard 32-pin, 400-mil-wide SOJ package. The CY7C1009V33 is available in a 32-pin, 300-mil-wide SOJ package. The CY7C1009V33 and CY7C109V33 are functionally equivalent in all other respects.

Logic Block Diagram

Pin Configurations

Selection Guide

	7C109V33-12 7C1009V33-12	7C109V33-15 7C1009V33-15	7C109V33-20 7C1009V33-20	7C109V33-25 7C1009V33-25
Maximum Access Time (ns)	12	15	20	20
Maximum Operating Current (mA)	130	120	110	110
Maximum Operating Current (mA) Low Power Version	90	80	70	70
Maximum CMOS Standby Current (mA) Standard	5	5	5	5
Maximum CMOS Standby Current (mA) Low Power Version	2	2	2	2

Shaded areas contain preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage on V_{CC} to Relative GND^[1] -0.5V to $+7.0\text{V}$

DC Voltage Applied to Outputs
in High Z State^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

DC Input Voltage^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature ^[2]	V_{CC}
Commercial	0°C to $+70^{\circ}\text{C}$	$3.3\text{V} \pm 300\text{mV}$

Electrical Characteristics Over the Operating Range

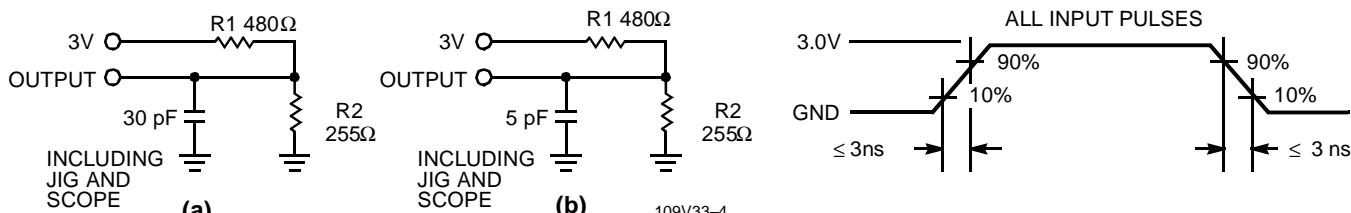
Parameter	Description	Test Conditions	7C109V33-12 7C1009V33-12		7C1009V33-15 7C109V33-15		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OH}} = -4.0\text{ mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OL}} = 8.0\text{ mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$V_{\text{CC}} + 0.3$	2.2	$V_{\text{CC}} + 0.3$	V
V_{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$	-1	+1	-1	+1	μA
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$, Output Disabled	-5	+5	-5	+5	μA
I_{CC}	V_{CC} Operating Supply Current	$V_{\text{CC}} = \text{Max.}$, $I_{\text{OUT}} = 0\text{ mA}$, $f = f_{\text{MAX}} = 1/t_{\text{RC}}$	L	130		120	mA
				90		80	
I_{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{\text{CE}}_1 \geq V_{\text{IH}}$ or $\overline{\text{CE}}_2 \leq V_{\text{IL}}$, $V_{\text{IN}} \geq V_{\text{IH}}$ or $V_{\text{IN}} \leq V_{\text{IL}}$, $f = f_{\text{MAX}}$		25		20	mA
I_{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , $\overline{\text{CE}}_1 \geq V_{\text{CC}} - 0.3\text{V}$, or $\overline{\text{CE}}_2 \leq 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$, or $V_{\text{IN}} \leq 0.3\text{V}$, $f=0$	L	5		5	mA
				2		2	

Shaded areas contain preliminary information.

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
2. T_A is the case temperature.

Electrical Characteristics Over the Operating Range (continued)


Parameter	Description	Test Conditions	7C1009V33-20 7C109V33-20		7C1009V33-25 7C109V33-25		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{CC} = \text{Min.}$, $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = \text{Min.}$, $I_{OL} = 8.0 \text{ mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$V_{CC} + 0.3$	2.2	$V_{CC} + 0.3$	V
V_{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-1	+1	-1	+1	μA
I_{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC}$, Output Disabled	-5	+5	-5	+5	μA
I_{CC}	V_{CC} Operating Supply Current	$V_{CC} = \text{Max.}$, $I_{OUT} = 0 \text{ mA}$, $f = f_{MAX} = 1/t_{RC}$		110		110	mA
			L	70		70	
I_{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{CE}_1 \geq V_{IH}$ or $\overline{CE}_2 \leq V_{IL}$, $V_{IN} \geq V_{IH}$ or $V_{IN} \leq V_{IL}$, $f = f_{MAX}$		20		20	mA
I_{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , $\overline{CE}_1 \geq V_{CC} - 0.3\text{V}$, or $\overline{CE}_2 \leq 0.3\text{V}$, $V_{IN} \geq V_{CC} - 0.3\text{V}$, or $V_{IN} \leq 0.3\text{V}$, $f=0$	L	5		5	mA
				2		2	

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ\text{C}$, $f = 1 \text{ MHz}$, $V_{CC} = 3.3\text{V}$	6	pF
C_{OUT}	Output Capacitance		8	pF

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

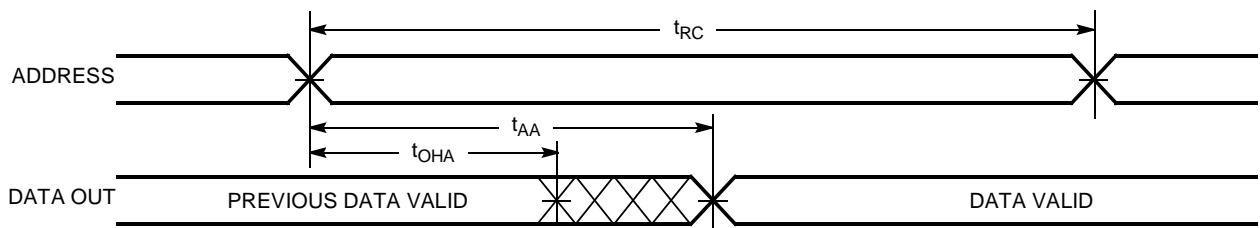
Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics^[4] Over the Operating Range

Parameter	Description	7C1009V33-12	7C1009V33-15	7C1009V33-20	7C1009V33-25	7C109V33-12	7C109V33-15	7C109V33-20	7C109V33-25	Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	12		15		20		20		ns
t_{AA}	Address to Data Valid		12		15		20		20	ns
t_{OHA}	Data Hold from Address Change	3		3		3		3		ns
t_{ACE}	\overline{CE}_1 LOW to Data Valid, CE_2 HIGH to Data Valid		12		15		20		20	ns
t_{DOE}	\overline{OE} LOW to Data Valid		6		7		8		8	ns
t_{LZOE}	\overline{OE} LOW to Low Z	0		0		0		0		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[5, 6]		6		7		8		8	ns
t_{LZCE}	\overline{CE}_1 LOW to Low Z, CE_2 HIGH to Low Z ^[6]	3		3		3		3		ns
t_{HZCE}	\overline{CE}_1 HIGH to High Z, CE_2 LOW to High Z ^[5, 6]		6		7		8		8	ns
t_{PU}	\overline{CE}_1 LOW to Power-Up, CE_2 HIGH to Power-Up	0		0		0		0		ns
t_{PD}	\overline{CE}_1 HIGH to Power-Down, CE_2 LOW to Power-Down		12		15		20		20	ns
WRITE CYCLE^[7,8]										
t_{WC}	Write Cycle Time	12		15		20		20		ns
t_{SCE}	\overline{CE}_1 LOW to Write End, CE_2 HIGH to Write End	10		12		15		15		ns
t_{AW}	Address Set-Up to Write End	10		12		15		15		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t_{PWE}	WE Pulse Width	10		12		15		15		ns
t_{SD}	Data Set-Up to Write End	7		8		10		10		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
t_{LZWE}	WE HIGH to Low Z ^[6]	3		3		3		3		ns
t_{HZWE}	WE LOW to High Z ^[5, 6]		6		7		8		8	ns

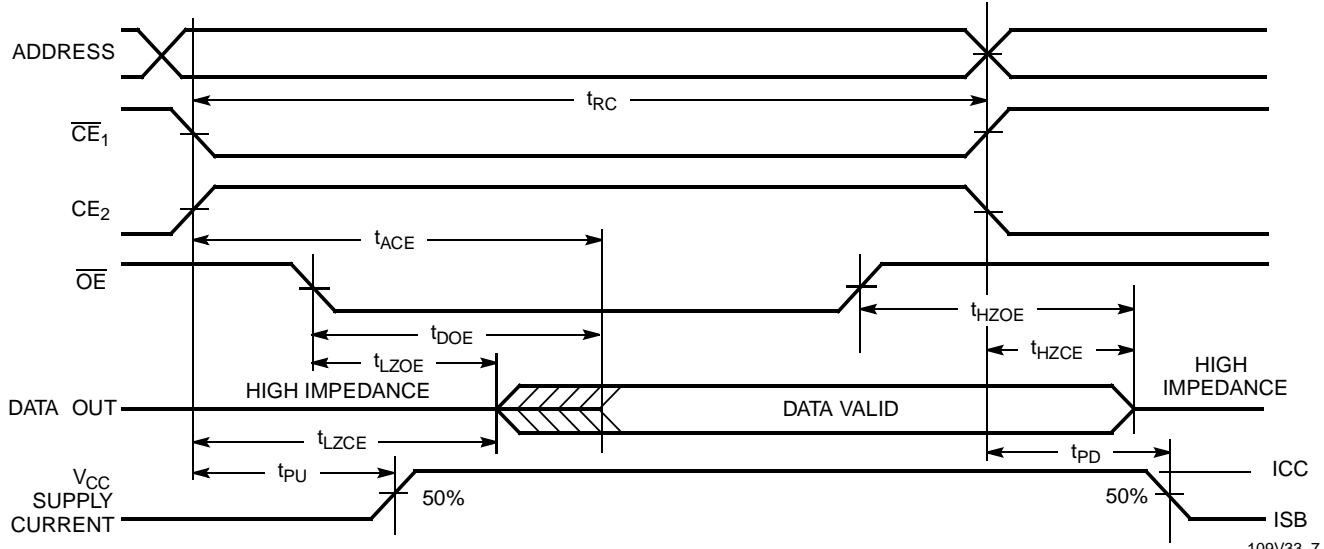
Shaded areas contain preliminary information.

Data Retention Characteristics Over the Operating Range (L Version Only)

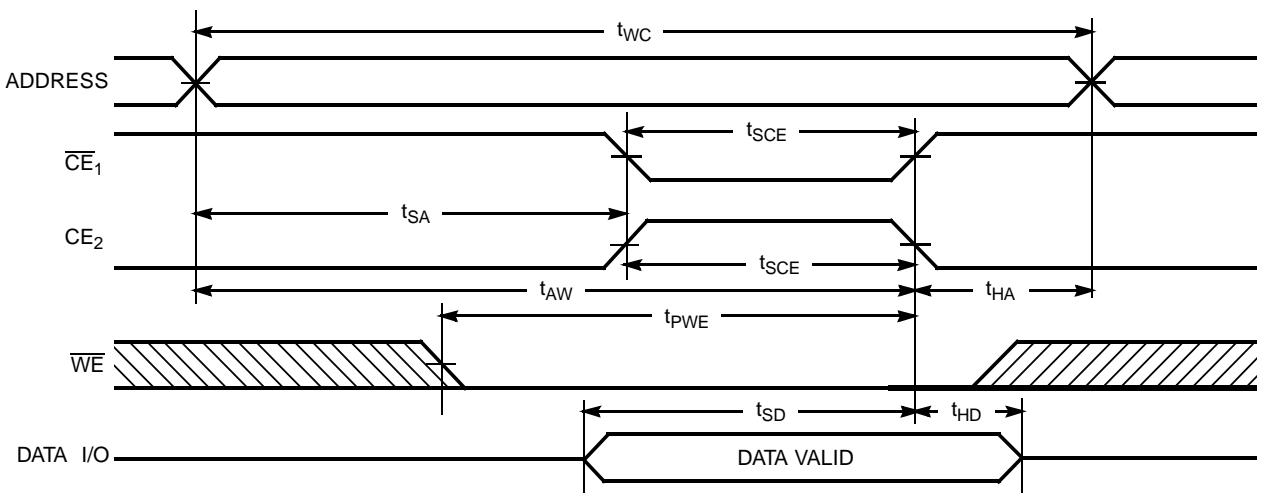

Parameter	Description	Conditions	Min.	Max	Unit
V_{DR}	V_{CC} for Data Retention	No input may exceed $V_{CC} + 0.5V$ $V_{CC} = V_{DR} = 2.0V$, $CE_1 \geq V_{CC} - 0.3V$ or $CE_2 \leq 0.3V$, $V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$	2.0		V
I_{CCDR}	Data Retention Current			200	μA
t_{CDR}	Chip Deselect to Data Retention Time		0		ns
t_R	Operation Recovery Time		t_{RC}		ns

Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
5. t_{LZOE} , t_{HZCE} , and t_{LZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{LZOE} is less than t_{HZOE} , and t_{LZWE} is less than t_{HZWE} for any given device.
7. The internal write time of the memory is defined by the overlap of CE_1 LOW, CE_2 HIGH, and WE LOW. CE_1 and WE must be LOW and CE_2 HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
8. The minimum write cycle time for Write Cycle No. 3 (\overline{WE} controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} .


Switching Waveforms

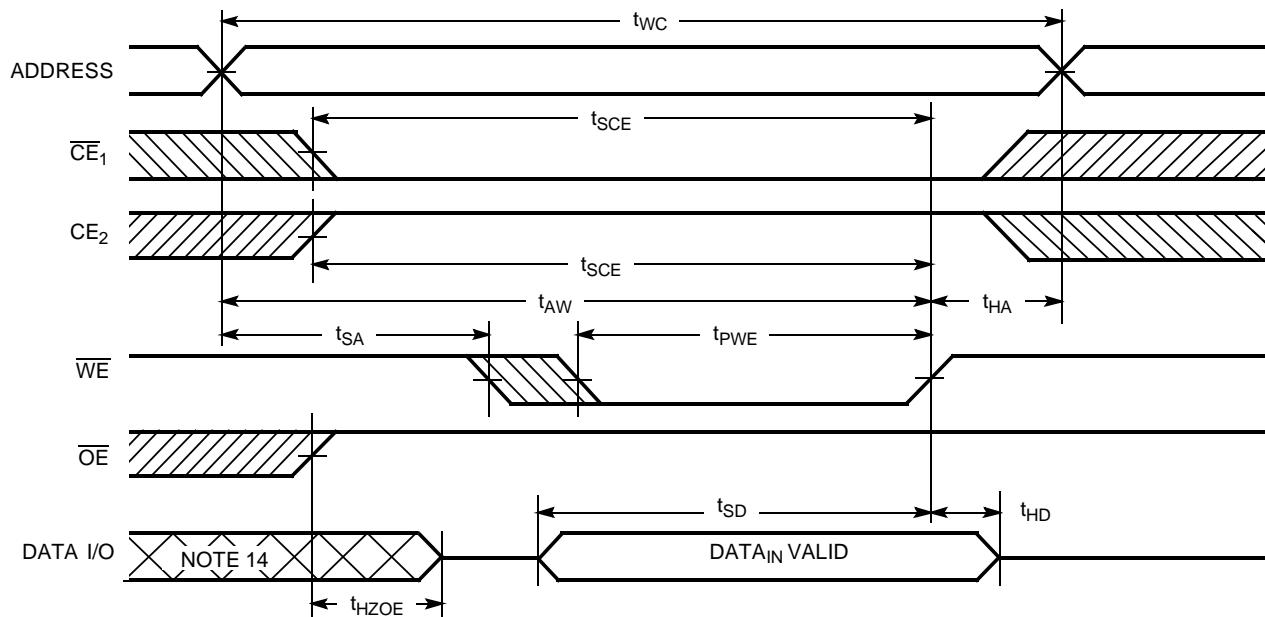
Read Cycle No. 1^[9, 10]


109V33-6

Read Cycle No. 2 (\overline{OE} Controlled)^[10, 11]

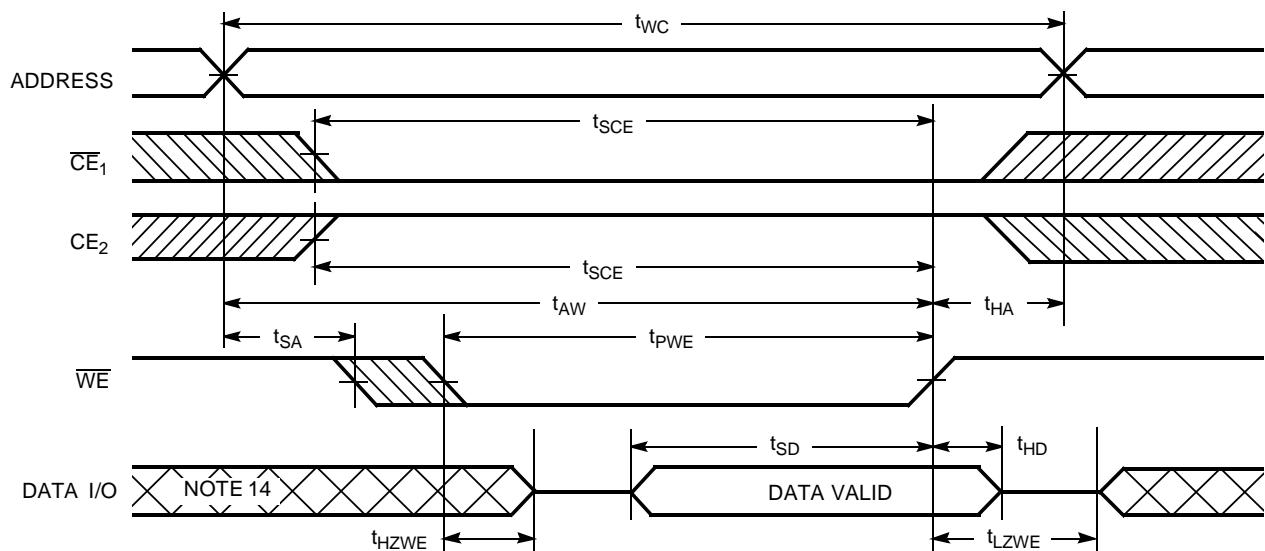
109V33-7

Write Cycle No. 1 (\overline{CE}_1 or CE_2 Controlled)^[12, 13]


109V33-8

Notes:

9. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
10. \overline{WE} is HIGH for read cycle.
11. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.
12. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
13. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.


Switching Waveforms (continued)

Write Cycle No. 2 (\overline{WE} Controlled, \overline{OE} HIGH During Write)^[12, 13]

109V33-9

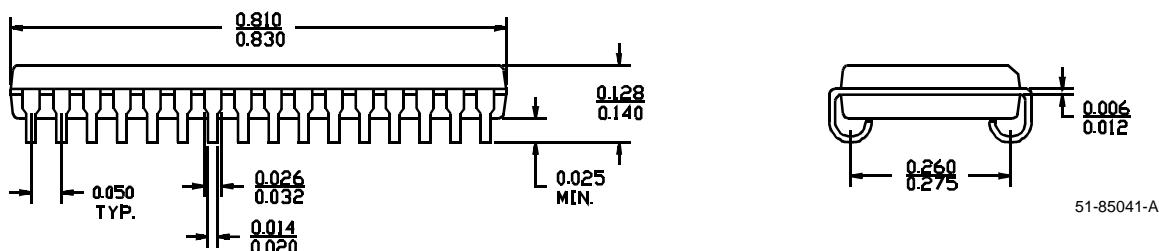
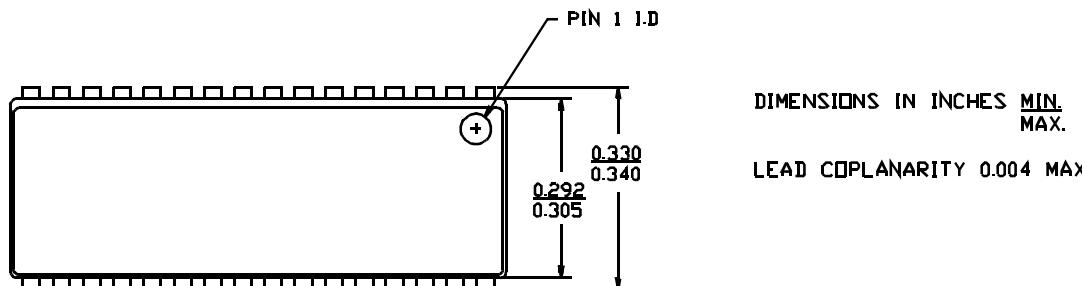
Write Cycle No. 3 (\overline{WE} Controlled, \overline{OE} LOW)^[13]

109V33-10

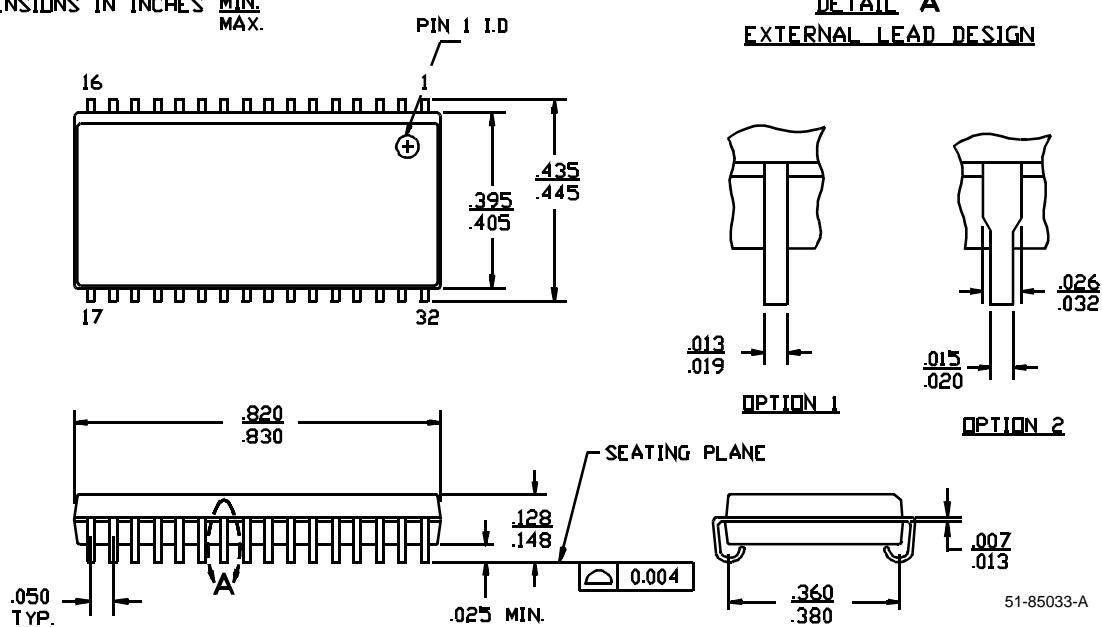
Note:

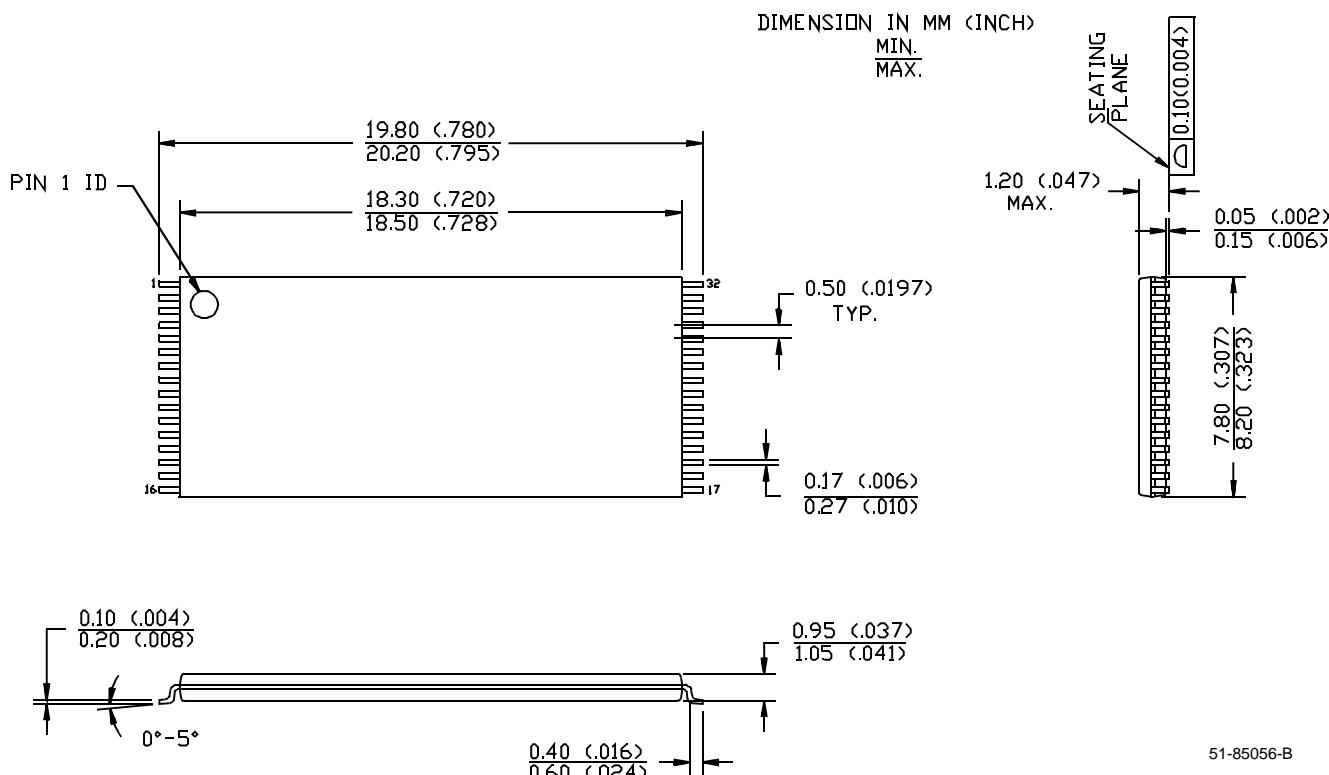
14. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table



CE₁	CE₂	OE	WE	I/O₀–I/O₇	Mode	Power
H	X	X	X	High Z	Power-Down	Standby (I _{SB})
X	L	X	X	High Z	Power-Down	Standby (I _{SB})
L	H	L	H	Data Out	Read	Active (I _{CC})
L	H	X	L	Data In	Write	Active (I _{CC})
L	H	H	H	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C109V33-12VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009V33-12VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009V33L-12VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C109V33-12ZC	Z32	32-Lead TSOP Type I	
15	CY7C109V33-15VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009V33-15VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009V33L-15VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C109V33-15ZC	Z32	32-Lead TSOP Type I	
20	CY7C109V33-20VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C109V33-20ZC	Z32	32-Lead TSOP Type I	
	CY7C109V33L-20VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C109V33L-20ZC	Z32	32-Lead TSOP Type I	
	CY7C1009V33-20VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009V33L-20VC	V32	32-Lead (300-Mil) Molded SOJ	
25	CY7C109V33-25VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C109V33L-25VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C109V33L-25ZC	Z32	32-Lead TSOP Type I	
	CY7C1009V33L-25VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009V33-25VC	V32	32-Lead (300-Mil) Molded SOJ	


Shaded areas contain preliminary information.

Document #: 38-00635-A

Package Diagrams
32-Lead (300-Mil) Molded SOJ V32

32-Lead (400-Mil) Molded SOJ V33

DIMENSIONS IN INCHES MIN. MAX.

Package Diagrams (continued)
32-Lead Thin Small Outline Package Z32
