

Parameter	Rating	Units
Blocking Voltage	400	V _P
Load Current	100	mA _{rms} / mA _{DC}
On-Resistance (max)	35	Ω
LED Forward Current (to Activate)	2	mA

Features

- 1500V_{rms} Input/Output Isolation
- Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- Immune to Radiated EM Fields
- Wave Solderable
- Tape & Reel Version Available
- Small 8-Pin SOIC Package

Applications

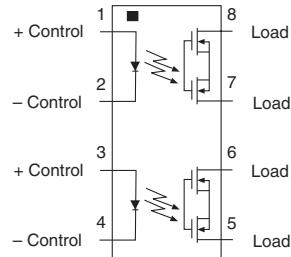
- Telecommunications
 - Telecom Switching
 - Tip/Ring Circuits
 - Modem Switching (Laptop, Notebook, Pocket Size)
 - Hook Switch
 - Dial Pulsing
 - Ground Start
 - Ringing Injection
- Security
 - Passive Infrared Detectors (PIR)
 - Data Signaling
 - Sensor Circuitry
- Instrumentation
 - Multiplexers
 - Data Acquisition
 - Electronic Switching
 - I/O Subsystems
- Medical Equipment—Patient/Equipment Isolation
- Aerospace
- Industrial Controls

Description

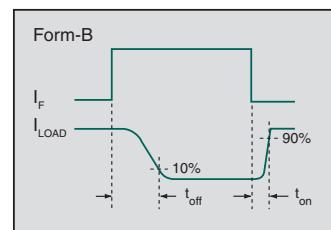
The CPC2125N is a miniature device with two independent normally-closed (1-Form-B) solid state relays in an 8-pin SOIC package that employs optically coupled MOSFET technology to provide 1500V_{rms} of input to output isolation.

Optically coupled outputs, using the patented OptoMOS architecture, are controlled by a highly efficient infrared LED.

Constructed using IXYS Integrated Circuits Division's state of the art double-molded, vertical construction packaging, this device is one of the world's smallest relays. It offers substantial board space savings over the competitor's larger 8-pin SOIC relay.


Approvals

- UL Recognized Component: File E76270
- CSA Approval Pending
- EN/IEC 60950-1 Certified Component: TUV Certificate B 13 12 82667 003


Ordering Information

Part #	Description
CPC2125N	8-Pin SOIC (50/tube)
CPC2125NTR	8-Pin SOIC (2000/reel)

Pin Configuration

Switching Characteristics of Normally-Closed (Form-B) Devices

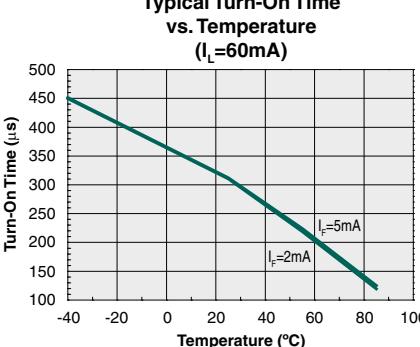
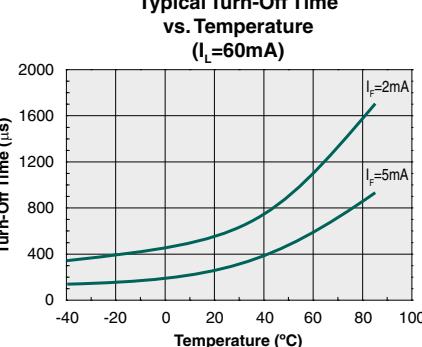
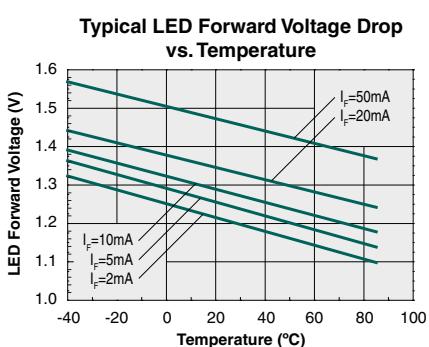
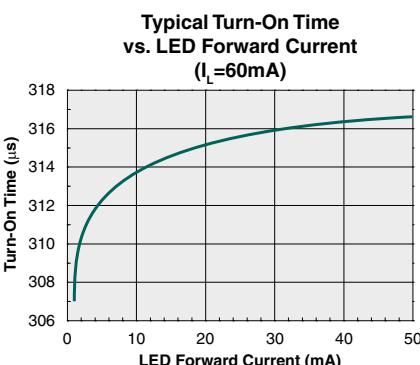
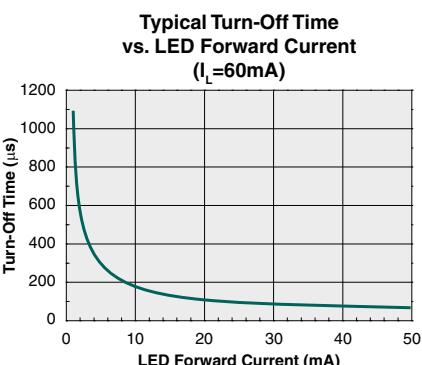
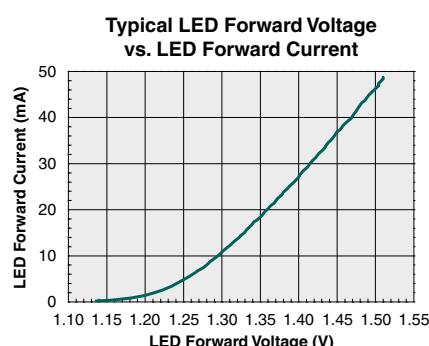
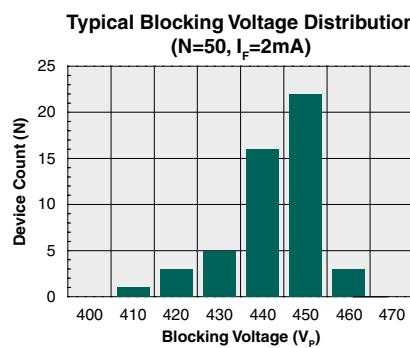
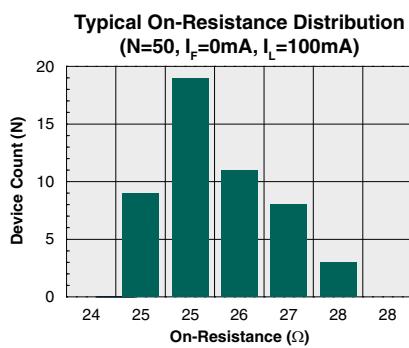
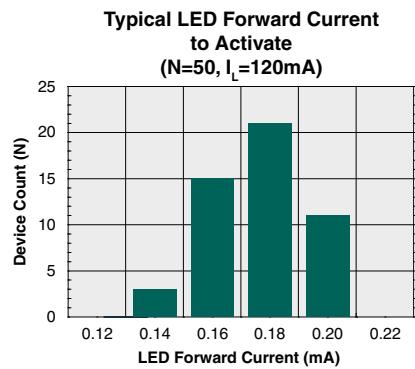
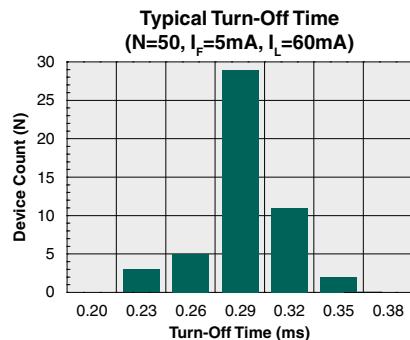
Absolute Maximum Ratings @ 25°C

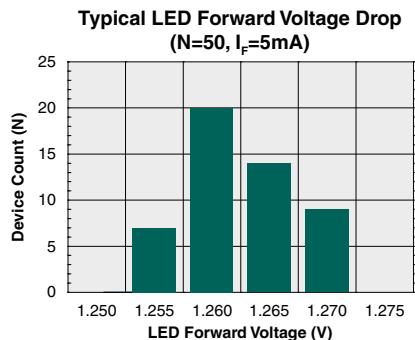
Parameter	Ratings	Units
Blocking Voltage	400	V _P
Reverse Input Voltage	5	V
LED Forward Current Peak (10ms)	50 1	mA A
Input Power Dissipation	70	mW
Total Power Dissipation ¹	600	mW
Isolation Voltage, Input to Output (60 Seconds)	1500	V _{rms}
ESD Rating, Human Body Model	8	kV
Operational Temperature	-40 to +85	°C
Storage Temperature	-40 to +125	°C

¹ Derate linearly 5mW / °C

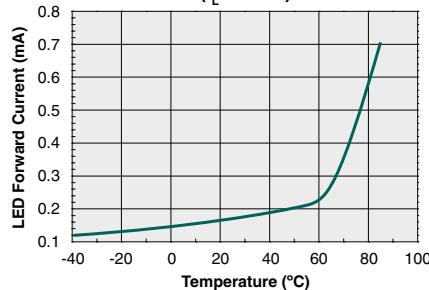
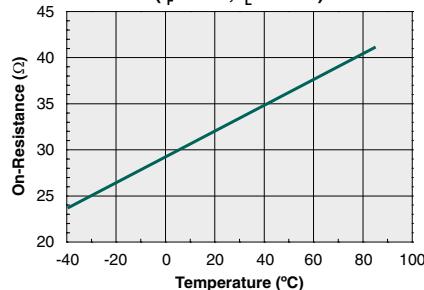
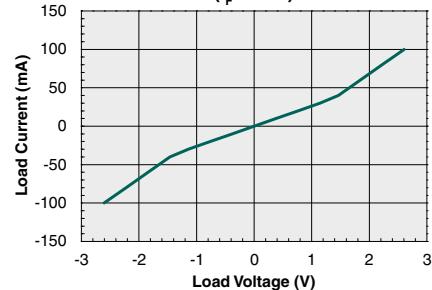
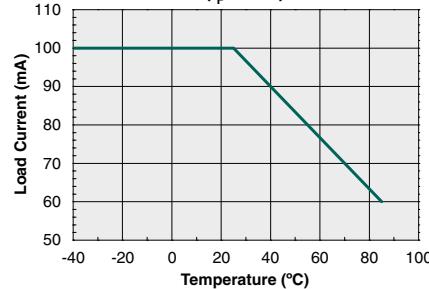
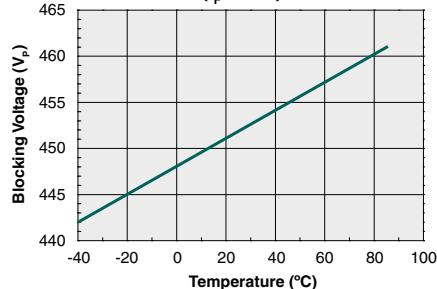
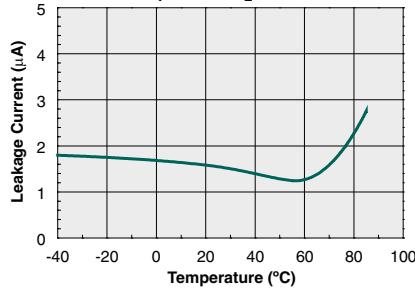
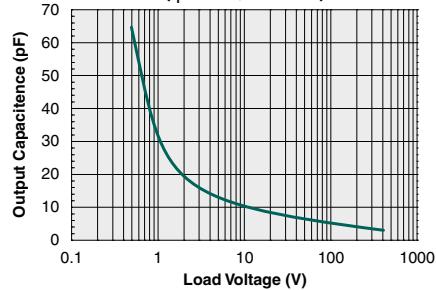
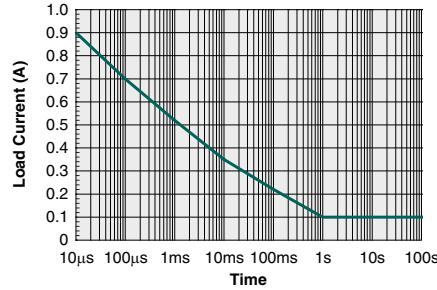
Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at +25°C, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.


Electrical Characteristics @ 25°C

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
Load Current Continuous ¹	I _F =0mA	I _L	-	-	100	mA _{rms} / mA _{DC}
Peak	t=10ms	I _{LPK}	-	-	±350	mA _P
On-Resistance ²	I _L =100mA	R _{ON}	-	26	35	Ω
Switching Speeds						
Turn-On	I _F =5mA, V _L =10V	t _{on}	-	0.31	2	ms
Turn-Off		t _{off}	-	0.30	2	
Off-State Leakage Current	V _L =400V, I _F =2mA	I _{LEAK}	-	-	5	μA
Output Capacitance	I _F =2mA, V _L = 50V, f=1MHz	C _{OUT}	-	6	-	pF
Input Characteristics						
LED Forward Current To Activate ³	I _L =100mA	I _F	-	-	2	mA
To Deactivate	-		0.1	-	-	
Input Voltage Drop	I _F =5mA	V _F	0.9	1.2	1.4	V
Reverse Input Current	V _R =5V	I _R	-	-	10	μA
Common Characteristics						
Capacitance, Input to Output	V _{IO} =0V, f=1MHz	C _{IO}	-	1	-	pF









¹ Load current derates linearly from 100mA @ 25°C to 60mA @ 85°C, and must be derated if both poles are operating simultaneously.

² Measurement taken within 1 second of on-time.

³ For applications requiring high temperature operation (greater than 60°C) a minimum LED forward current of 4mA is recommended.

PERFORMANCE DATA @ 25°C (Unless Otherwise Noted) *

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

PERFORMANCE DATA @ 25°C (Unless Otherwise Noted) *
Typical LED Forward Current to Activate (I_L=60mA)

Typical On-Resistance vs. Temperature (I_F=0mA, I_L=60mA)

Typical Load Current vs. Load Voltage (I_F=0mA)

Maximum Load Current vs. Temperature (I_F=0mA)

Typical Blocking Voltage vs. Temperature (I_F=5mA)

Leakage Current vs. Temperature Measured Across Pins 5&6, 7&8 (I_F=2mA, V_L=400V)

Output Capacitance vs. Load Voltage (I_F=2mA, f=1MHz)

Energy Rating Curve

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

 All plastic encapsulated semiconductor packages are susceptible to moisture ingress. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, **IPC/JEDEC J-STD-020**, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL) rating** as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Rating
CPC2125N	MSL 3

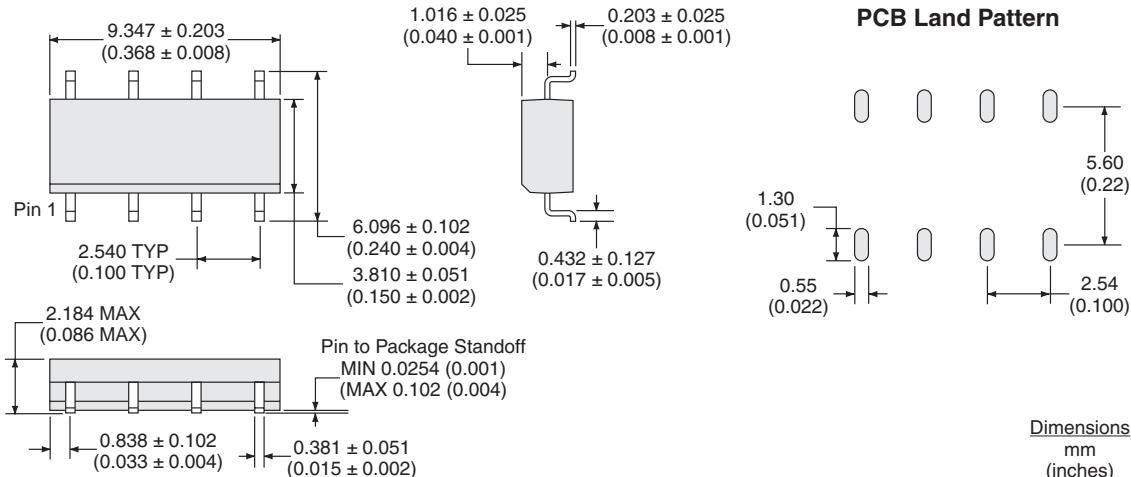
ESD Sensitivity

This product is **ESD Sensitive**, and should be handled according to the industry standard **JESD-625**.

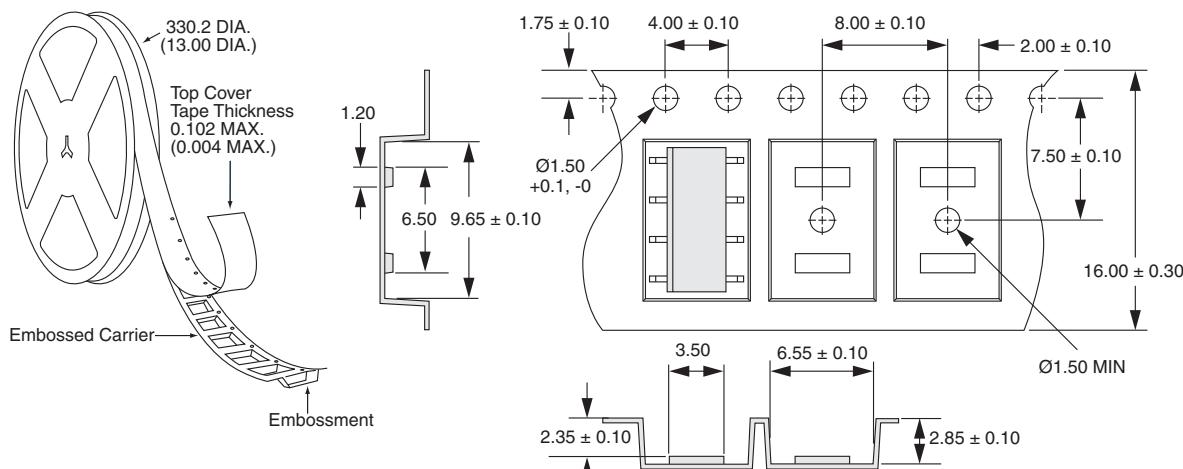
Soldering Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of **J-STD-020** must be observed.

Device	Maximum Temperature x Time	Maximum Reflow Cycles
CPC2125N	260°C for 30 seconds	3


Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after soldering processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.



MECHANICAL DIMENSIONS

CPC2125N

CPC2125NTR Tape & Reel

NOTES:

NOTES:

- 1. All dimensions in millimeters
- 2. 10 sprocket hole pitch cumulative tolerance ± 0.20 .
- 3. Carrier camber is within 1mm in 250mm
- 4. Tape material : Black Conductive Polystyrene Alloy.
- 5. All dimensions meet EIA-481-C requirements.
- 6. Thickness : 0.30 ± 0.05mm

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

Specification: DS-CPC2125N-R04
©Copyright 2014, IXYS Integrated Circuits Division
OptoMOS® is a registered trademark of IXYS Integrated Circuits Division
All rights reserved. Printed in USA.
11/10/2014