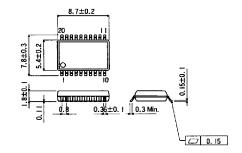
BA6840AFS

3-phase motor driver

The BA6840AFS is an IC used for driving CD-ROM motors.

Features


- available in a SSOP-A20 package
- supply voltage range 4.25 ~ 5.5 V (control block) and 3 ~ 20 V (output block)
- power dissipation is 930 mW
- maximum output current up to 1300 mA
- three-phase full-wave pseudo linear driving system
- built-in thermal shutdown circuit (TSD)
- forward and reverse control
- reversing brake
- start/stop terminal with built-in power saving circuit to minimize current consumption when motor stopped
- internal current limit circuit

Applications

CD-ROM motors

Dimensions (Units: mm)

BA6840AFS (SSOP-A20)

Block diagram

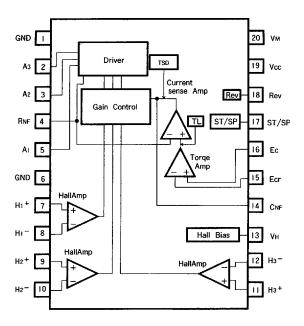


Table 1 Pin description

Pin no	Pin name	Function	Pin no	Pin name	Function
1	GND	Ground pin	11	H ₃ +	Hall signal input
2	A ₃	Output pin	12	H ₃ -	Hall signal input
3	A ₂	Output pin	13	V _H	Hall bias pin
4	R _{NF}	Output current sensing pin	14	C _{NF}	Connection point for phase compensation capacitor
5	A ₁	Output pin	15	E _{CR}	Output current control reference voltage pin
6	GND	Ground pin	16	Ec	Output current control pin
7	H ₁ +	Hall signal input	17	ST/SP	Start/stop switching pin
8	H ₁ -	Hall signal input	18	REV	Reverse pin
9	H ₂ +	Hall signal input	19	V _{CC}	Supply voltage pin
10	H ₂ -	Hall signal input	20	V _M	Motor supply voltage pin

242

ROHM

Motor Driver Integrated Circuits

🖿 7828999 0014084 8T6 🖿

Absolute maximum ratings ($T_a = 25$ °C)

Parameter	Symbol	Limit	Unit	Conditions
Cumple walkana	V _{CC}	7	V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Supply voltage	ppiy voπage V _M 24 V			
Power dissipation	P _d	930	mW	Reduce power by 7.5 mW for each degree above 25°C. Mounted on a $90 \times 50 \times 1.6$ mm glass-epoxy PCB.
Output current	louт	1300	mA	The output current must not exceed the maximum P _d or ASO ratings.
Operating temperature	Topr	−20 ~ +75	°C	
Storage temperature	T _{stg}	−55 ~ +150	°C	

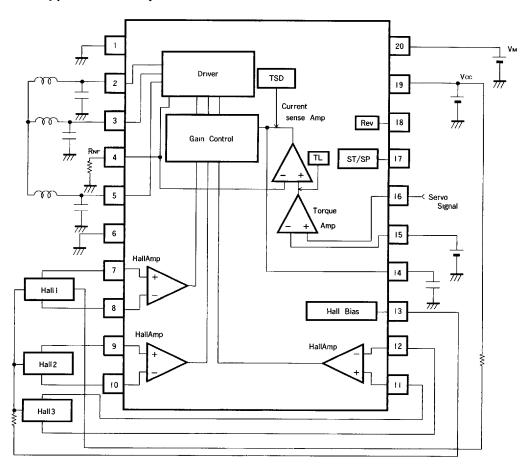
Recommended operating conditions ($T_a = 25^{\circ}C$)

Parameter	Symbol	Min	Typical	Max	Unit
Power supply voltage	V _M	3.0		20	٧
ower supply voltage	V _{CC}	4.25		5.50	٧

BA6840AFS Three-phase, full-wave motor drivers (CD-ROM)

Electrical characteristics (unless otherwise noted, $T_a = 25$ °C, $V_{CC} = 5$ V, $V_M = 12$ V)

I _{CC1}					1
1 ,001		0	0.2	mA	Powersaver ON
I _{CC2}		3.6	6.0	mA	Powersaver OFF, inputs H, M, L
V _{PSON}	3.5			V	
V _{PSOFF}			1.5	V	
V _{HB}		1.3	2.0	V	I _{HB} = 10 mA
'		' '			
I _{HA}		0.25	1.0	μΑ	
V _{HAR}	1.5		4.0	V	
V _{INH}	60			mV _{pk-pk}	
				<u> </u>	
E _C	1.0		4.0	V	
E _{cofs}	-150		150	mV	For $E_C = 2.3 \text{ V}$
E _{cofsa}	50		150	mV	
E _{CIN}		0.5	2.0	μΑ	$E_C = E_{CR} = 2.3 \text{ V}$
G _{EC}	0.41	0.51	0.61	A/V	Measured for E _C = 1.3 V, 1.8 V and E _C = 2.8 V, 3.3 V R_{NF} = 0.5 Ω
V _{OH}		1.0	1.6	٧	$I_0 = -600 \text{ mA}$
V _{OL}		0.4	0.9	V	$I_0 = 600 \text{ mA}$
I _{TL}	560	700	840	mA	$R_{NF} = 0.5 \Omega$
	VPSON VPSOFF VHB IHA VHAR VINH EC Ecofs Ecofsa ECIN GEC VOH	V _{PSON} 3.5 V _{PSOFF} V _{HB} V _{HAR} 1.5 V _{INH} 60 E _C 1.0 E _{cofs} -150 E _{cofsa} 50 E _{CIN} G _{EC} 0.41 V _{OH} V _{OL} V _{OL} V _{OL} V _{OL}	VPSON 3.5 VPSOFF	VPSON 3.5 3.5 VPSOFF 1.5 VHB 1.3 2.0 IHA 0.25 1.0 VHAR 1.5 4.0 VINH 60 4.0 Ecofs -150 150 Ecofsa 50 150 Ecofsa 50 150 Ecofsa 0.5 2.0 GEC 0.41 0.51 0.61 VOH 1.0 1.6 VOL 0.4 0.9	VPSON 3.5 V VPSOFF 1.5 V VHB 1.3 2.0 V IHA 0.25 1.0 μA VHAR 1.5 4.0 V VINH 60 mVpk-pk EC 1.0 4.0 V Ecofs -150 150 mV Ecofsa 50 150 mV Ecofsa 50 150 mV GEC 0.41 0.51 0.61 A/V VOH 1.0 1.6 V VOL 0.4 0.9 V


ROHM

Motor Driver Integrated Circuits

7828999 0014086 679 **....**

244

Figure 1 Application example

Motor Driver Integrated Circuits

ROHM

245

7828999 0014087 505

Input and output equivalent circuits

Figure 2 REV and ST/SP (pins 17 & 18)

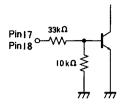


Figure 4 Torque command input (pins 15 & 16)

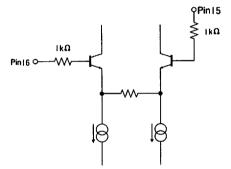


Figure 3 Hall bias (pin 13)

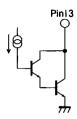


Figure 5 Driver output (A1, pin 5; A2, pin 3; A3, pin 2)

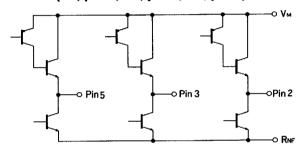
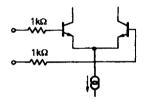



Figure 6 Hall inputs (H1+, pin 7: H1-, pin 8; H2+, pin 9: H2-, pin 10; H3+, pin 11: H3-, pin 12)

Circuit operation

Hall inputs to driver outputs

Three Hall-effect element signals (from the three phases of the motor) are amplified in the Hall amplifiers and applied to a gain control section, see Figure 6). After amplification and signal averaging, the voltage signals are used to set the motor drive current out of the motor driver. Figure 7 shows the phase relationships between the Hall signal inputs and the current and voltage waveforms at the outputs of the drivers.

246

ROHM

Motor Driver Integrated Circuits

7828999 0014088 441 **==**

The Hall-effect elements can connected either in series or in parallel. (See Figure 8)

Figure 7 Motor drive signal phase relationships

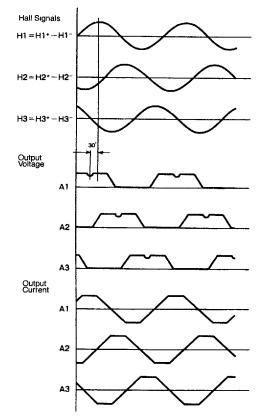
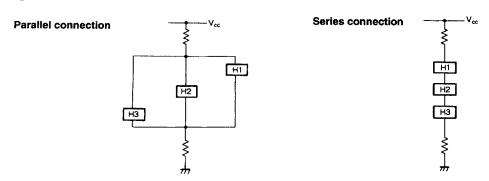



Figure 8 Hall effect element electrical connections

Motor Driver Integrated Circuits

ROHM

247

7828999 0014089 388 🖿

Torque command

Figure 9 shows the relationship between the torque command input (EC) and R_{NF} pin voltage.

Figure 9 Torque command voltage relationship

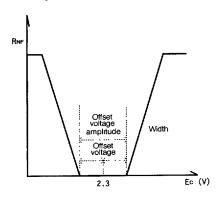


Table 2

	REV pin voltage		
	HIGH	LOW Forward	
E _{CR} < E _C	Reverse		
E _{CR} > E _C	Stop	Reverse	

Start/stop pin

The Run state is entered when a voltage ≥ 3.5 V is applied to the ST/SP pin. The Idle state (all output transistors off) is entered when a voltage ≤ 1.2 V is applied.

The ST/SP pin equivalent input circuit is shown in Figure 2. The ST/SP pin has a -7 mV/°C temperature characteristic, and a resistance variance of $\pm 30\%$. This temperature characteristic should be accounted for during circuit design.

Power ground (R_{NF} pin)

This is the output stage ground connection. To monitor the output current, a small resistor $(0.5~\Omega)$ should be connected between this pin and ground.

Phase compensation (CNF) pin

If the output tends to oscillate in normal operation, connect a capacitor between this pin and V_{CC} .

ROHM

Motor Driver Integrated Circuits

248

7828999 0014090 OTT **==**

Precautions for use

Thermal shutdown (TSD)

Regardless of the operating mode as defined by the input, the thermal shutdown circuit turns off the driver output (A1, A2, and A3) if the junction temperature of the IC exceeds 175°C (typical). There is a 15°C difference (typical) between the temperatures at which the TSD circuit trips and resets. The shutdown signal is not latched. This means the IC automatically turns on again when it cools down. When the trip resets, the outputs assume the states defined by the logic input.

Electrical characteristic curves

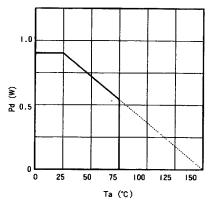


Figure 10

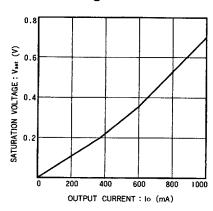


Figure 12

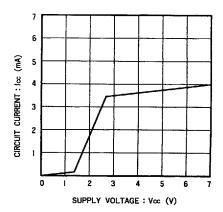


Figure 11

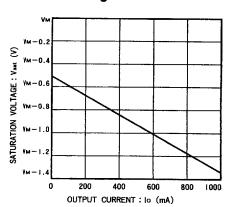


Figure 13

Motor Driver Integrated Circuits

ROHM

249

7828999 0014091 T36 🖿