

Features

- Selected to specific on-line intensity and radiant intensity ranges.
- Low cost plastic end looking package.
- Mechanically and spectrally matched to the LTR-4206 series of phototransistor.
- The LTE-4206 series are made with Gallium Aluminum Arsenide window layer on Gallium Arsenide infrared emitting diodes.

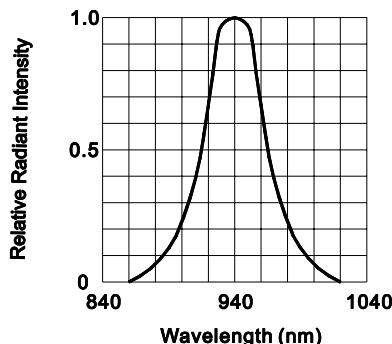
Description

The LTE-4206 series are high intensity Gallium Aluminum Arsenide infrared emitting diodes mounted in clear plastic end looking packages. The LTE-4206 series provides a broad range of intensity selection. Suffix C-smoke color lens.

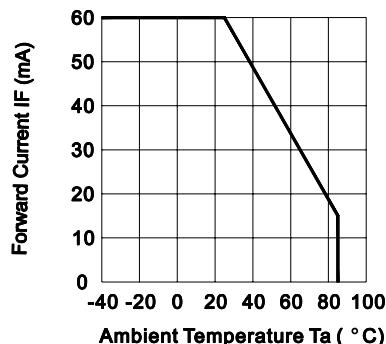
Package Dimensions**Notes:**

- All dimensions are in millimeters (inches).
- Tolerance is $\pm 0.25\text{mm}$ (.010") unless otherwise noted.
- Protruded resin under flange is 1.5mm (.059") max.
- Lead spacing is measured where the leads emerge from the package.
- Specifications are subject to change without notice.

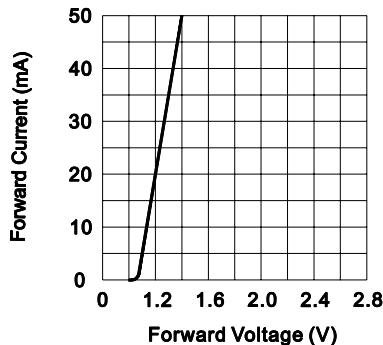
Absolute Maximum Ratings at $T_a=25^\circ\text{C}$

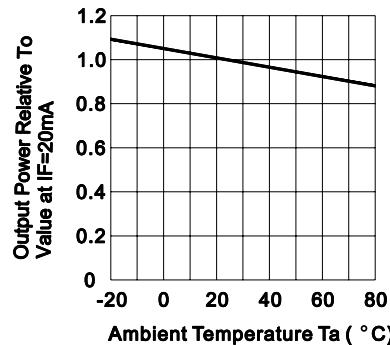

Parameter	Maximum Rating	Unit
Power Dissipation	90	mW
Peak forward Current (300pps, 10 μs pulse)	1	A
Continuous Forward Current	60	mA
Reverse Voltage	5	V
Operating Temperature Range	-40°C to +85°C	
Storage Temperature Range	-55°C to +100°C	
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260°C for 5 Seconds	

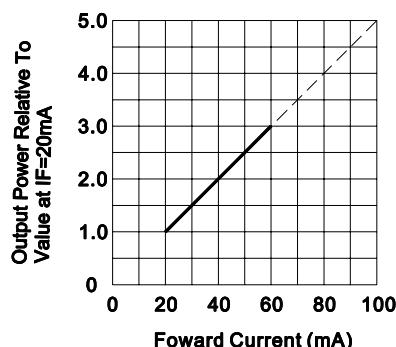
Electrical Optical Characteristics at $T_a=25^\circ\text{C}$

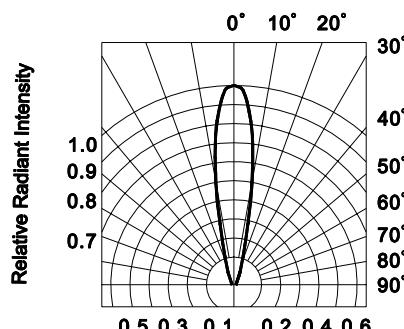

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
*Aperture Radiant Incidence	Ee	0.3	0.7		mW/cm ²	I _f =20mA
Radiant Intensity	I _e	2.25	5.26		mW/sr	I _f =20mA
Peak Emission Wavelength	λ Peak		940		nm	I _f =20mA
Spectral Line Half-Width	$\Delta\lambda$		50		nm	I _f =20mA
Forward Voltage	V _f		1.2	1.6	V	I _f =20mA
Reverse Current	I _R			100	μA	V _R =5V
View Angle (See Fig.6)	2 θ 1/2		20		deg	

Note: *Ee is a measurement of the average radiant incidence upon a sensing area 1cm² in perpendicular to and centered on the mechanical axis of the lens and 26.8mm from lens.


**Typical Electrical/Optical Characteristic Curves
(25°C Ambient Temperature Unless Otherwise Noted)**


FIG.1 SPECTRAL DISTRIBUTION


**FIG.2 FORWARD CURRENT VS.
AMBIENT TEMPERATURE**


**FIG.3 FORWARD CURRENT VS.
FORWARD VOLTAGE**

**FIG.4 RELATIVE RADIANT INTENSITY
VS. AMBIENT TEMPERATURE**

**FIG.5 RELATIVE RADIANT INTENSITY
VS. FORWARD CURRENT**

FIG.6 RADIATION DIAGRAM