
RabbitCore RCM3600
C-Programmable Core Module

User’s Manual
019–0135 • 070831–E

RabbitCore RCM3600

Rabbit Semiconductor Inc.
www.rabbit.com

RabbitCore RCM3600 User’s Manual

Part Number 019-0135 • 070831–E • Printed in U.S.A.
©2003–2007 Rabbit Semiconductor Inc. • All rights reserved.

Rabbit Semiconductor reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Dynamic C are registered trademarks of Rabbit Semiconductor Inc.

Rabbit 3000 and RabbitCore are trademarks of Rabbit Semiconductor Inc.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Rabbit Semiconductor.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Rabbit Semiconductor.

The latest revision of this manual is available on the Rabbit Semiconductor Web site,
www.rabbit.com, for free, unregistered download.

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

User’s Manual

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 RCM3600 Features ...1
1.2 Advantages of the RCM3600 ...3
1.3 Development and Evaluation Tools..4

1.3.1 Development Kit ...4
1.3.2 Software ..5
1.3.3 Connectivity Interface Kits ...5
1.3.4 Online Documentation ..5

Chapter 2. Getting Started 7
2.1 Install Dynamic C ...7
2.2 Hardware Connections..8

2.2.1 Attach Module to Prototyping Board..8
2.2.2 Connect Programming Cable ..9
2.2.3 Connect Power ..10

2.2.3.1 Overseas Development Kits ... 10
2.3 Starting Dynamic C ..11
2.4 Run a Sample Program ...11

2.4.1 Troubleshooting ..11
2.5 Where Do I Go From Here? ...12

2.5.1 Technical Support ...12

Chapter 3. Running Sample Programs 13
3.1 Introduction...13
3.2 Sample Programs ..14

3.2.1 Serial Communication...16
3.2.2 A/D Converter Inputs..18

Chapter 4. Hardware Reference 21
4.1 RCM3600 Digital Inputs and Outputs ..22

4.1.1 Memory I/O Interface ...26
4.1.2 Other Inputs and Outputs ..26

4.2 Serial Communication ..27
4.2.1 Serial Ports ..27
4.2.2 Serial Programming Port...28

4.3 Serial Programming Cable..29
4.3.1 Changing Between Program Mode and Run Mode ..29
4.3.2 Standalone Operation of the RCM3600..30

4.4 Other Hardware...31
4.4.1 Clock Doubler ...31
4.4.2 Spectrum Spreader ..31

4.5 Memory...32
4.5.1 SRAM ...32
4.5.2 Flash EPROM ...32
4.5.3 Dynamic C BIOS Source Files ...32

RabbitCore RCM3600

Chapter 5. Software Reference 33
5.1 More About Dynamic C... 33
5.2 Dynamic C Functions... 35

5.2.1 Board Initialization... 35
5.2.2 Analog Inputs ... 36
5.2.3 Digital I/O... 52
5.2.4 Serial Communication Drivers ... 53

5.3 Upgrading Dynamic C ... 54
5.3.1 Add-On Modules .. 54

Appendix A. RCM3600 Specifications 55
A.1 Electrical and Mechanical Characteristics .. 56

A.1.1 Headers .. 59
A.2 Bus Loading .. 60
A.3 Rabbit 3000 DC Characteristics .. 63
A.4 I/O Buffer Sourcing and Sinking Limit... 64
A.5 Conformal Coating .. 65
A.6 Jumper Configurations .. 66

Appendix B. Prototyping Board 67
B.1 Introduction ... 68

B.1.1 Prototyping Board Features ... 69
B.2 Mechanical Dimensions and Layout ... 71
B.3 Power Supply... 72
B.4 Using the Prototyping Board ... 73

B.4.1 Adding Other Components .. 74
B.4.2 Analog Features ... 75

B.4.2.1 A/D Converter Inputs.. 75
B.4.2.2 Thermistor Input ... 77
B.4.2.3 Other A/D Converter Features .. 78
B.4.2.4 A/D Converter Calibration.. 79

B.4.3 Serial Communication ... 80
B.4.3.1 RS-232 .. 81
B.4.3.2 RS-485 .. 82

B.4.4 Other Prototyping Board Modules... 83
B.5 RCM3600 Prototyping Board Jumper Configurations.. 84

Appendix C. LCD/Keypad Module 87
C.1 Specifications... 87
C.2 Contrast Adjustments for All Boards .. 89
C.3 Keypad Labeling.. 90
C.4 Header Pinouts... 91

C.4.1 I/O Address Assignments .. 91
C.5 Install Connectors on Prototyping Board .. 92
C.6 Mounting LCD/Keypad Module on the Prototyping Board.. 93
C.7 Bezel-Mount Installation ... 94

C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board .. 96
C.8 Sample Programs... 97
C.9 LCD/Keypad Module Function Calls.. 98

C.9.1 LCD/Keypad Module Initialization ... 98
C.9.2 LEDs .. 98
C.9.3 LCD Display .. 99
C.9.4 Keypad ... 119

User’s Manual

Appendix D. Power Supply 123
D.1 Power Supplies...123

D.1.1 Battery-Backup Circuits...123
D.1.2 Reset Generator ..124

Index 125

Schematics 129

RabbitCore RCM3600

User’s Manual 1

1. INTRODUCTION

The RCM3600 is a compact module that incorporates the pow-
erful Rabbit® 3000 microprocessor, flash memory, static RAM,
and digital I/O ports.

The Development Kit has what you need to design your own
microprocessor-based system: a complete Dynamic C software
development system and a Prototyping Board that acts as a
motherboard to allow you to evaluate the RCM3600 and to pro-
totype circuits that interface to the RCM3600 module.

The RCM3600 has a Rabbit 3000 microprocessor operating at 22.1 MHz, static RAM,
flash memory, two clocks (main oscillator and real-time clock), and the circuitry necessary
for reset and management of battery backup of the Rabbit 3000’s internal real-time clock
and the static RAM. One 40-pin header brings out the Rabbit 3000 I/O bus lines, parallel
ports, and serial ports.

The RCM3600 receives its +5 V power from the customer-supplied motherboard on
which it is mounted. The RCM3600 can interface with all kinds of CMOS-compatible
digital devices through the motherboard.

1.1 RCM3600 Features
• Small size: 1.23" x 2.11" x 0.62"

(31 mm x 54 mm x 16 mm)

• Microprocessor: Rabbit 3000 running at 22.1 MHz

• 33 parallel 5 V tolerant I/O lines: 31 configurable for I/O, 2 fixed outputs

• External reset I/O

• Alternate I/O bus can be configured for 8 data lines and 5 address lines (shared with
parallel I/O lines), I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers

• 512K flash memory, 512K SRAM (options for 256K flash memory and 128K SRAM)

2 RabbitCore RCM3600

• Real-time clock

• Watchdog supervisor

• Connections via header J1 for customer-supplied backup battery

• 10-bit free-running PWM counter and four pulse-width registers

• Two-channel Input Capture can be used to time input signals from various port pins

• Two-channel Quadrature Decoder accepts inputs from external incremental encoder
modules

• Four available 3.3 V CMOS-compatible serial ports with a maximum asynchronous baud
rate of 2.76 Mbps. Three ports are configurable as a clocked serial port (SPI), and one
port is configurable as an HDLC serial port. Shared connections to the Rabbit micro-
processor make a second HDLC serial port available at the expense of two of the SPI
configurable ports, giving you two HDLC ports and one asynchronous/SPI serial port.

• Supports 1.15 Mbps IrDA transceiver

There are two RCM3600 production models. If the standard models do not serve your
needs, variations can be specified and ordered in production quantities. Contact your Rab-
bit Semiconductor sales representative for details.

Table 1 below summarizes the main features of the RCM3600.

The RCM3600 can be programed through a USB port with an RS-232/USB converter, or
over an Ethernet with the RabbitLink.

Appendix A provides detailed specifications for the RCM3600.

Table 1. RCM3600 Features

Feature RCM3600 RCM3610

Microprocessor Rabbit 3000 running at 22.1 MHz

Flash Memory 512K 256K

SRAM 512K 128K

Serial Ports

4 shared high-speed, 3.3 V CMOS-compatible ports:
all 4 are configurable as asynchronous serial ports;
3 are configurable as a clocked serial port (SPI) and
1 is configurable as an HDLC serial port;
option for second HDLC serial port at the expense
of 2 clocked serial ports (SPI)

User’s Manual 3

1.2 Advantages of the RCM3600
• Fast time to market using a fully engineered, “ready-to-run/ready-to-program” micro-

processor core.

• Competitive pricing when compared with the alternative of purchasing and assembling
individual components.

• Easy C-language program development and debugging

• Rabbit Field Utility to download compiled Dynamic C .bin files, and cloning board
options for rapid production loading of programs.

• Generous memory size allows large programs with tens of thousands of lines of code,
and substantial data storage.

4 RabbitCore RCM3600

1.3 Development and Evaluation Tools
1.3.1 Development Kit

The Development Kit contains the hardware you need to use your RCM3600 module.

• RCM3600 module.

• Prototyping Board.

• AC adapter, 12 V DC, 500 mA (included only with Development Kits sold for the
North American market). A header plug leading to bare leads is provided to allow over-
seas users to connect their own power supply with a DC output of 7.5–30 V.

• Programming cable with 10-pin header and DB9 connections, and integrated level-
matching circuitry.

• Cable kits to access RS-485 and analog input connectors on Prototyping Board.

• Dynamic C CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• Accessory parts for use on the Prototyping Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Figure 1. RCM3600 Development Kit

����

����

�����������
	�
��

��������������
������������ �����������������

Rabbit and Dynamic C are registered trademarks of Rabbit Semiconductor Inc.

RabbitCore RCM3600
Development Kit Contents
The RCM3600 Development Kit contains the following items:

• RCM3600 module.

• Prototyping Board.

• AC adapter, 12 V DC, 500 mA (included only with Development Kits sold for the North American
market). A header plug leading to bare leads is provided to allow overseas users to connect their
own power supply with a DC output of 7.5–30 V.

• Programming cable with 10-pin header and DE9 connections, and integrated level-matching cir-
cuitry.

• Cable kits to access RS-485 and analog input connectors on Prototyping Board.

• Dynamic C CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• Accessory parts for use on the Prototyping Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Installing Dynamic C®

Insert the CD from the Development Kit in your PC’s CD-ROM drive. If the instal-
lation does not auto-start, run the setup.exe program in the root directory of the
Dynamic C CD. Install any Dynamic C modules after you install Dynamic C.

�������������������
�����������������

�	��������
�	
��
���������

�����
����

�������	�
�������

�� ��
��

��
 �
�!

 �
�"

 �
�#

 �
�$

�	
�

�%
&
�

�'
�

 �
�(

 �
�)

 �
�* �	
�

�	
� �" �(�(�) �* �+ �	
�

�) �(�! �" �# �$ �	
�

�%
&
�

�'
�

 �
�(

 �
�)

 �
�* �	
�

�	
� �" �! �(�) �* �+

 "

'(

'"

��(
�(
�"
�)
�#

�,

�,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((
1)

'#

'+ '. '(
!

�()

'((

1#

'* '$

'-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

��
#��

�"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�	
� 	'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)�

�	
�

�*
�

�*
�

�	
�

�)
6)�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

��
	

�4
�

�4
�

�4
�

��
	

�'73�7�3��'&��

�*
�

�%
��

��
*

���
��

��
$3
�4
�

��
!

��
#

��
+

�'
"3
�4
'

�'
!3
�4
�

�2
$

�2
#

�%
*

�%
)

�%
!

�2
(

��
(

��
)

��
*

��
+

/*

�	
�

�($ �	
�

��
�� ��
#

���
5� ��
(

��
*

�'
)��

�) �2
+

�2
*

�%
+

�%
#

�%
"

�2
!

��
!

��
"

��
#

��
$

��
+

�4
�

�'
(�

��
"

'""

'"$
�"(�(.

'"
!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�#
)

'"-/+
�8��7�����

�)
+

/.

��
�2

�
�	

�#
#

��
��

�

�� ��	 !$!* !# !) !" !(!! ��	

�
�	

�)
.

')
!

')
(

')
"

')
)

')
#

�)-��#! �#(��#"

�#
.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	' 	'	' 	'	' 	'

�� ��
��
��

 �
�!

 �
�"

 �
�#

 �
�$

�	
�

�) �(�! �" �# �$

�'
7)

$�)
+4
4��

��
���

��
��

��
9�

�	
��
%�

��
�

�����

User’s Manual 5

1.3.2 Software

The RCM3600 is programmed using version 8.11 or later of Dynamic C. A compatible
version is included on the Development Kit CD-ROM.

Rabbit Semiconductor also offers add-on Dynamic C modules including the popular
µC/OS-II real-time operating system, as well as point-to-point protocol (PPP), Advanced
Encryption Standard (AES), and other select libraries. In addition to the Web-based tech-
nical support included at no extra charge, a one-year telephone-based technical support
module is also available for purchase. Visit our Web site at www.rabbit.com or contact
your Rabbit Semiconductor sales representative or authorized distributor for further
information.

1.3.3 Connectivity Interface Kits

Rabbit Semiconductor has available an interface kit to allow you to provide a wireless
interface to the RCM3600.

• 802.11b Wi-Fi Add-On Kit (Part No. 101-0999)—The Wi-Fi Add-On Kit for the
RCM3600/RCM3700 footprint consists of an RCM3600/RCM3700 Interposer Board,
a Wi-Fi CompactFlash card with a CompactFlash Wi-Fi Board, a ribbon interconnect-
ing cable, and the software drivers and sample programs to help you enable your
RCM3600 module with Wi-Fi capabilities. The RCM3600/RCM3700 Interposer Board
is placed between the RCM3600 module and the Prototyping Board so that the Com-
pactFlash Wi-Fi Board, which holds the Wi-Fi CompactFlash card, can be connected to
the RCM3600-based system via the ribbon cable provided.

Visit our Web site at www.rabbit.com or contact your Rabbit Semiconductor sales repre-
sentative or authorized distributor for further information.

1.3.4 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, use your browser to find and load default.htm in the docs
folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our Web sites as well.

http://www.rabbit.com/products/dc/
http://www.rabbit.com/products/Peripherals/

6 RabbitCore RCM3600

User’s Manual 7

2. GETTING STARTED

This chapter describes the RCM3600 hardware in more detail, and
explains how to set up and use the accompanying Prototyping Board.

NOTE: It is assumed that you have the RCM3600 Development Kit. If you purchased an
RCM3600 module by itself or with another kit, you will have to adapt the information
in this chapter and elsewhere to your test and development setup.

2.1 Install Dynamic C
To develop and debug programs for the RCM3600 (and for all other Rabbit Semiconductor
hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C version 8.11 (or a later version), do so now by
inserting the Dynamic C CD from the RCM3600 Development Kit in your PC’s CD-ROM
drive. If autorun is enabled, the CD installation will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows
Start | Run menu or Windows Disk Explorer to launch setup.exe from the root folder
of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the
process are self-explanatory.

Dynamic C uses a COM (serial) port on your PC to communicate with the target develop-
ment system. The installation allows you to choose the COM port that will be used. The
default selection is COM1. You may select any available port for Dynamic C’s use. If you
are not certain which port is available, select COM1. This selection can be changed later
within Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-
fying a port in use by another device (mouse, modem, etc.) may lead to a message such
as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three icons on your PC desktop.
One icon is for Dynamic C, one opens the documentation menu, and the third is for the
Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased any of the optional Dynamic C modules, install them after installing
Dynamic C. The modules may be installed in any order. You must install the modules in
the same directory where Dynamic C was installed.

8 RabbitCore RCM3600

2.2 Hardware Connections
There are three steps to prepare the RCM3600 for use with Dynamic C and the sample
programs:

1. Attach the RCM3600 module to the Prototyping Board.
2. Connect the programming cable between the RCM3600 and the COM port on the

workstation PC.
3. Connect the power supply to the Prototyping Board.

2.2.1 Attach Module to Prototyping Board

Turn the RCM3600 module so that the Rabbit 3000 chip is facing up as shown in Figure 2
below. Insert the pins from the module’s J1 header on the bottom side of the RCM3600
into the TCM_SMT_SOCKET socket on the Prototyping Board. The shaded corner notch
at the bottom right corner of the RCM3600 module should face the same direction as the
corresponding notch below it on the Prototyping Board.

Figure 2. Install the RCM3600 Series on the Prototyping Board

NOTE: It is important that you line up the pins on header J1 of the RCM3600 module
exactly with the corresponding pins of the TCM_SMT_SOCKET socket on the Proto-
typing Board. The header pins may become bent or damaged if the pin alignment is off-
set, and the module will not work. Permanent electrical damage to the module may also
result if a misaligned module is powered up.

Press the module’s pins firmly into the Prototyping Board headers.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

��������������

������������
��������	� !""

�")

')(')"
')#

'#

'))
'+ '"

/�) /�"

/�(
�('('

("
'
()

'
"(

'
(# '

(.

'(* 1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$��*�
.

�
($

�
(*
�
"

�
-

1"1)

/"

'
"$

:(
�(#

�(.
1$�""

�+

'
((

'. '-

�
)

User’s Manual 9

2.2.2 Connect Programming Cable

The programming cable connects the RCM3600 to the PC running Dynamic C to down-
load programs and to monitor the RCM3600 module during debugging.

Connect the 10-pin connector of the programming cable labeled PROG to header J2 on
the RCM3600 as shown in Figure 3. Be sure to orient the marked (usually red) edge of the
cable towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a
normal serial connection.)

Figure 3. Connect Programming Cable and Power Supply

NOTE: Be sure to use the programming cable (Part No. 101-0542) supplied with this
Development Kit—the programming cable has blue shrink wrap around the RS-232 con-
verter section located in the middle of the cable. Programming cables from other Rabbit
Semiconductor kits are not designed to work with RCM3600 modules.

Connect the other end of the programming cable to a COM port on your PC.

NOTE: Some PCs now come equipped only with a USB port. It may be possible to use
an RS-232/USB converter (Part No. 540-0070) with the programming cable supplied
with the RCM3600 Development Kit. Note that not all RS-232/USB converters work
with Dynamic C.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3

�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3

�
4
'

�
'
!3

�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�")

')(')"
')#

'#

'))
'+ '"

/�) /�"

/�(
�('('

("
'
()

'
"(

'
(# '

(.

'(* 1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$��*�
.

�
($

�
(*
�
"

�
-

1"1)

/"
'
"$

:(
�(#

�(.
1$�""

�+

'
((

'. '-

�
)

'
�
��;
�;<�

�

�'�����=
��

����

����

�����������
	�
��

����
/"

%�>�
�
�����?��=

�������#����

 $���
��#������������

�	��������

10 RabbitCore RCM3600

2.2.3 Connect Power

When all other connections have been made, connect the wall transformer to 3-pin header
J4 on the Prototyping Board as shown in Figure 3. The connector may be attached either
way as long as it is not offset to one side.

Plug in the wall transformer. The LED above the RESET button on the Prototyping Board
should light up. The RCM3600 and the Prototyping Board are now ready to be used.

NOTE: A RESET button is provided on the Prototyping Board to allow a hardware reset
without disconnecting power.

2.2.3.1 Overseas Development Kits

Development kits sold outside North America include a header connector that may be
connected to 3-pin header J4 on the Prototyping Board. The connector may be attached
either way as long as it is not offset to one side. The red and black wires from the connec-
tor can then be connected to the positive and negative connections on your power supply.
The power supply should deliver 7.5 V–30 V DC at 500 mA.

User’s Manual 11

2.3 Starting Dynamic C
Once the RCM3600 is connected as described in the preceding pages, start Dynamic C by
double-clicking on the Dynamic C icon or by double-clicking on dcrabXXXX.exe in
the Dynamic C root directory, where XXXX are version-specific characters. Dynamic C
uses the serial COM port on your PC that you specified during installation.

If you are using a USB port to connect your computer to the RCM3600 module, choose
Options > Project Options and select “Use USB to Serial Converter.”

2.4 Run a Sample Program
Use the File menu to open the sample program PONG.C, which is in the Dynamic C
SAMPLES folder. Press function key F9 to compile and run the program. The STDIO
window will open on your PC and will display a small square bouncing around in a box.

2.4.1 Troubleshooting

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Choose a lower debug baud rate.

If there are any other problems:

• Check that the RCM3600 is powered correctly — the power LED above the RESET
button on the Prototyping Board should be lit.

• Check to make sure you are using the PROG connector, not the DIAG connector, on the
programming cable.

• Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the programming port on the RCM3600.

• Ensure that the RCM3600 module is firmly and correctly installed in its connectors on
the Prototyping Board.

• Select a different COM port within Dynamic C. From the Options menu, select
Project Options, then select Communications. Select another COM port from the list,
then click OK. Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C
still reports it is unable to locate the target system, repeat the above steps until you locate
the active COM port.

12 RabbitCore RCM3600

2.5 Where Do I Go From Here?
If the sample program ran fine, you are now ready to go on to other sample programs and to
develop your own applications. The source code for the sample programs is provided to allow
you to modify them for your own use. The RCM3600 User’s Manual also provides com-
plete hardware reference information and describes the software function calls for the
RCM3600, the Prototyping Board, and the optional LCD/keypad module.

For advanced development topics, refer to the Dynamic C User’s Manual, which is avail-
able in the online documentation set.

2.5.1 Technical Support

NOTE: If you purchased your RCM3600 through a distributor or through a Rabbit Semi-
conductor partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Semiconductor Technical Bulletin Board at
www.rabbit.com/support/bb/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml

Getting Started 13

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM3600 (and for all
other Rabbit Semiconductor hardware), you must install and use
Dynamic C.

3.1 Introduction
To help familiarize you with the RCM3600 modules, Dynamic C includes several sample
programs. Loading, executing and studying these programs will give you a solid hands-on
overview of the RCM3600’s capabilities, as well as a quick start with Dynamic C as an
application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C
programming language. If you do not, see the introductory pages of the Dynamic C
User’s Manual for a suggested reading list.

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your RCM3600 must be plugged in to the Prototyping Board as described in Chapter 2,
“Getting Started.”

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header (J2) on the RCM3600
to your PC.

4. Power must be applied to the RCM3600 through the Prototyping Board.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

To run a sample program, open it with the File menu, then compile and run it by pressing
F9 or by selecting Run in the Run menu. The RCM3600 must be in Program Mode (see
Figure 8) and must be connected to a PC using the programming cable.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

14 RabbitCore RCM3600

3.2 Sample Programs
Of the many sample programs included with Dynamic C, several are specific to the
RCM3600. Sample programs illustrating the general operation of the RCM3600, serial
communication, and the A/D converter on the Prototyping Board are provided in the
SAMPLES\RCM3600 folder. Each sample program has comments that describe the purpose
and function of the program. Follow the instructions at the beginning of the sample pro-
gram. Note that the RCM3600 must be installed on the Prototyping Board when using
these sample programs. Sample programs for the optional LCD/keypad module are
described in Appendix C.

• CONTROLLED.c—Demonstrates use of the digital inputs by having you turn the LEDs
on the Prototyping Board on or off from the STDIO window on your PC.

Once you compile and run CONTROLLED.C, the following display will appear in the
Dynamic C STDIO window.

Press “1” or “2” on your keyboard to select LED DS1 or DS2 on the Prototyping
Board. Then follow the prompt in the Dynamic C STDIO window to turn the LED
on or off.

• FLASHLED.c—Demonstrates the use of assembly language to flash LEDs DS1 and
DS2 on the Prototyping Board at different rates. Once you have compiled and run this
program, LEDs DS1 and DS2 will flash on/off at different rates.

Getting Started 15

• IR_DEMO.c—Demonstrates sending Modbus ASCII packets between two Prototyping
Board assemblies via the IrDA transceivers with the IrDA transceivers facing each other.
Note that this sample program requires a second Prototyping Board or Rabbit Semicon-
ductor single-board computer that has an IrDA chip and is running the IR_DEMO.C
sample program associated with it.

First, compile and run the IR_DEMO.C sample program from the SAMPLES folder spe-
cific to the other system on the second system, then remove the programming cable and
press the RESET button so that the first assembly is operating in the Run mode. Then
connect the programming cable to the RCM3600 module, and compile and run the
IR_DEMO.C sample program from the SAMPLES\RCM3600 folder on the RCM3600
system. With the two IrDA transceivers facing each other, press switch S1 on the
RCM3600 Prototyping Board to transmit a packet. The other system will return a
response packet that will then appear in the Dynamic C STDIO window. The test pack-
ets and response packets have different codes.

• DIO.c—Demonstrates the digital I/O capabilities of the A/D converter on the Proto-
typing Board by configuring two lines to outputs and two lines as inputs on Prototyping
Board header JP4.

Install a 2 × 2 header at JP4 on the Prototyping Board and connect pins 1–3 and pins 2–4
on header JP4 before running this sample program.

Once the sample program is compiled and running, it will prompt you in the STDIO
window to select either pin 1 of header JP4 or pin 2 of header JP4 for the output. Once
you have made that selection, you will be prompted to enter a logic 0 or 1. The speci-
fied logic level will then be output on pins 1–3 or pins 2–4 on header JP4.

• TOGGLESWITCH.c—Uses costatements to detect switches using debouncing. The cor-
responding LEDs (DS1 and DS2) will turn on or off. LEDs DS1 and DS2 on the Proto-
typing Board are turned on and off when you press switches S1 and S2. S1 and S2 are
controlled by PF4 and PB7 respectively.

Once you have loaded and executed these five programs and have an understanding of
how Dynamic C and the RCM3600 modules interact, you can move on and try the other
sample programs, or begin developing your own.

16 RabbitCore RCM3600

3.2.1 Serial Communication

The following sample programs can be found in the Dynamic C SAMPLES\RCM3600\
SERIAL folder.

NOTE: PE5 is set up to enable/disable the RS-232 chip on the Prototyping Board. This
pin will also be toggled when you run RS-232 sample programs on the Prototyping
Board. If you plan to use this pin for something else while you are running any of the
RS-232 sample programs, comment out the following line.

 BitWrPortI(PEDR, &PEDRShadow, 0, 5);//set low to enable rs232 device

• FLOWCONTROL.C—This program demonstrates how to configure Serial Port C for
CTS/RTS with serial data coming from Serial Port D (TxD) at 115,200 bps. The serial
data received are displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie TxD and RxD
together on the RS-232 header at J2, and you will also tie TxC and
RxC together using the jumpers supplied in the Development Kit as
shown in the diagram.

A repeating triangular pattern should print out in the STDIO window.
The program will periodically switch flow control on or off to demonstrate the effect of
no flow control.

Refer to the function description for serDflowcontrolOn() in the Dynamic C
Function Reference Manual for a general description on how to set up flow-control
lines.

• PARITY.C—This program demonstrates the use of parity modes by
repeatedly sending byte values 0–127 from Serial Port D to Serial Port
C. The program will switch between generating parity or not on Serial
Port D. Serial Port C will always be checking parity, so parity errors
should occur during every other sequence.

To set up the Prototyping Board, you will need to tie TxD and RxC together on the
RS-232 header at J2 using the 0.1" jumpers supplied in the Development Kit as shown
in the diagram.

The Dynamic C STDIO window will display the error sequence.

%&
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

%&
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

Getting Started 17

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial
communication. Lower case characters are sent by TxC, and are
received by RxD. The characters are converted to upper case and are
sent out by TxD, are received by RxC, and are displayed in the
Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie TxD and RxC together on the
RS-232 header at J2, and you will also tie RxD and TxC together using the 0.1" jump-
ers supplied in the Development Kit as shown in the diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication
with flow control on Serial Port C and data flow on Serial Port D.

To set up the Prototyping Board, you will need to tie TxD and RxD
together on the RS-232 header at J2, and you will also tie TxC and
RxC together using the 0.1" jumpers supplied in the Development Kit
as shown in the diagram.

Once you have compiled and run this program, you can test flow con-
trol by disconnecting TxC from RxC while the program is running. Characters will no
longer appear in the STDIO window, and will display again once TxC is connected
back to RxC.

• SWITCHCHAR.C—This program transmits and then receives an ASCII string on Serial
Ports C and E. It also displays the serial data received from both ports in the STDIO
window.

Before running this sample program, check to make sure that Serial
Port E is set up as an RS-232 serial port—pins 1–3 and pins 2–4 on
header JP2 must be jumpered together using the 2 mm jumpers sup-
plied in the Development Kit. Then connect TxC to RxE and connect
RxC to TxE on the RS-232 header at J2 using the 0.1" jumpers sup-
plied in the Development Kit as shown in the diagram.

NOTE: The following two sample programs illustrating RS-485 serial communication
will only work with the RCM3600/RCM3700 Prototyping Board.

• SIMPLE485MASTER.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a slave RCM3600. The slave will send back converted upper case
letters back to the master RCM3600 and display them in the STDIO window. Use
SIMPLE485SLAVE.C to program the slave RCM3600, and check to make sure that
Serial Port E is set up as an RS-485 serial port—pins 3–5 and pins 4–6 on header JP2
must be jumpered together using the 2 mm jumpers supplied in the Development Kit.

• SIMPLE485SLAVE.C—This program demonstrates a simple RS-485
transmission of lower case letters to a master RCM3600. The slave
will send back converted upper case letters back to the master
RCM3600 and display them in the STDIO window. Use
SIMPLE485MASTER.C to program the master RCM3600, and check to make sure that
Serial Port E is set up as an RS-485 serial port—pins 3–5 and pins 4–6 on header JP2
must be jumpered together using the 2 mm jumpers supplied in the Development Kit.

%&
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

%&
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

%&
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

%�&

%�&

18 RabbitCore RCM3600

3.2.2 A/D Converter Inputs

The following sample programs are found in the Dynamic C SAMPLES\RCM3600\ADC
folder.

• AD_CALDIFF_CH.C—Demonstrates how to recalibrate one differential analog input
channel using two known voltages to generate the calibration constants for that channel.
Constants will be rewritten into user block data area.

Before running this program, make sure that pins 1–3 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• AD_CALMA_CH.C—Demonstrates how to recalibrate an A/D input channel being used to
convert analog current measurements to generate the calibration constants for that channel.

Before running this program, make sure that pins 3–5 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. Connect pins 1–2, 3–4, 5–6, 7–8 on header JP8.

• AD_CALSE_ALL.C—Demonstrates how to recalibrate all single-ended analog input
channels for one gain, using two known voltages to generate the calibration constants
for each channel. Constants will be rewritten into the user block data area.

Before running this program, make sure that pins 3–5 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• AD_CALSE_CHAN.C—Demonstrates how to recalibrate one single-ended analog input
channel with one gain using two known voltages to generate the calibration constants
for that channel. Constants will be rewritten into user block data area.

Before running this program, make sure that pins 3–5 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

NOTE: The above sample programs will overwrite any existing calibration constants.

• AD_RDDIFF_CH.C—Demonstrates how to read an A/D input channel being used for a
differential input using previously defined calibration constants.

Before running this program, make sure that pins 1–3 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• AD_RDMA_CH.C—Demonstrates how to read an A/D input channel being used to con-
vert analog current measurements using previously defined calibration constants for
that channel.

Before running this program, make sure that pins 3–5 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. Connect pins 1–2, 3–4, 5–6, 7–8 on header JP8.

• AD_RDSE_ALL.C—Demonstrates how to read all single-ended A/D input channels
using previously defined calibration constants.

Before running this program, make sure that pins 3–5 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

Getting Started 19

• AD_SAMPLE.C—Demonstrates how to use a low-level driver on single-ended inputs.
The program will continuously display the voltage (average of 10 samples) that is
present on the A/D channels.

Before running this program, make sure that pins 3–5 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• ANAINCONFIG.C—Demonstrates how to use the Register Mode method to read single-
ended analog input values for display as voltages. The sample program uses the func-
tion call anaInConfig() and the ADS7870 CONVERT line to accomplish this task.

Before running this program, make sure that pins 3–5 are connected on headers JP5,
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8. Also con-
nect PE4 on header J3 on the Prototyping Board to the CNVRT terminal on header J8;
if you are using this sample program as a template for your own program, be aware that
PE4 is also used as the IrDA FIR_SEL pin.

• THERMISTOR.C—Demonstrates how to use analog input THERM_IN7 to calculate
temperature for display to the STDIO window. This sample program assumes that the
thermistor is the one included in the Development Kit whose values for beta, series
resistance, and resistance at standard temperature are given in the part specification.

Before running this program, install the thermistor into the AIN7 and AGND holes at
location J7 on the Prototyping Board.

Before running the next two sample programs, DNLOADCALIB.C or UPLOADCALIB.C,
connect your PC serial COM port to header J2 on the Prototyping Board as follows.

• Tx to RxE

• Rx to TxE

• GND to GND

Then connect pins 1–3 and 2–4 on header JP2 on the Prototyping Board.

Now start Tera Term on your PC. Once Tera Term is running, configure the serial parame-
ters as follows:

• Baud rate 19200, 8 bits, no parity, and 1 stop bit.

• Enable the "Local Echo" option.

• Set the line feed options to Receive = CR and Transmit = CR + LF.

Now press F9 to compile and run this program. Verify that the message "Waiting,
Please Send Data file" is being display in Tera Term display window before proceeding.
From within Tera Term, select File > Send File > Path and filename, then select the
OPEN option within the dialog box. Once the data file has been downloaded, it will indi-
cate whether the calibration data were written successfully.

• DNLOADCALIB.C—Demonstrates how to retrieve analog calibration data to rewrite it
back to simulated EEPROM in flash with using a serial utility such as Tera Term.

20 RabbitCore RCM3600

• UPLOADCALIB.C—Demonstrates how to read calibrations constants from the user
block in flash memory and then transmit the file using a serial port and a PC serial
utility such as Tera Term. Use DNLOADCALIB.C to download the calibration constants
created by this program.

User’s Manual 21

4. HARDWARE REFERENCE

Chapter 4 describes the hardware components and principal hardware
subsystems of the RCM3600. Appendix A, “RCM3600 Specifica-
tions,” provides complete physical and electrical specifications.

Figure 4 shows the Rabbit-based subsystems designed into the RCM3600.

Figure 4. RCM3600 Subsystems

�	
�

��
��

������
���

������
���

��

��	����������

�����'�(
 """

	�������$��������
�)������� �*�
������

	�+�$��,����������

	�������	���������

�!�"
����##$%"�
&"�%
'�"(!����%�#�&�!�)�
�'

�$�&�#!���*!�"+"�

**�"�
&"�%�

,
&&!�-�,
��$*
�"��$"&

.!(!�
��%(!�&!�

22 RabbitCore RCM3600

4.1 RCM3600 Digital Inputs and Outputs
Figure 5 shows the RCM3600 pinouts for header J1.

Figure 5. RCM3600 Pinouts

Header J1 is a standard 2 x 20 IDC header with a nominal 0.1" pitch.

-���. ������	
��
�����������������
��������������������������
���

��$
��#
��"
��!
�2!
�%"
�%#
�%+
�2*
�2+

�'(���"
�')���)

��*
��(
��+

���5�
��#
����
�	�
�	�

��+
��*
��)
��(
�2(
�%!
�%)
�%*
�2#
�2$
�'!
�'"
��+
��#
��!
��$
�����
��*
�%��3�4�
��	

/�

User’s Manual 23

Figure 6 shows the use of the Rabbit 3000 microprocessor ports in the RCM3600 modules.

Figure 6. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3600 are configurable, and
so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000 factory defaults
and the alternate configurations.

�����'�(
 """

0��&�
 0��&�, 0��&�
1��&�!�%!&�0��&2

0��&��

��!0��+ �%!@��%+@
�%"0�%*

��!0��(@
��#0��*@
��+

��#0��*

����@
���5�

3
&��'�4
����"#!��

������ �$)�!�
��
(!�0��&

	!
���"#!������

	
� ,
��$*�,
&&!�-
�$**��& ��
��

0��&�� �2#0�2+

�"��5��6�
����
�����

��"0��)
��$0��+

0��&��
1�!�"
��0��&����7� 2

0��4�
##"%4
0��&

1�!�"
��0��&�
2

�'$

�%(@��'+@�����@
����1�@

�7���!@��7���(

�'!@��'"

�'(@��')

0��&�8
1�!�"
��0��&����7��2

24 RabbitCore RCM3600

Table 2. RCM3600 Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes

H
ea

de
r J

1

1–8 PA[7:0] Parallel I/O

External data bus
(ID0–ID7)

Slave port data bus
(SD0–SD7)

External Data Bus

9 PF1 Input/Output
QD1A
CLKC

10 PF0 Input/Output
QD1B
CLKD

11 PB0 Input/Output CLKB

12 PB2 Input/Output
IA0
/SWR

External Address 0
Slave port write

13 PB3 Input/Output
IA1
/SRD

External Address 1
Slave port read

14 PB4 Input/Output
IA2
SA0

External Address 2
Slave Port Address 0

15 PB5 Input/Output
IA3
SA1

External Address 3
Slave Port Address 1

16 PB7 Input/Output
IA5
/SLAVEATTN

External Address 5
Slave Port Attention

17 PF4 Input/Output
AQD1B
PWM0

18 PF5 Input/Output
AQD1A
PWM1

19 PF6 Input/Output
AQD2B
PWM2

20 PF7 Input/Output
AQD2A
PWM3

21 PC0 Output TXD Serial Port D

22 PC1/PG2 Input/Output RXD/TXF Serial Port D
Serial Port F

23 PC2 Output TXC Serial Port C

24 PC3/PG3 Input/Output RXC/RXF Serial Port C
Serial Port F

25 PE7 Input/Output
I7
/SCS

I/O Strobe 7
Slave Port Chip Select

User’s Manual 25

H
ea

de
r J

1
26 PE5 Input/Output

I5
INT1B

I/O Strobe 5
Interrupt 1B

27 PE4 Input/Output
I4
INT0B

I/O Strobe 4
Interrupt 0B

28 PE1 Input/Output
I1
INT1A

I/O Strobe 1
Interrupt 1A

29 PE0 Input/Output
I0
INT0A

I/O Strobe 0
Interrupt 0A

30 PG7 Input/Output RXE
Serial Port E

31 PG6 Input/Output TXE

32 /IOWR Output External write strobe

33 /IORD Input External read strobe

34 PD4 Input/Output ATXB
Alternate Serial Port B

35 PD5 Input/Output ARXB

36 /RES Reset output Reset input Reset output from Reset
Generator

37 VBAT

38 GND

39 +5 V

40 GND

Table 2. RCM3600 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes

26 RabbitCore RCM3600

4.1.1 Memory I/O Interface

The Rabbit 3000 address lines (A0–A18) and all the data lines (D0–D7) are routed inter-
nally to the onboard flash memory and SRAM chips. I/0 write (/IOWR) and I/0 read
(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the
main data bus. Parallel Port B pins PB2–PB5 and PB7 can also be used as an auxiliary
address bus.

When using the auxiliary I/O bus for either Ethernet or the LCD/keypad module on the
Prototyping Board, or for any other reason, you must add the following line at the begin-
ning of your program.

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

4.1.2 Other Inputs and Outputs

/RES is an output from the reset circuitry that can be used to reset other peripheral devices.
This pin can also be used to reset the microprocessor.

User’s Manual 27

4.2 Serial Communication
The RCM3600 board does not have any serial transceivers directly on the board. How-
ever, a serial interface may be incorporated on the board the RCM3600 is mounted on. For
example, the Prototyping Board has RS-232, RS-485 and IrDA transceiver chips.

4.2.1 Serial Ports

There are five serial ports designated as Serial Ports A, C, D, E, and F. All five serial ports
can operate in an asynchronous mode up to the baud rate of the system clock divided by 8.
An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where an
additional bit is sent to mark the first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as an asyn-
chronous or as a clocked serial port once application development has been completed and
the RCM3600 is operating in the Run Mode.

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock
line synchronously clocks the data in or out. Either of the two communicating devices can
supply the clock.

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is
also supported in SDLC format by these two ports.

Serial Port F shares its pins with Serial Ports C and D on header J1, as shown in Figure 7.
The selection of port(s) depends on your need for two clocked serial ports (Serial Ports C
and D) vs. a second HDLC serial port (Serial Port F).

Figure 7. RCM3600 Serial Ports C, D, and F

The serial ports used are selected with the serXOpen function call, where X is the serial
port (C, D, or F). Remember that the RxC and RxD on Serial Ports C and D cannot be
used if Serial Port F is being used

�4'
�4'

�4�
�4�

�42
�42

0��

0��

0�9

0��

08�

08�

/�:���

/�:���

/�:���

/�:���

28 RabbitCore RCM3600

4.2.2 Serial Programming Port

The RCM3600 programming port is accessed through header J2 or over an Ethernet con-
nection via the RabbitLink EG2110. The programming port uses the Rabbit 3000’s Serial
Port A for communication. Dynamic C uses the programming port to download and debug
programs.

The programming port is also used for the following operations.

• Cold-boot the Rabbit 3000 on the RCM3600 after a reset.

• Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

• Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

Alternate Uses of the Programming Port

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS input

The serial programming port may also be used as a serial port via the DIAG connector on
the serial programming cable.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODE0, SMODE1), status,
and reset pins are available on the programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose CMOS output.

The reset pin is an external input that is used to reset the Rabbit 3000. The serial program-
ming port can be used to force a hard reset on the RCM3600 by asserting the reset signal.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.

User’s Manual 29

4.3 Serial Programming Cable
The programming cable is used to connect the programming port of the RCM3600 to a PC
serial COM port. The programming cable converts the RS-232 voltage levels used by the
PC serial port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the RCM3600 pro-
gramming port, programs can be downloaded and debugged over the serial interface.

The DIAG connector of the programming cable may be used on header J2 of the RCM3600
with the RCM3600 operating in the Run Mode. This allows the programming port to be
used as a regular serial port.

4.3.1 Changing Between Program Mode and Run Mode

The RCM3600 is automatically in Program Mode when the PROG connector on the pro-
gramming cable is attached, and is automatically in Run Mode when no programming
cable is attached. When the Rabbit 3000 is reset, the operating mode is determined by the
status of the SMODE pins. When the programming cable’s PROG connector is attached,
the SMODE pins are pulled high, placing the Rabbit 3000 in the Program Mode. When the
programming cable’s PROG connector is not attached, the SMODE pins are pulled low,
causing the Rabbit 3000 to operate in the Run Mode.

Figure 8. Switching Between Program Mode and Run Mode

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�/�/'

�")

')(')"
')#

'#

'))
'+ '"

/�) /�"

/�(
�('('

("
'
()

'
"(

'
(# '

(.

'(* 1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$��*�
.

�
($

�
(*
�
"

�
-

1"1)

/"

'
"$

:(
�(#

�(.
1$�""

�+

'
((

'. '-

�
)

����

/"

'
�
��;
�;<�

�

�'�����=
��

%�>�
�
�����?��=

����

����

�����������
	�
��

	�����	���;99�<�!%���
%4"%4�#�'!:
��������������
������
��
�
����������	
������������	
�������	�������� ��

+&!���!#�("%4����
&&
��"%4�*��4�
##"%4��
)�!5

30 RabbitCore RCM3600

A program “runs” in either mode, but can only be downloaded and debugged when the
RCM3600 is in the program mode.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information on the pro-
gramming port and the programming cable.

4.3.2 Standalone Operation of the RCM3600

The RCM3600 must be programmed via the RCM3600 Prototyping Board or via a similar
arrangement on a customer-supplied board. Once the RCM3600 has been programmed
successfully, remove the programming cable from the programming connector and reset
the RCM3600. The RCM3600 may be reset by cycling the power off/on or by pressing the
RESET button on the Prototyping Board. The RCM3600 module may now be removed
from the Prototyping Board for end-use installation.

CAUTION: Power to the Prototyping Board or other boards should be disconnected
when removing or installing your RCM3600 module to protect against inadvertent
shorts across the pins or damage to the RCM3600 if the pins are not plugged in cor-
rectly. Do not reapply power until you have verified that the RCM3600 module is
plugged in correctly.

User’s Manual 31

4.4 Other Hardware
4.4.1 Clock Doubler

The RCM3600 takes advantage of the Rabbit 3000 microprocessor’s internal clock dou-
bler. A built-in clock doubler allows half-frequency crystals to be used to reduce radiated
emissions. The 22.1 MHz frequency specified for the RCM3600 is generated using a
11.06 MHz resonator.

The clock doubler may be disabled if 22.1 MHz clock speeds are not required. This will
reduce power consumption and further reduce radiated emissions. The clock doubler is
disabled with a simple configuration macro as shown below.

4.4.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. By
default, the spectrum spreader is on automatically, but it may also be turned off or set to a
stronger setting. The means for doing so is through a simple configuration macro as shown
below.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information
on the spectrum-spreading setting and the maximum clock speed.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 to
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Normal spreading is the default, and usually no entry is needed. If you need to specify

normal spreading, add the line
ENABLE_SPREADER=1

For strong spreading, add the line
ENABLE_SPREADER=2

To disable the spectrum spreader, add the line
ENABLE_SPREADER=0

NOTE: The strong spectrum-spreading setting is not recommended since it may limit
the maximum clock speed or the maximum baud rate. It is unlikely that the strong set-
ting will be used in a real application.

3. Click OK to save the macro. The spectrum spreader will now remain off whenever you
are in the project file where you defined the macro.

32 RabbitCore RCM3600

4.5 Memory
4.5.1 SRAM

RCM3600 series boards have 256K–512K of SRAM.

4.5.2 Flash EPROM

RCM3600 series boards also have 256K–512K of flash EPROM.

NOTE: Rabbit Semiconductor recommends that any customer applications should not be
constrained by the sector size of the flash EPROM since it may be necessary to change
the sector size in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a
portion of the “user block” area to store persistent data. The function calls writeUser-
Block and readUserBlock are provided for this. Refer to the Rabbit 3000 Micropro-
cessor Designer’s Handbook for additional information.

A Flash Memory Bank Select jumper configuration option based on 0 Ω surface-mounted
resistors exists at header JP1 on the RCM3600 modules. This option, used in conjunction
with some configuration macros, allows Dynamic C to compile two different co-resident
programs for the upper and lower halves of the 512K flash in such a way that both pro-
grams start at logical address 0000. This is useful for applications that require a resident
download manager and a separate downloaded program. See Technical Note TN218,
Implementing a Serial Download Manager for a 256K Flash, for details.

4.5.3 Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes
automatically.

User’s Manual 33

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with Rabbit Semiconductor single-board com-
puters and other single-board computers based on the Rabbit
microprocessor. Chapter 5 describes the libraries and function
calls related to the RCM3600.

5.1 More About Dynamic C
Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging. A com-
plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual and in
the Dynamic C Function Reference Manual.

You have a choice of doing your software development in the flash memory or in the
SRAM included on the RCM3600. The flash memory and SRAM options are selected
with the Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application can be compiled in RAM, but cannot run standalone from RAM
after the programming cable is disconnected. All standalone applications can only run
from flash memory.

NOTE: Do not depend on the flash memory sector size or type in your program logic.
The RCM3600 and Dynamic C were designed to accommodate flash devices with
various sector sizes in response to the volatility of the flash-memory market.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 95 and later.
Programs can be downloaded at baud rates of up to 460,800 bps after the program
compiles.

34 RabbitCore RCM3600

Dynamic C has a number of standard features. Some of these standard features are listed
below.

• Full-feature source and assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program (Rabbit Field Utility) to load binary images to Rabbit-based tar-
gets without the presence of Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.

User’s Manual 35

5.2 Dynamic C Functions
The functions described in this section are for use with the Prototyping Board features.
The source code is in the RCM36xx.LIB library in the Dynamic C SAMPLES\RCM3600
folder if you need to modify it for your own board design.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

5.2.1 Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the RCM3600 module and its Prototyping Board.

Summary of Initialization

1. I/O port pins are configured for Prototyping Board operation.

2. Unused configurable I/O are set as tied inputs or outputs.

3. The LCD/keypad module is disabled.

4. RS-485 is not enabled.

5. RS-232 is not enabled.

6. The IrDA transceiver is disabled.

7. LEDs are off.

8. The A/D converter is reset and SCLKB is to 57,600 bps.

9. The A/D converter calibration constants are read (this function cannot run in RAM).

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the Prototyping
Board. Do not use S2 when the LCD/keypad module is installed.

CAUTION: Pins PC1 and PG2 are tied together, and pins PC3 and PG3 are tied together. Both
pairs of pins are connected to the IrDA transceiver and to the RS-232 transceiver via serial ports
on the Prototyping Board. Do not enable both transceivers on the Prototyping Board at the same
time.

RETURN VALUE
None.

void brdInit(void);

36 RabbitCore RCM3600

5.2.2 Analog Inputs

Use this function to configure the ADS7870 A/D converter. This function will address the ADS7870 in
Register Mode only, and will return error if you try the Direct Mode. Section B.4.2 provides additional
addressing and command information for the ADS7870 A/D converter.

unsigned int anaInConfig(unsigned int
instructionbyte, unsigned int cmd, long baud);

ADS7870 Signal ADS7870 State RCM3600 Function/State
LN0 Input AIN0
LN1 Input AIN1
LN2 Input AIN2
LN3 Input AIN3
LN4 Input AIN4
LN5 Input AIN5
LN6 Input AIN6
LN7 Input AIN7

/RESET Input Board reset device
RISE/FALL Input Pulled up for SCLK active on rising edge

PIO0 Input Pulled down
PIO1 Input Pulled down
PIO2 Input Pulled down
PIO3 Input Pulled down

CONVERT Input Pulled down
BUSY Output PD1 pulled down; logic high state converter is busy

CCLKCNTRL Input Pulled down; 0 state sets CCLK as input
CCLK Input Pulled down; external conversion clock
SCLK Input PB0; serial data transfer clock
SDI Input PD4; 3-wire mode for serial data input
SDO Output PD5; serial data output /CS driven
/CS Input PD2 pulled up; active-low enables serial interface

BUFIN Input Driven by VREF; reference buffer amplifier
VREF Output Connected to BUFIN

BUFOUT Output VREF output

User’s Manual 37

PARAMETERS
instructionbyte is the instruction byte that will initiate a read or write operation at 8 or 16 bits on
the designated register address. For example,

checkid = anaInConfig(0x5F, 0, 9600); // read ID and set baud rate

cmd refers to the command data that configure the registers addressed by the instruction byte. Enter 0 if
you are performing a read operation. For example,

i = anaInConfig(0x07, 0x3b, 0); // write ref/osc reg and enable

baud is the serial clock transfer rate of 9600 to 57,600 bps. baud must be set the first time this function
is called. Enter 0 for this parameter thereafter, for example,

anaInConfig(0x00, 0x00, 9600); // resets device and sets baud

RETURN VALUE
0 on write operations,
data value on read operations

SEE ALSO
anaInDriver, anaIn, brdInit

38 RabbitCore RCM3600

Reads the voltage of an analog input channel by serial-clocking an 8-bit command to the ADS7870 A/D
converter by the Direct Mode method. This function assumes that Mode1 (most significant byte first) and
the A/D converter oscillator have been enabled. See anaInConfig() for the setup.

The conversion begins immediately after the last data bit has been transferred. An exception error will
occur if Direct Mode bit D7 is not set.

PARAMETERS
cmd contains a gain code and a channel code as follows.

D7—1; D6–D4—Gain Code; D3–D0—Channel Code

Use the following calculation and the tables below to determine cmd:

cmd = 0x80 | (gain_code*16) + channel_code

len, the output bit length, is always 12 for 11-bit conversions

unsigned int anaInDriver(unsigned int cmd,
unsigned int len);

Gain Code Multiplier
0 x1
1 x2
2 x4
3 x5
4 x8
5 x10
6 x16
7 x20

Channel Code Differential Input
Lines Channel Code

Single-Ended
Input Lines*

* Negative input is ground.

4–20 mA
Lines

0 +AIN0 -AIN1 8 AIN0 AIN0*

1 +AIN2 -AIN3 9 AIN1 AIN1*

2 +AIN4 -AIN5 10 AIN2 AIN2*

3†

† Not accessible on RCM3600 Prototyping Board

+AIN6 -AIN7 11 AIN3 AIN3

4 -AIN0 +AIN1 12 AIN4 AIN4

5 -AIN2 +AIN3 13 AIN5 AIN5

6 -AIN4 +AIN5 14 AIN6 AIN6

7* -AIN6 +AIN7 15 AIN7 AIN7*

User’s Manual 39

RETURN VALUE
A value corresponding to the voltage on the analog input channel:

0–2047 for 11-bit conversions (bit 12 for sign)
-1 overflow or out of range
-2 conversion incomplete, busy bit timeout

SEE ALSO
anaInConfig, anaIn, brdInit

40 RabbitCore RCM3600

Reads the value of an analog input channel using the direct method of addressing the ADS7870 A/D
converter. The A/D converter is enabled the first time this function is called—this will take approxi-
mately 1 second to ensure that the A/D converter capacitor is fully charged.

PARAMETERS
channel is the channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7
opmode is the mode of operation:

SINGLE—single-ended input
DIFF—differential input
mAMP—4–20 mA input

gaincode is the gain code of 0 to 7

unsigned int anaIn(unsigned int channel,
int opmode, int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3600 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*
2 +AIN2 +AIN2 -AIN3 +AIN2*
3 +AIN3 +AIN3 -AIN2* +AIN3
4 +AIN4 +AIN4 -AIN5 +AIN4
5 +AIN5 +AIN5 -AIN4* +AIN5
6 +AIN6 +AIN6 -AIN7* +AIN6
7 +AIN7 +AIN7 -AIN6* +AIN7*

Gain Code Multiplier
Voltage Range*

(V)

* Applies to RCM3600 Prototyping Board.

0 x1 0–20
1 x2 0–10
2 x4 0–5
3 x5 0–4
4 x8 0–2.5
5 x10 0–2
6 x16 0–1.25
7 x20 0–1

User’s Manual 41

RETURN VALUE
A value corresponding to the voltage on the analog input channel:

0–2047 for 11-bit A/D conversions (signed 12th bit)
ADOVERFLOW (defined macro = -4096) if overflow or out of range
-4095 if conversion is incomplete or busy-bit timeout

SEE ALSO
anaIn, anaInConfig, anaInDriver

42 RabbitCore RCM3600

Calibrates the response of the desired A/D converter channel as a linear function using the two conver-
sion points provided. Four values are calculated and placed into global tables to be later stored into sim-
ulated EEPROM using the function anaInEEWr(). Each channel will have a linear constant and a
voltage offset.

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

opmode is the mode of operation:

SINGLE—single-ended input
DIFF—differential input
mAMP—milliamp input

gaincode is the gain code of 0 to 7

int anaInCalib(int channel, int opmode,
int gaincode, int value1, float volts1,
int value2, float volts2);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*
2 +AIN2 +AIN2 -AIN3 +AIN2*
3 +AIN3 +AIN3 -AIN2* +AIN3
4 +AIN4 +AIN4 -AIN5 +AIN4
5 +AIN5 +AIN5 -AIN4* +AIN5
6 +AIN6 +AIN6 -AIN7* +AIN6
7 +AIN7 +AIN7 -AIN6* +AIN7*

Gain Code Multiplier Voltage Range*

(V)

* Applies to RCM3600 Prototyping Board.

0 x1 0–20
1 x2 0–10
2 x4 0–5
3 x5 0–4
4 x8 0–2.5
5 x10 0–2
6 x16 0–1.25
7 x20 0–1

User’s Manual 43

value1 is the first A/D converter channel value (0–2047)

volts1 is the voltage or current corresponding to the first A/D converter channel value (0 to +20 V or
4 to 20 mA)

value2 is the second A/D converter channel value (0–2047)

volts2 is the voltage or current corresponding to the first A/D converter channel value (0 to +20 V or
4 to 20 mA)

RETURN VALUE
0 if successful.

-1 if not able to make calibration constants.

SEE ALSO
anaIn, anaInVolts, anaInmAmps, anaInDiff, anaInCalib, brdInit

44 RabbitCore RCM3600

Reads the state of a single-ended analog input channel and uses the calibration constants previously set
using anaInCalib to convert it to volts.

PARAMETERS
channel is the channel number (0–7)

gaincode is the gain code of 0 to 7

RETURN VALUE
A voltage value corresponding to the voltage on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO
anaInCalib, anaIn, anaInmAmps, brdInit

float anaInVolts(unsigned int channel,
unsigned int gaincode);

Channel Code
Single-Ended
Input Lines*

* Negative input is ground.

Voltage Range†

(V)

† Applies to RCM3600 Prototyping Board.

0 +AIN0 0–20

1 +AIN1 0–20

2 +AIN2 0–20

3 +AIN3 0–20

4 +AIN4 0–20

5 +AIN5 0–20

6 +AIN6 0–20

7 +AIN7 0–2‡

‡ Used for thermistor in sample program.

Gain Code Multiplier Voltage Range*

(V)

* Applies to RCM3600 Prototyping Board.

0 ×1 0–20

1 ×2 0–10

2 ×4 0–5

3 ×5 0–4

4 ×8 0–2.5

5 ×10 0–2

6 ×16 0–1.25

7 ×20 0–1

User’s Manual 45

Reads the state of differential analog input channels and uses the calibration constants previously set
using anaInCalib to convert it to volts.

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

gaincode is the gain code of 0 to 7

RETURN VALUE
A voltage value corresponding to the voltage on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO
anaInCalib, anaIn, anaInmAmps, brdInit

float anaInDiff(unsigned int channel,
unsigned int gaincode);

channel DIFF
Voltage Range

(V)

0 +AIN0 -AIN1 -20 to +20*

* Applies to RCM3600 Prototyping Board.

1 +AIN1 -AIN0 —
2 +AIN2 -AIN3 -20 to +20*
3 +AIN3 -AIN2 —
4 +AIN4 -AIN5 -20 to +20*
5 +AIN5 -AIN4 —
6 +AIN6 -AIN7 —
7 +AIN7 -AIN6 —

Gain Code Multiplier Voltage Range*

(V)

* Applies to RCM3600 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1

46 RabbitCore RCM3600

Reads the state of an analog input channel and uses the calibration constants previously set using
anaInCalib to convert it to current.

PARAMETERS
channel is the channel number (0–7)

RETURN VALUE
A current value between 4.00 and 20.00 mA corresponding to the current on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO
anaInCalib, anaIn, anaInVolts

float anaInmAmps(unsigned int channel);

Channel Code
4–20 mA

Input Lines*

* Negative input is ground.

0 +AIN0

1 +AIN1

2 +AIN2

3 +AIN3†

† Applies to RCM3600 Prototyp-
ing Board.

4 +AIN4*

5 +AIN5*

6 +AIN6*

7 +AIN7

User’s Manual 47

Reads the calibration constants, gain, and offset for an input based on their designated position in the
simulated EEPROM area of the flash memory, and places them into global tables for analog inputs. The
constants are stored in the top 2K of the reserved user block memory area 0x1C00–0x1FFF. Depending
on the flash size, the following macros can be used to identify the starting address for these locations.

ADC_CALIB_ADDRS, address start of single-ended analog input channels

ADC_CALIB_ADDRD, address start of differential analog input channels

ADC_CALIB_ADDRM, address start of milliamp analog input channels

NOTE: This function cannot be run in RAM.

PARAMETER
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7
opmode is the mode of operation:
SINGLE—single-ended input line
DIFF—differential input line
mAMP—milliamp input line

root int anaInEERd(unsigned int channel,
unsigned int opmode, unsigned int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

ALLCHAN read all channels for selected opmode

48 RabbitCore RCM3600

gaincode is the gain code of 0 to 7. The gaincode parameter is ignored when channel is ALLCHAN.

RETURN VALUE
0 if successful.
-1 if address is invalid or out of range.
-2 if there is no valid ID block.

SEE ALSO
anaInEEWr, anaInCalib

Gain Code Voltage Range*

(V)

* Applies to RCM3600 Prototyping
Board.

0 0–20
1 0–10

2 0–5
3 0–4
4 0–2.5
5 0–2
6 0–1.25
7 0–1

User’s Manual 49

Writes the calibration constants, gain, and offset for an input based from global tables to designated posi-
tions in the simulated EEPROM area of the flash memory. The constants are stored in the top 2K of the
reserved user block memory area 0x1C00–0x1FFF. Depending on the flash size, the following macros
can be used to identify the starting address for these locations.

ADC_CALIB_ADDRS, address start of single-ended analog input channels

ADC_CALIB_ADDRD, address start of differential analog input channels

ADC_CALIB_ADDRM, address start of milliamp analog input channels

NOTE: This function cannot be run in RAM.

PARAMETER
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0–ADC_IN7
opmode is the mode of operation:
SINGLE—single-ended input line
DIFF—differential input line
mAMP—milliamp input line

int anaInEEWr(unsigned int channel, unsigned int
opmode, unsigned int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3600 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*
2 +AIN2 +AIN2 -AIN3 +AIN2*
3 +AIN3 +AIN3 -AIN2* +AIN3
4 +AIN4 +AIN4 -AIN5 +AIN4
5 +AIN5 +AIN5 -AIN4* +AIN5
6 +AIN6 +AIN6 -AIN7* +AIN6
7 +AIN7 +AIN7 -AIN6* +AIN7*

ALLCHAN read all channels for selected opmode

50 RabbitCore RCM3600

gaincode is the gain code of 0 to 7. The gaincode parameter is ignored when channel is ALLCHAN.

RETURN VALUE
0 if successful
-1 if address is invalid or out of range.
-2 if there is no valid ID block.
-3 if there is an error writing to flash memory.

SEE ALSO
anaInEEWr, anaInCalib

Configures channels PIO0 to PIO3 on the A/D converter to allow them to be used as digital I/O via
header JP4 on the RCM3600 Prototyping Board.

Remember to execute the brdInit function before calling this function to prevent a runtime error.

PARAMETER
statemask is a bitwise mask representing JP4 channels 1 to 4. Use logic 0 for inputs and logic 1 for
outputs in these bit positions:

bits 7–5—0
bit 4—JP4:4
bit 3—JP4:3
bit 2—JP4:2
bit 1—JP4:1
bit 0—0

RETURN VALUE
None.

SEE ALSO
digOut, digIn

Gain Code Voltage Range*

(V)

* Applies to Prototyping Board.

0 0–20
1 0–10
2 0–5
3 0–4
4 0–2.5
5 0–2
6 0–1.25
7 0–1

void digConfig(char statemask);

User’s Manual 51

Writes a state to a digital output channel on header JP4 of the RCM3600 Prototyping Board. The PIO0 to
PIO3 channels on the A/D converter chip are accessed via header JP4 on the RCM3600 Prototyping
Board.

A runtime error will occur if the brdInit function was not executed before calling this function or if
the channel is out of range.

PARAMETERS
channel is channel 1 to 4 for JP4:1 to JP4:4

state is a logic state of 0 or 1

RETURN VALUE
None.

SEE ALSO
brdInit, digIn

Reads the state of a digital input channel on header JP4 of the RCM3600 Prototyping Board. The PIO0 to
PIO3 channels on the A/D converter chip are accessed via header JP4 on the RCM3600 Prototyping
Board.

A runtime error will occur if the brdInit function was not executed before calling this function or if
the channel is out of range.

PARAMETERS
channel is channel 1 to 4 for JP4:1 to JP4:4

state is a logic state of 0 or 1

RETURN VALUE
The logic state of the input (0 or 1).

SEE ALSO
brdInit, digOut

void digOut(int channel, int state);

int digIn(int channel);

52 RabbitCore RCM3600

5.2.3 Digital I/O

The RCM3600 was designed to interface with other systems, and so there are no drivers
written specifically for the I/O. The general Dynamic C read and write functions allow
you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the auxiliary I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

to the beginning of any programs using the auxiliary I/O bus.

The sample programs in the Dynamic C SAMPLES\RCM3600 folder provide further examples.

This function is used to poll the real-time clock until the specified timeout occurs. The RCM3600 will
operate in a low-power mode with a clock speed of 2.048 kHz until the timeout occurs. Once the timeout
has ended, the RCM3600 will resume operating at 22.1 MHz. The analog device oscillator will be dis-
abled until the timeout occurs and will then be enabled as well.

PARAMETERS
timeout is the length of the timeout in seconds

RETURN VALUE
None.

This function is used to poll a digital input for a certain value or until the specified timeout occurs. The
RCM3600 will operate in a low-power mode with a clock speed of 2.048 kHz until the correct bit is
received or the timeout occurs. Once this happens, the RCM3600 will resume operating at 22.1 MHz.
The analog device oscillator will be disabled until the timeout occurs and will then be enabled as well.

PARAMETERS
dataport is the input port data register corresponding to the channel to poll (e.g., PADR)

portbit is the input port bit to poll

value is the input value (0 or 1) to receive

timeout is the length of the timeout in seconds if an input value is not received on the specified chan-
nel; enter 0 for no timeout

RETURN VALUE
None.

void timedAlert(unsigned long timeout);

void digInAlert(int dataport, int portbit,
int value, unsigned long timeout);

User’s Manual 53

5.2.4 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delimited
by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries
provide blocking functions, which do not return until they are finished transmitting or
receiving, and nonblocking functions, which must be called repeatedly until they are fin-
ished, allowing other functions to be performed between calls. For more information, see
the Dynamic C Function Reference Manual and Technical Note TN213, Rabbit Serial
Port Software.

54 RabbitCore RCM3600

5.3 Upgrading Dynamic C
Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

5.3.1 Add-On Modules

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits. Rabbit Semiconductor offers add-on
Dynamic C modules including the popular µC/OS-II real-time operating system, as well
as PPP, Advanced Encryption Standard (AES), and other select libraries.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support module is also available for purchase.

http://www.rabbit.com/support/

User’s Manual 55

APPENDIX A. RCM3600 SPECIFICATIONS

Appendix A provides the specifications for the RCM3600, and
describes the conformal coating.

56 RabbitCore RCM3600

A.1 Electrical and Mechanical Characteristics
Figure A-1 shows the mechanical dimensions for the RCM3600.

Figure A-1. RCM3600 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm).

���������������������	� !""
�������������������������������
�������)�������������������
���������0

�")

')(')"
')#

'#

'))
'+'"

/�)/�"

/�(
�('('

("
'
()

'
"(

'
(#'

(.

'(*1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$ ��* �
.

�
($

�
(* �
"

�
-

1" 1)

/"

'
"$

:(
�(#

�(.
1$ �""

�+

'
((

'.'-

�
)

!6
"!

�*
6!
�

!6
"!

�*
6!
�

!6
()

�)
6)
�

!6
)+

�-
6)
�

!6
!*

"
�(
6)
�

"6((!
�*)6$�

"6((!
�*)6$�

(6")!
�)(6"�

(6
")

!
�)
(6
"�

!6
$"

�(
$�

!6
()

�)
6)
�

!6
)+

�-
6)
�

!6
!*

"
�(
6)
�

!6
$"

�(
$�

User’s Manual 57

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the
RCM3600 in all directions when the RCM3600 is incorporated into an assembly that
includes other printed circuit boards. This “exclusion zone” that you keep free of other
components and boards will allow for sufficient air flow, and will help to minimize any
electrical or electromagnetic interference between adjacent boards. An “exclusion zone”
of 0.08" (2 mm) is recommended below the RCM3600 when the RCM3600 is plugged
into another assembly using the shortest connectors for header J1. Figure A-2 shows this
“exclusion zone.”

Figure A-2. RCM3600 “Exclusion Zone”

!6
!. �"
�

!6
!. �"
�

!6
"!

�*
6!
�

!6
!# �(
�

/)�������
1���

"6((!
�*)6$�

(6")!
�)(6"�

!6!#
�(�

!6!#
�(�

!6!#
�(�

!6!#
�(�

!6
!# �(
�

!6
"!

�*
6!
�

58 RabbitCore RCM3600

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3600.

Table A-1. RabbitCore RCM3600 Specifications

Parameter RCM3600 RCM3610

Microprocessor Low-EMI Rabbit 3000® at 22.1 MHz

Flash Memory 512K 256K

SRAM 512K 128K

Backup Battery Connection for user-supplied backup battery
(to support RTC and SRAM)

General-Purpose I/O
33 parallel digital I/0 lines:

• 31 configurable I/O
• 2 fixed outputs

Additional I/O Reset

Auxiliary I/O Bus Can be configured for 8 data lines and
5 address lines (shared with parallel I/O lines), plus I/O read/write

Serial Ports

Four 3.3 V CMOS-compatible ports configurable as:
• 4 asynchronous serial ports (with IrDA) or

• 3 clocked serial ports (SPI) plus 1 HDLC (with IrDA) or

• 1 clocked serial port (SPI) plus 2 HDLC serial ports (with IrDA)

Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface
A slave port allows the RCM3600 to be used as an intelligent peripheral
device slaved to a master processor, which may either be another Rabbit
3000 or any other type of processor

Real-Time Clock Yes

Timers Ten 8-bit timers (6 cascadable), one 10-bit timer with 2 match registers

Watchdog/Supervisor Yes

Pulse-Width Modulators 4 PWM output channels with 10-bit free-running counter
and priority interrupts

Input Capture/
Quadrature Decoder

2-channel input capture can be used to time input signals from various
port pins
• 1 quadrature decoder unit accepts inputs from external incremental

encoder modules or
• 1 quadrature decoder unit shared with 2 PWM channels

Power 5 V ±0.25 V DC
60 mA @ 22.1 MHz, 5 V; 38 mA @ 11.06 MHz, 5 V

Operating Temperature –40°C to +85°C

Humidity 5% to 95%, noncondensing

Connectors One 2 x 20, 0.1" pitch

Board Size 1.23" × 2.11" × 0.62"
(31 mm × 54 mm × 16 mm)

User’s Manual 59

A.1.1 Headers

The RCM3600 uses one header at J1 for physical connection to other boards. J1 is a
2 × 20 SMT header with a 0.1" pin spacing.

Figure A-3 shows the layout of another board for the RCM3600 to be plugged into. These
values are relative to the designated fiducial (reference point).

Figure A-3. User Board Footprint for RCM3600

(6*(-
�).6$�

�'7)$!!�2

�=����

/(
!6*)-
�()6+�

(6(!!
�"+6-�

(6$"-
�#(6#�

60 RabbitCore RCM3600

A.2 Bus Loading
Pay careful attention to bus loading when designing an interface to the RCM3600. This
section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3600 I/O ports.

Table A-3 lists the external capacitive bus loading for the various RCM3600 output ports.
Be sure to add the loads for the devices you are using in your custom system and verify
that they do not exceed the values in Table A-3.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

I/O Ports
Input

Capacitance
(pF)

Output
Capacitance

(pF)

Parallel Ports A to G 12 14

Table A-3. External Capacitive Bus Loading -40°C to +85°C

Output Port Clock Speed
(MHz)

Maximum External
Capacitive Loading (pF)

All I/O lines with clock
doubler enabled 22.1 100

User’s Manual 61

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external
I/O read and write cycles.

Figure A-4. I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

��;�

��;�

/)��������2+������3���������������#���������4

' &

�A(*B!C

/)��������2+�������3���������������#���������4

' &

�A(*B!C

�����

�����

�(�?

�(�? �"

�����

�"

�%12�	

���'�,

���5�

�%12�	

�A+B!C �����

����>=

�

�;

�'�,

���'�,

�'�,

���'�,

�����

�%12�	

�'�,

���'�,

�����

�%12�	

������A+B!C

�'�,
�'�,

���'�,

���5�

�'�,

���'�,

���5�

�%12�	 �%12�	

��8D� ���8D

62 RabbitCore RCM3600

Table A-4 lists the delays in gross memory access time.

The measurements are taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = VDD ±10%

• Internal clock to nonloaded CLK pin delay ≤ 1 ns @ 85°C/3.0 V

The clock to address output delays are similar, and apply to the following delays.

• Tadr, the clock to address delay

• TCSx, the clock to memory chip select delay

• TIOCSx, the clock to I/O chip select delay

• TIORD, the clock to I/O read strobe delay

• TIOWR, the clock to I/O write strobe delay

• TBUFEN, the clock to I/O buffer enable delay

The data setup time delays are similar for both Tsetup and Thold.

When the spectrum spreader and the clock doubler are both enabled, every other clock
cycle is shortened (sometimes lengthened) by a maximum amount given in Table A-4
above. The shortening takes place by shortening the high part of the clock. If the doubler
is not enabled, then every clock is shortened during the low part of the clock period. The
maximum shortening for a pair of clocks combined is shown in Table A-4.

Technical Note TN227, Interfacing External I/O with Rabbit 2000/3000 Designs, con-
tains suggestions for interfacing I/O devices to the Rabbit 3000 microprocessors.

Table A-4. Data and Clock Delays VIN ±10%, Temp, -40°C–+85°C (maximum)

VIN

Clock to Address Output Delay
(ns) Data Setup

Time Delay
(ns)

Spectrum Spreader Delay
(ns)

30 pF 60 pF 90 pF
Normal

no dbl/dbl
Strong

no dbl/dbl

3.3 V 6 8 11 1 3/4.5 4.5/9

User’s Manual 63

A.3 Rabbit 3000 DC Characteristics

Stresses beyond those listed in Table A-5 may cause permanent damage. The ratings are
stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other
conditions beyond those indicated in this section is not implied. Exposure to the absolute
maximum rating conditions for extended periods may affect the reliability of the Rabbit
3000 chip.

Table A-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from TA = –55°C to +85°C, VDD = 3.0 V to 3.6 V.

Table A-5. Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating

TA Operating Temperature -55° to +85°C

TS Storage Temperature -65° to +150°C

Maximum Input Voltage:
• Oscillator Buffer Input
• 5-V-tolerant I/O

VDD + 0.5 V
5.5 V

VDD Maximum Operating Voltage 3.6 V

Table A-6. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

VDD Supply Voltage 3.0 3.3 3.6 V

VIH High-Level Input Voltage 2.0 V

VIL Low-Level Input Voltage 0.8 V

VOH High-Level Output Voltage
IOH = 6.8 mA,
VDD = VDD (min)

0.7 x
VDD

V

VOL Low-Level Output Voltage
IOL = 6.8 mA,
VDD = VDD (min) 0.4 V

IIH
High-Level Input Current
(absolute worst case, all buffers)

VIN = VDD,
VDD = VDD (max) 10 µA

IIL
Low-Level Input Current
(absolute worst case, all buffers)

VIN = VSS,
VDD = VDD (max) -10 µA

IOZ

High-Impedance State
Output Current
(absolute worst case, all buffers)

VIN = VDD or VSS,
VDD = VDD (max), no pull-up -10 10 µA

64 RabbitCore RCM3600

A.4 I/O Buffer Sourcing and Sinking Limit
Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking
6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a
22.1 MHz CPU clock and capacitive loading on address and data lines of less than 100 pF
per pin. The absolute maximum operating voltage on all I/O is 5.5 V.

Table A-7 shows the AC and DC output drive limits of the parallel I/O buffers when the
Rabbit 3000 is used in the RCM3600.

Table A-7. I/O Buffer Sourcing and Sinking Capability

Pin Name

Output Drive (Full AC Switching)

Sourcing/Sinking Limits
(mA)

Sourcing Sinking

All data, address, and I/O
lines with clock doubler
enabled

6.8 6.8

User’s Manual 65

A.5 Conformal Coating
The areas around the 32 kHz real-time clock crystal oscillator have had the Dow Corning
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown
in Figure A-5. The conformal coating protects these high-impedance circuits from the
effects of moisture and contaminants over time.

Figure A-5. RCM3600 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303, Con-
formal Coatings.

'
�E
��������
���;
����

�")

')(')"
')#

'#

'))
'+'"

/�)/�"

/�(
�('('

("
'
()

'
"(

'
(#'

(.

'(*1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$ ��* �
.

�
($

�
(* �
"

�
-

1" 1)

/"

'
"$

:(
�(#

�(.
1$ �""

�+

'
((

'.'-

�
)

66 RabbitCore RCM3600

A.6 Jumper Configurations
Figure A-6 shows the header locations used to configure the various RCM3600 options
via jumpers.

Figure A-6. Location of RCM3600 Configurable Positions

Table A-8 lists the configuration options.

NOTE: The jumper connections are made using 0 Ω surface-mounted resistors.

Table A-8. RCM3600 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 Flash Memory Bank Select
1–2 Normal Mode ×
2–3 Bank Mode

JP2 SRAM Size
1–2 128K–256K RCM3610

2–3 512K RCM3600

JP3 Flash Memory Size
1–2 256K RCM3610

2–3 512K RCM3600

'�������

/�" /�(/�)

User’s Manual 67

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board.

68 RabbitCore RCM3600

B.1 Introduction
The Prototyping Board included in the Development Kit makes it easy to connect an
RCM3600 module to a power supply and a PC workstation for development. It also pro-
vides some basic I/O peripherals (RS-232, RS-485, an IrDA transceiver, LEDs, and
switches), as well as a prototyping area for more advanced hardware development.

For the most basic level of evaluation and development, the Prototyping Board can be
used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-
fications and additions can be made to the board without modifying or damaging the
RCM3600 module itself.

The Prototyping Board is shown below in Figure B-1, with its main features identified.

Figure B-1. Prototyping Board

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

��
#�
��

"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
��

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

��
(

��
)

��
*

��
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

��
!

��
"

��
#

��
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�
?��
��=>�

�
?��
 ��

�����
�?���

1���
 ���

�'7)$!!�7
;>��
�,�����
��8��;��

�*��@�)6)��@���;
�	��%>���

�'7)$!!
7
;>��

'
�����
�

1���
�?���
��

�7����
�
��=��<
����

 '��&��=�;
7
;>��

'
������
��

����
��������F��

�
�
><
G8
��
��
�
��=��<�����

'*)

��G#.*
��G")"
8��;��

����
<
��=>��

����
<
��E������
'
�F���
��
>�;

User’s Manual 69

B.1.1 Prototyping Board Features

• Power Connection—A 3-pin header is provided for connection to the power supply.
Note that the 3-pin header is symmetrical, with both outer pins connected to ground and
the center pin connected to the raw DCIN input. The cable of the AC adapter provided
with the North American version of the Development Kit ends in a plug that connects
to the power-supply header, and can be connected to the 3-pin header in either orienta-
tion. A similar header plug leading to bare leads is provided for overseas customers.

Users providing their own power supply should ensure that it delivers 7.5–30 V DC at
500 mA. The voltage regulators will get warm while in use.

• Regulated Power Supply—The raw DC voltage provided at the POWER IN power-
input jack is routed to a 5 V switching voltage regulator, then to a separate 3.3 V linear
regulator. The regulators provide stable power to the RCM3600 module and the Proto-
typing Board.

• Power LED—The power LED lights whenever power is connected to the Prototyping
Board.

• Reset Switch—A momentary-contact, normally open switch is connected directly to the
RCM3600’s /RESET_IN pin. Pressing the switch forces a hardware reset of the system.

• I/O Switches and LEDs—Two momentary-contact, normally open switches are con-
nected to the PF4 and PB7 pins of the RCM3600 module and may be read as inputs by
sample applications.

Two LEDs are connected to the PF6 and PF7 pins of the RCM3600 module, and may
be driven as output indicators by sample applications.

• Prototyping Area—A generous prototyping area has been provided for the installation
of through-hole components. +3.3 V, +5 V, and Ground buses run at both edges of this
area. Several areas for surface-mount devices are also available. (Note that there are
SMT device pads on both top and bottom of the Prototyping Board.) Each SMT pad is
connected to a hole designed to accept a 30 AWG solid wire.

• LCD/Keypad Module—Rabbit Semiconductor’s LCD/keypad module may be plugged
in directly to headers LCD1JA, LCD1JB, and LCD1JC. The signals on headers
LCD1JB and LCD1JC will be available only if the LCD/keypad module is plugged in
to header LCD1JA. Appendix C provides complete information for mounting and using
the LCD/keypad module.

• Module Extension Headers—The complete non-analog pin set of the RCM3600
module is duplicated at header J3. Developers can solder wires directly into the appro-
priate holes, or, for more flexible development, a 2 x 20 header strip with a 0.1" pitch
can be soldered into place. See Figure B-4 for the header pinouts.

• Analog I/O Shrouded Headers—The complete analog pin set of the RCM3600
Prototyping Board is available on shrouded headers J8 and J9. See Figure B-4 for the
header pinouts.

70 RabbitCore RCM3600

• RS-232—Three 3-wire serial ports or one 5-wire RS-232 serial port and one 3-wire
serial port are available on the Prototyping Board at header J2. A jumper on header JP2
is used to select the drivers for Serial Port E, which can be set either as a 3-wire RS-232
serial port or as an RS-485 serial port. Serial Ports C and D are not available while the
IrDA transceiver is in use.

A 10-pin 0.1-inch spacing header strip is installed at J2 allows you to connect a ribbon
cable that leads to a standard DE9 serial connector.

• RS-485—One RS-485 serial port is available on the Prototyping Board at shrouded
header J1. A 3-pin shrouded header is installed at J1. A jumper on header JP2 enables
the RS-485 output for Serial Port E.

• IrDA—An infrared transceiver is included on the Prototyping Board, and is capable of
handling link distances up to 1.5 m. The IrDA uses Serial Port F—Serial Ports C and D
are unavailable while Serial Port F is in use.

User’s Manual 71

B.2 Mechanical Dimensions and Layout
Figure B-2 shows the mechanical dimensions and layout for the RCM3600 Prototyping Board.

Figure B-2. Prototyping Board Dimensions

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

$6*!
�($*�

#6
*!

�(
(#
�

$6(!
�(**�

!6"!
�*� !6"!

�*�

#6
(!

�(
!#

�
!6
"! �*
�

!6"!
�*�

72 RabbitCore RCM3600

Table B-1 lists the electrical, mechanical, and environmental specifications for the Proto-
typing Board.

B.3 Power Supply
The RCM3600 requires a regulated 4.0 V to 12.6 V DC power source to operate. Depend-
ing on the amount of current required by the application, different regulators can be used
to supply this voltage.

The Prototyping Board has an onboard +5 V switching power regulator from which a
+3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available on the
Prototyping Board.

The Prototyping Board itself is protected against reverse polarity by a Shottky diode at D2
as shown in Figure B-3.

Figure B-3. Prototyping Board Power Supply

Table B-1. Prototyping Board Specifications

Parameter Specification

Board Size 4.50" x 6.50" x 0.75" (114 mm x 165 mm x 19 mm)

Operating Temperature –20°C to +60°C

Humidity 5% to 95%, noncondensing

Input Voltage 7.5 V to 30 V DC

Maximum Current Draw
(including user-added circuits)

800 mA max. for +3.3 V supply,
1 A total +3.3 V and +5 V combined

A/D Converter

8-channel ADS7870 with programmable gain configurable for
11-bit single-ended, 12-bit differential, and 4–20 mA inputs
• Input impedance 6–7 MΩ
• A/D conversion time (including 120 µs raw count and

Dynamic C) 180 µs

IrDA Transceiver HSDL-3602, link distances up to 1.5 m

Prototyping Area 2.5" x 3" (64 mm x 76 mm) throughhole, 0.1" spacing,
additional space for SMT components

Standoffs/Spacers 5, accept 4-40 x 1/2 screws

 �	������5��
���1 ����

�
�
5
�
�

�	

/#

(!�H2

 7(((+
1(

�)6)��

)

(

"

(

"

) (*.(-

�"

#+�H2))!�H2

�*��

 (

'(-
))!�H8

�(
(*.(-

�5��'8�	����5������1 ����

�'�	
1"

 7"*+*

(!�H2

User’s Manual 73

B.4 Using the Prototyping Board
The Prototyping Board is actually both a demonstration board and a prototyping board. As
a demonstration board, it can be used to demonstrate the functionality of the RCM3600
right out of the box without any modifications.

The Prototyping Board pinouts are shown in Figure B-4.

Figure B-4. Prototyping Board Pinout

%&

�
	
�

�
,�

�
,�

�
,�

�
	
�

�
,�

�
,'

�
,'

�
	
�

%5

%6

%7

�	�

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

�')���)

�'"3�,'

��#

��!

��$3�,�

��*

�	�

�����

�%*

�%)

��!

��"

��#

��$

�%!

����

�*��

�2#

�2$

�'(���"

�'!3�,�

��*

��(

��+3�,�

��#

�%��

%

%

�
�
G#
.*

0
�
	
�

�
�
G#
.*

�

�	� 7""
-��$������

�������

��$& &

%8
'���������

�
�
�
2

'
�
	
�
�
�
�

�
	
�
 �

�
3�

	
�

�
8
�
�
7
3�
	
+

�
�
'
3�
	
$

�
�
'
3�
	
*

�
�
'
3�
	
#

�
�
'
3�
	
)

�
�
'
3�
	
"

�
�
'
3�
	
(

�
8
�
�
7
3�
	
!

�
	
�
 �

�
3�

	
�

������
�2+

��$98:

74 RabbitCore RCM3600

The Prototyping Board comes with the basic components necessary to demonstrate the
operation of the RCM3600. Two LEDs (DS1 and DS2) are connected to PF6 and PF7, and
two switches (S1 and S2) are connected to PF4 and PB7 to demonstrate the interface to the
Rabbit 3000 microprocessor. Reset switch S3 is the hardware reset for the RCM3600.

The Prototyping Board provides the user with RCM3600 connection points brought out con-
veniently to labeled points at header J3 on the Prototyping Board. Although header J3 is
unstuffed, a 2 x 20 header is included in the bag of parts. RS-485 signals are available on
shrouded header J1, and RS-232 signals (Serial Ports C, D, and E) are available on header J2.
A header strip at J2 allows you to connect a ribbon cable. A shrouded header connector and
wiring harness are included with the Development Kit parts to help you access the RS-485 sig-
nals on shrouded header J1.

There is a 2.5" x 3" through-hole prototyping space available on the Prototyping Board.
The holes in the prototyping area are spaced at 0.1" (2.5 mm). +3.3 V, +5 V, and GND traces
run along both edges of the prototyping area for easy access. Small to medium circuits can
be prototyped using point-to-point wiring with 20 to 30 AWG wire between the prototyping
area, the +3.3 V, +5 V, and GND traces, and the surrounding area where surface-mount
components may be installed. Small holes are provided around the surface-mounted com-
ponents that may be installed around the prototyping area.

B.4.1 Adding Other Components

There are two sets of pads for 28-pin devices that can be used for surface-mount prototyp-
ing SOIC devices. (Although the adjacent sets of pads could accommodate up to a 56-pin
device, they do not allow for the overlap between two 28-pin devices.) There are also pads
that can be used for SMT resistors and capacitors in an 0805 SMT package. Each compo-
nent has every one of its pin pads connected to a hole in which a 30 AWG wire can be sol-
dered (standard wire wrap wire can be soldered in for point-to-point wiring on the
Prototyping Board). Because the traces are very thin, carefully determine which set of
holes is connected to which surface-mount pad.

User’s Manual 75

B.4.2 Analog Features

The RCM3600 Prototyping Board has an onboard ADS7870 A/D converter to demon-
strate the interface capabilities of the Rabbit 3000. The A/D converter multiplexes con-
verted signals from eight single-ended or three differential inputs to alternate Serial Port B
on the Rabbit 3000 (Parallel Port pins PD4 and PD5).

B.4.2.1 A/D Converter Inputs

Figure B-5 shows a pair of A/D converter input circuits. The resistors form an approxi-
mately 10:1 attenuator, and the capacitor filters noise pulses from the A/D converter input.

Figure B-5. A/D Converter Inputs

The A/D converter chip can make either single-ended or differential measurements
depending on the value of the opmode parameter in the software function call. Adjacent
A/D converter inputs can be paired to make differential measurements. The default setup
on the Prototyping Board is to measure only positive voltages for the ranges listed in
Table B-2.

(+.���
��'3�	!

��	�

���

��'3�	(

���2

(+.���

(��2

"!
��
�

�;	

"!
��
�

(��2

<����	�������

/�+

76 RabbitCore RCM3600

Other possible ranges are possible by physically changing the resistor values that make up
the attenuator circuit.

It is also possible to read a negative voltage on ADC_IN0 to ADC_IN5 by moving the
jumper (see Figure B-5) on header JP7, JP6, or JP5 associated with the A/D converter
input from analog ground to VREF, the reference voltage generated and buffered by the
A/D converter. Adjacent input channels are paired so that moving a particular jumper
changes both of the paired channels. At the present time Rabbit Semiconductor does not
offer the software drivers to work with single-ended negative voltages, but the differential
mode described below may be used to measure negative voltages.

NOTE: THERM_IN7 was configured to illustrate the use of a thermistor with the sample
program, and so is not available for use as a differential input. There is also no resistor
attenuator for THERM_IN7, so its input voltage range is limited.

Differential measurements require two channels. As the name differential implies, the dif-
ference in voltage between the two adjacent channels is measured rather than the differ-
ence between the input and analog ground. Voltage measurements taken in differential
mode have a resolution of 12 bits, with the 12th bit indicating whether the difference is
positive or negative.

The A/D converter chip can only accept positive voltages. Both differential inputs must be
referenced to analog ground, and both inputs must be positive with respect to analog
ground. Table B-3 provides the differential voltage ranges for this setup.

Table B-2. Positive A/D Converter Input Voltage Ranges

Min. Voltage
(V)

Max. Voltage
(V)

Amplifier
Gain

mV per Count

0.0 +20.0 1 10

0.0 +10.0 2 5

0.0 +5.0 4 2.5

0.0 +4.0 5 2.0

0.0 +2.5 8 1.25

0.0 +2.0 10 1.0

0.0 +1.25 16 0.625

0.0 +1.0 20 0.500

User’s Manual 77

The A/D converter inputs can also be used with 4–20 mA current sources by measuring the
resulting analog voltage drop across 249 Ω 1% precision resistors placed between the ana-
log input and analog ground for ADC_IN3 to ADC_IN6. Be sure to reconfigure the
jumper positions on header JP8 as shown in Section B.5 using the slip-on jumpers
included with the spare parts in the Development Kit.

B.4.2.2 Thermistor Input

Analog input THERM_IN7 on the Prototyping Board was designed specifically for use
with a thermistor in conjunction with the THERMISTOR.C sample program, which demon-
strates how to use analog input THERM_IN7 to calculate temperature for display to the
Dynamic C STDIO window. The sample program is targeted specifically for the thermistor
included with the Development Kit with R0 @ 25°C = 3 kΩ and β 25/85 = 3965. Be sure
to use the applicable R0 and β values for your thermistor if you use another thermistor.
Install the thermistor at location J7, which is shown in Figure B-4.

Figure B-6. Prototyping Board Thermistor Input

Table B-3. Differential Voltage Ranges

Min. Differential
Voltage

(V)

Max. Differential
Voltage

(V)

Amplifier
Gain

mV per Count

0 ±20.0 x1 10

0 ±10.0 x2 5

0 ±5.0 x4 2.5

0 ±4.0 x5 2.0

0 ±2.5 x8 1.25

0 ±2.0 x10 1.00

0 ±1.25 x16 0.625

0 ±1.0 x20 0.500

��'

(���

�;	�8��73�	+

�	� ��3�	�

/+

���2

'���������

78 RabbitCore RCM3600

B.4.2.3 Other A/D Converter Features

The A/D converter’s internal reference voltage is software-configurable for 1.15 V, 2.048 V,
or 2.5 V using the #define AD_OSC_ENABLE macro in the Dynamic C RCM36xx.LIB
library. The scaling circuitry on the Prototyping Board and the sample programs are
optimized for an internal reference voltage of 2.048 V. This internal reference voltage is
available on pin 3 of shrouded header J8 as VREF, and allows you to convert analog input
voltages that are negative with respect to analog ground.

NOTE: The amplifier inside the A/D converter’s internal voltage reference circuit has a
very limited output-current capability. The internal buffer can source up to 20 mA and
sink only up to 20 µA. A separate buffer amplifier at U7 supplies the load current.

The A/D converter’s CONVERT pin is available on pin 2 of shrouded header J8, and can
be used as a hardware means of forcing the A/D converter to start a conversion cycle. The
CONVERT signal is an edge-triggered event and has a hold time of two CCLK periods for
debounce.

A conversion is started by an active (rising) edge on the CONVERT pin. The CONVERT
pin must stay low for at least two CCLK periods before going high for at least two CCLK
periods. Figure B-7 shows the timing of a conversion start. The double falling arrow on
CCLK indicates the actual start of the conversion cycle.

Figure B-7. Timing Diagram for Conversion Start Using CONVERT Pin

��.�

,=�>

��?@

'
�F����
��������

User’s Manual 79

B.4.2.4 A/D Converter Calibration

To get the best results from the A/D converter, it is necessary to calibrate each mode (sin-
gle-ended, differential, and current) for each of its gains. It is imperative that you calibrate
each of the A/D converter inputs in the same manner as they are to be used in the applica-
tion. For example, if you will be performing floating differential measurements or differ-
ential measurements using a common analog ground, then calibrate the A/D converter in
the corresponding manner. The calibration must be done with the attenuator reference
selection jumper in the desired position (see Figure B-5). If a calibration is performed and
the jumper is subsequently moved, the corresponding input(s) must be recalibrated. The
calibration table in software only holds calibration constants based on mode, channel, and
gain. Other factors affecting the calibration must be taken into account by calibrating
using the same mode and gain setup as in the intended use.

Sample programs are provided to illustrate how to read and calibrate the various A/D
inputs for the three operating modes.

These sample programs are found in the Dynamic C SAMPLES\RCM3600\ADC subdirec-
tory. See Section 3.2.2 for more information on these sample programs and how to use
them.

Mode Read Calibrate

Single-Ended, one channel — AD_CALSE_CH.C

Single-Ended, all channels AD_RDSE_ALL.C AD_CALSE_ALL.C

Milliamp, one channel AD_RDMA_CH.C AD_CALMA_CH.C

Differential, analog ground AD_RDDIFF_CH.C AD_CALDIFF_CH.C

80 RabbitCore RCM3600

B.4.3 Serial Communication

The RCM3600 Prototyping Board allows you to access five of the serial ports from the
RCM3600 module. Table B-4 summarizes the configuration options.

Serial Port E is configured in hardware for RS-232 or RS-485 via jumpers on header JP2
as shown in Section B.5. Serial Port F is configured in software for the IrDA transceiver in
lieu of Serial Ports C and D.

Table B-4. RCM3600 Prototyping Board Serial Port Configurations

Serial Port Signal Header Configured via
Header Default Use Alternate Use

C J2 JP2 RS-232 —

D J2 JP2 RS-232 —

E J1, J2 JP1, JP2 RS-485 (J1) RS-232 (J2)

User’s Manual 81

B.4.3.1 RS-232

RS-232 serial communication on the RCM3600 Prototyping Board is supported by an
RS-232 transceiver installed at U4. This transceiver provides the voltage output, slew rate,
and input voltage immunity required to meet the RS-232 serial communication protocol.
Basically, the chip translates the Rabbit 3000’s signals to RS-232 signal levels. Note that
the polarity is reversed in an RS-232 circuit so that a +5 V output becomes approximately
-10 V and 0 V is output as +10 V. The RS-232 transceiver also provides the proper line
loading for reliable communication.

RS-232 can be used effectively at the RCM3600 module’s maximum baud rate for distances
of up to 15 m.

RS-232 flow control on an RS-232 port is initiated in software using the serXflowcon-
trolOn function call from RS232.LIB, where X is the serial port (C or D). The locations
of the flow control lines are specified using a set of five macros.

SERX_RTS_PORT—Data register for the parallel port that the RTS line is on (e.g., PCDR).

SERA_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PCDRShadow).

SERA_RTS_BIT—The bit number for the RTS line.

SERA_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERA_CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports C and D is illustrated in the
following sample code.

#define CINBUFSIZE 15 // set size of circular buffers in bytes
#define COUTBUFSIZE 15

#define DINBUFSIZE 15
#define DOUTBUFSIZE 15

#define MYBAUD 115200 // set baud rate
#endif

main(){
 serCopen(_MYBAUD); // open Serial Ports C and D
 serDopen(_MYBAUD);
 serCwrFlush(); // flush their input and transmit buffers
 serCrdFlush();
 serDwrFlush();
 serDrdFlush();
 serCclose(_MYBAUD); // close Serial Ports C and D
 serDclose(_MYBAUD);
}

82 RabbitCore RCM3600

B.4.3.2 RS-485

The RCM3600 Prototyping Board has one RS-485 serial channel, which is connected to
the Rabbit 3000 Serial Port E through an RS-485 transceiver. The half-duplex communi-
cation uses an output from PF5 on the Rabbit 3000 to control the transmit enable on the
communication line. Using this scheme a strict master/slave relationship must exist
between devices to insure that no two devices attempt to drive the bus simultaneously.

Serial Port E is configured in software for RS-485 as follows.

#define ser485open serEopen
#define ser485close serEclose
#define ser485wrFlush serEwrFlush
#define ser485rdFlush serErdFlush
#define ser485putc serEputc
#define ser485getc serEgetc

#define EINBUFSIZE 15
#define EOUTBUFSIZE 15

The configuration shown above is based on circular buffers. RS-485 configuration may
also be done using functions from the PACKET.LIB library.

The RCM3600 Prototyping Boards with RCM3600 modules installed can be used in an
RS-485 multidrop network spanning up to 1200 m (4000 ft), and there can be as many as
32 attached devices. Connect the 485+ to 485+ and 485– to 485– using single twisted-pair
wires as shown in Figure B-8. Note that a common ground is recommended.

Figure B-8. RCM3600 Multidrop Network

�
�
G#
.*

0

�
�
#.

*�

�
	
�

�
�
G#
.*

0

�
�
#.

*�

�
	
�

�
�
G#
.*

0

�
�
#.

*�

�
	
�

User’s Manual 83

The RCM3600 Prototyping Board comes with a 220 Ω termination resistor and two 681 Ω
bias resistors installed and enabled with jumpers across pins 1–2 and 5–6 on header JP1,
as shown in Figure B-9.

Figure B-9. RS-485 Termination and Bias Resistors

For best performance, the termination resistors in a multidrop network should be enabled
only on the end nodes of the network, but not on the intervening nodes. Jumpers on boards
whose termination resistors are not enabled may be stored across pins 1–3 and 4–6 of
header JP1.

B.4.4 Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the Prototyping
Board. The signals on headers LCD1JB and LCD1JC will be available only if the
LCD/keypad module is installed. Refer to Appendix C, “LCD/Keypad Module,” for
complete information.

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the
Prototyping Board. Do not use S2 when the LCD/keypad module is installed.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�")

')(')"
')#

'#

'))
'+ '"

/�) /�"

/�(
�('('

("
'
()

'
"(

'
(# '

(.

'(* 1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$��*�
.

�
($

�
(*
�
"

�
-

1"1)

/"

'
"$

:(
�(#

�(.
1$�""

�+

'
((

'. '-

�
)

/�(

#

)

"

(

$

*

=������
;������

�+
$.(��

�-
""!��

�.
$.(��

#.*�

#.*0

$

+

������
����	�

���

���

1) /�(
$ *

" (

�
�
��

84 RabbitCore RCM3600

B.5 RCM3600 Prototyping Board Jumper Configurations
Figure B-10 shows the header locations used to configure the various RCM3600 Prototyp-
ing Board options via jumpers.

Figure B-10. Location of RCM3600 Configurable Positions

/�(

/�"

/�#

/�.
/�* /�$ /�+

%������

User’s Manual 85

Table B-5 lists the configuration options using jumpers.

Table B-5. RCM3600 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 RS-485 Bias and Termination
Resistors

1–2
5–6

Bias and termination resistors
connected ×

1–3
4–6

Bias and termination resistors not
connected (parking position for
jumpers)

JP2 RS-232/RS-485 on Serial Port E

1–3
2–4 RS-232

3–5
4–6 RS-485 ×

JP4 A/D Converter Outputs

1 PIO_0 n.c.

2 PIO_1 n.c.

3 PIO_2 n.c.

4 PIO_3 n.c.

JP5 ADC_IN4–ADC_IN5
1–2 Tied to VREF

2–3 Tied to analog ground ×

JP6 ADC_IN2–ADC_IN3
1–2 Tied to VREF

2–3 Tied to analog ground ×

JP7 ADC_IN0–ADC_IN1
1–2 Tied to VREF

2–3 Tied to analog ground ×

JP8 Analog Voltage/4–20 mA
Options

1–2 Connect for 4–20 mA option on ADC_IN3 n.c.

3–4 Connect for 4–20 mA option on ADC_IN4 n.c.

5–6 Connect for 4–20 mA option on ADC_IN5 n.c.

7–8 Connect for 4–20 mA option on ADC_IN6 n.c.

86 RabbitCore RCM3600

User’s Manual 87

APPENDIX C. LCD/KEYPAD MODULE

An optional LCD/keypad is available for the Prototyping Board.
Appendix C describes the LCD/keypad and provides the soft-
ware function calls to make full use of the LCD/keypad.

C.1 Specifications
Two optional LCD/keypad modules—with or without a panel-mounted NEMA 4 water-
resistant bezel—are available for use with the Prototyping Board. They are shown in
Figure C-1.

Figure C-1. LCD/Keypad Modules Versions

Only the version without the bezel can mount directly on the Prototyping Board; if you
have the version with a bezel, you will have to remove the bezel to be able to mount the
LCD/keypad module on the Prototyping Board. Either version of the LCD/keypad module
can be installed at a remote location up to 60 cm (24") away. Contact your sales representa-
tive or your authorized Rabbit Semiconductor distributor for further assistance in purchasing
an LCD/keypad module.

>	;2��������������

88 RabbitCore RCM3600

Mounting hardware and a 60 cm (24") extension cable are also available for the LCD/keypad
module through your Rabbit Semiconductor sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the LCD/
keypad module.

Table C-1. LCD/Keypad Specifications

Parameter Specification

Board Size 2.60" x 3.00" x 0.75"
(66 mm x 76 mm x 19 mm)

Bezel Size 4.50" × 3.60" × 0.30"
(114 mm × 91 mm × 7.6 mm)

Temperature Operating Range: 0°C to +50°C
Storage Range: –40°C to +85°C

Humidity 5% to 95%, noncondensing

Power Consumption 1.5 W maximum*

* The backlight adds approximately 650 mW to the power consumption.

Connections Connects to high-rise header sockets on the Prototyping Board

LCD Panel Size 122 x 32 graphic display

Keypad 7-key keypad

LEDs Seven user-programmable LEDs

The LCD/keypad module has 0.1"
IDC headers at J1, J2, and J3 for
physical connection to other boards or
ribbon cables. Figure C-2 shows the
LCD/keypad module footprint. These
values are relative to one of the
mounting holes.

NOTE: All measurements are in
inches followed by millimeters
enclosed in parentheses. All dimen-
sions have a manufacturing toler-
ance of ±0.01" (0.25 mm).

Figure C-2. User Board Footprint for
LCD/Keypad Module

%&

%6

!6"!!
�*6(�

!6(!!
�"6*�

!6*!!
�("6+�

(6#*!
�)$6.�

%

"6"!!
�**6-�

(6
$!
!

�#
!6
$�

!6
+$
.

�(
-6
*�

!6
$!
+

�(
*6
#�

User’s Manual 89

C.2 Contrast Adjustments for All Boards
Starting in 2005, LCD/keypad modules were factory-configured to optimize their contrast
based on the voltage of the system they would be used in. Be sure to select a KDU3V
LCD/keypad module for use with the RCM3600 Prototyping Board — these modules
operate at 3.3 V. You may adjust the contrast using the potentiometer at R2 as shown in
Figure C-3. LCD/keypad modules configured for 5 V may be used with the 3.3 V
RCM3600 Prototyping Board, but the backlight will be dim.

Figure C-3. LCD/Keypad Module Voltage Settings

You can set the contrast on the LCD display of pre-2005 LCD/keypad modules by adjust-
ing the potentiometer at R2 or by setting the voltage for 3.3 V by connecting the jumper
across pins 3–4 on header J5 as shown in Figure C-3. Only one of these two options is
available on these LCD/keypad modules.

NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust-
ment potentiometer at R2 are limited to operate only at 5 V, and will not work with the
RCM3600 Prototyping Board. The older LCD/keypad modules are no longer being sold.

'
"

�"

�
(

'
)

�" '(�(

'
*

1"

/�(�)
1(

'#

'
(!

'�(

�
$

'()
'("

�
+

�.

�"*

�"$

�((�() �(# �(! �- �(" �(*

�
(.

:.

�
($

:*

�
"(:"

1*

/"

���� �9
%����

/#

&�(

�
(+ :#

�
"" :$

�
") :+

�
"!

:
) �
(-

1+ '(#

�
"#

'
(*

'
($

1$

1#

'+'-
1)

 '�('((

�#
�*

'$

/(

:(

/*

'(+ �	(

/*

 �)*!!
"6.��

��8��
)6)��

(

"

)

#

�6�6�I�*��

>	;2��������������%������	�������������

�!
'!� !���"*&"�% 0"%�
��%%!�&!'

�
�&��-
 !+
$�&

��

�	
��

	
��

���

���

��

�	�	

�

/*
(

"

)

#

�
��
��	

6
�(
!(
G!
*#
(

��������
!�"
������

90 RabbitCore RCM3600

C.3 Keypad Labeling
The keypad may be labeled according to your needs. A template is provided in Figure C-4
to allow you to design your own keypad label insert.

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Figure C-5. Removing and Inserting Keypad Label

The sample program KEYBASIC.C in the 122x32_1x7 folder in SAMPLES\LCD_KEYPAD
shows how to reconfigure the keypad for different applications.

(6(!
�".�

"6)*
�$!�

&��=�;���J�������
����;

������
��J�>�����=�;������6

User’s Manual 91

C.4 Header Pinouts
Figure C-6 shows the pinouts for the LCD/keypad module.

Figure C-6. LCD/Keypad Module Pinouts

C.4.1 I/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as
explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function

0xE000 Device select base address (/CS)

0xExx0–0xExx7 LCD control

0xExx8 LED enable

0xExx9 Not used

0xExxA 7-key keypad

0xExxB (bits 0–6) 7-LED driver

0xExxB (bit 7) LCD backlight on/off

0xExxC–ExxF Not used

�
%
$%

�
%
#%

�
%
"%

�
%
!%

�
(%

�
)%

�
	
�

 �
�
+

 �
�
*

 �
�
)

 �
�
(

��
�
�

�
'
'

�
%
+%

�
%
*%

�
%
)%

�
%
(%

�
!%

�
"%

�
	
�

�
	
�

 �
�
$

 �
�
#

 �
�
"

�
�
+

�*
%
&
 �

/�

�
	
�

�
	
�

 �
�
$

 �
�
#

 �
�
"

�
�
+

�*
%
&
 �

�
	
�

 �
�
+

 �
�
*

 �
�
)

 �
�
(

��
�
�

�
'
'

/�

�
	
�

�
%
+%

�
%
*%

�
%
)%

�
%
(%

�
!%

�
"%

�
	
�

�
%
$%

�
%
#%

�
%
"%

�
%
!%

�
(%

�
)%

/�

92 RabbitCore RCM3600

C.5 Install Connectors on Prototyping Board
Before you can use the LCD/keypad module with the RCM3600 Prototyping Board, you
will need to install connectors to attach the LCD/keypad module to the RCM3600 Proto-
typing Board. These connectors are included with the RCM3600 Development Kit.

First solder the 2 x 13 connector to location LCD1JA on the RCM3600 Prototyping Board
as shown in Figure C-7.

• If you plan to bezel-mount the LCD/keypad module, continue with the bezel-mounting
instructions in Section C.7, “Bezel-Mount Installation.”

• If you plan to mount the LCD/keypad module directly on the RCM3600 Prototyping
Board, solder two additional 2 x 7 connectors at locations LCD1JB and LCD1JC on the
RCM3600 Prototyping Board. Section C.6, “Mounting LCD/Keypad Module on the
Prototyping Board,” explains how to mount the LCD/keypad module on the RCM3600
Prototyping Board.

Figure C-7. Solder Connectors to RCM3600 Prototyping Board

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�")

')(')"
')#

'#

'))
'+ '"

/�) /�"

/�(
�('('

("
'
()

'
"(

'
(# '

(.

'(* 1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)
'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$��*�
.

�
($

�
(*
�
"

�
-

1"1)

/"

'
"$

:(
�(#

�(.
1$�""

�+

'
((

'. '-
�
)

.� �/�

.� �/

.� �/,

User’s Manual 93

C.6 Mounting LCD/Keypad Module on the Prototyping Board
Install the LCD/keypad module on header sockets LCD1JA, LCD1JB, and LCD1JC of the
Prototyping Board as shown in Figure C-8. Be careful to align the pins over the headers,
and do not bend them as you press down to mate the LCD/keypad module with the Proto-
typing Board.

Figure C-8. Install LCD/Keypad Module on Prototyping Board

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the
Prototyping Board. Do not use S2 when the LCD/keypad module is installed.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�(/(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/% '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3

�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3

�
4
'

�
'
!3

�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)(�)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

��
��

�

�

� �
�	

!$!* !# !) !" !(!! �
�	

�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�")

')(')"
')#

'#

'))
'+ '"

/�) /�"

/�(
�('('

("
'
()

'
"(

'
(# '

(.

'(* 1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$��*�
.

�
($

�
(*
�
"

�
-

1"1)

/"

'
"$

:(
�(#

�(.
1$�""

�+

'
((

'. '-

�
)

.� �/�

.� �/

.� �/,

94 RabbitCore RCM3600

C.7 Bezel-Mount Installation
This section describes and illustrates how to bezel-mount the LCD/keypad module
designed for remote installation. Follow these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-
sions in Figure C-9, then use the bezel faceplate to mount the LCD/keypad module onto
the panel.

Figure C-9. Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

)6
#!
!

�.
$6
#�

)6(!!
�+.6.�

"6.+!
�+"6-�

!6")!
�*6.�

!6("*��@�#,
�)�

	<'+<'

!6
()
!

�)
6)
�

User’s Manual 95

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

Figure C-10. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

��?��2
��@��

���� �9�%����

1(1"
'(

'" ')

'#
1)

�
(+

/(

:(

�(

�(

�" �) �#

�
-

�
(!

�
((

:" :) :#

�
("

�* �$

:* :$

�
()

�+

�
(#

�.

�
(*

�
(.

:+ :. '*

�
($

'$/)
1#

�	(
/"

'
.

'
+

&�(

�����

96 RabbitCore RCM3600

C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the RCM3600
Prototyping Board, and is connected via a ribbon cable as shown in Figure C-11.

Figure C-11. Connecting LCD/Keypad Module to RCM3600 Prototyping Board

Note the locations and connections relative to pin 1 on both the RCM3600 Prototyping
Board and the LCD/keypad module.

Rabbit Semiconductor offers 2 ft. (60 cm) extension cables. Contact your authorized dis-
tributor or a Rabbit Semiconductor sales representative for more information.

����
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 �

�'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 �

�'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
��
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$')

�-

�+�.

/�(/(

�#.*

�	�
0#.*

/�"

�(" �((

1)

'#

'+'
.

'
(!

�()

'((

1#

'*'$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#��

�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+1"'(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)6)�

�
	
�

�*�

�*�

�
	
�

�)6)�

 '�(/% '�(/'

 '�(/�

1*

'($

�(*%�(
�

�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*�

�
%
�
�

�
�
*

���
�
�

�
�
$3�

4
�

�
�
!

�
�
#

�
�
+

�
'
"3�

4
'

�
'
!3�

4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($�
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)��

�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4"'4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(! '4((

14"

14(
1.

�")
'"#'"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)!�)(�)"�))�)#�)*�)$

')*

�
#)

'"- /+
�8��7�����

�
)+

/.

�
�
�
2

�
�	

�
##

�����

���
�	

!$!*!#!)!"!(!!�
�	

�
�	

�
).

'
)!

'
)(

'
)"

'
))

'
)#

�)-��#!�#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�) �" �(

'�	����

/�*/�$/�+ 	
'

	
'

	
'

	
'

	
'

	
'

����
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$�)+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�")

')(')"
')#

'#

'))
'+'"

/�)/�"

/�(
�('('

("
'
()

'
"(

'
(#'

(.

'(*1(
1#
�()

1*
'"*

'
(+

'
($

'
*

'
(-

��(

'"!

��)

'
(!

�((

9('
"#

�
#

�
*

'
""

'
")

�
$ ��* �
.

�
($

�
(* �
"

�
-

1" 1)

/"

'
"$

:(
�(#

�(.
1$ �""

�+

'
((

'.'-

�
)

'
"

�"

�
(

'
)

�" '(�(

'
*

1"

/�(�)
1(

'#

'
(!

'�(

�
$

'()
'("

�
+

�.

�"*

�"$

�((�() �(# �(! �- �(" �(*

�
(.

:.

�
($

:*

�
"(:"

1*

/"

���� �9
%����

/#

&�(

�
(+ :#

�
"" :$

�
") :+

�
"!

:
) �
(-

1+ '(#

�
"#

'
(*

'
($

1$

1#

'+'-
1)

 '�('((

�#
�*

'$

/(

:(

/*

'(+ �	(

/*

 �)*!!
"6.��

��8��
)6)��

(

"

)

#

�6�6�I�*��

����(

.� �/

����(

User’s Manual 97

C.8 Sample Programs
Sample programs illustrating the use of the LCD/keypad module with the Prototyping
Board are provided in the SAMPLES\RCM3600\LCD_KEYPAD folder.

These sample programs use the auxiliary I/O bus on the Rabbit 3000 chip, and so the
#define PORTA_AUX_IO line is already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. To run a sample
program, open it with the File menu (if it is not still open), then compile and run it by
pressing F9. The RCM3600 must be connected to a PC using the programming cable as
described in Chapter 2, “Getting Started.”

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

• KEYPADTOLED.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a key press is detected. The DS1 and DS2 LEDs on the Prototyping
Board will also light up.

• LCDKEYFUN.C—This program demonstrates how to draw primitive features from the
graphic library (lines, circles, polygons), and also demonstrates the keypad with the key
release option.

• SWITCHTOLED.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a switch press is detected. The DS1 and DS2 LEDs on the Prototyp-
ing Board will also light up.

Additional sample programs are available in the 122x32_1x7 folder in
SAMPLES\LCD_KEYPAD.

98 RabbitCore RCM3600

C.9 LCD/Keypad Module Function Calls
When mounted on the Prototyping Board, the LCD/keypad module uses the auxiliary I/O
bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA_AUX_IO

to the beginning of any programs using the auxiliary I/O bus.

C.9.1 LCD/Keypad Module Initialization

The function used to initialize the LCD/keypad module can be found in the Dynamic C
LIB\DISPLAYS\LCD122KEY7.LIB library.

Initializes the LCD/keypad module. The keypad is set up using keypadDef() or keyConfig() after
this function call.

RETURN VALUE
None.

C.9.2 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)
will come on, indicating that power is being applied to the LCD/keypad module. The red
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the Dynamic C
LIB\DISPLAYS\LCD122KEY7_LIB library.

LED on/off control. This function will only work when the LCD/keypad module is installed on the
Prototyping Board.

PARAMETERS
led is the LED to control.

0 = LED DS1
1 = LED DS2
2 = LED DS3
3 = LED DS4
4 = LED DS5
5 = LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).

0 = off
1 = on

RETURN VALUE
None.

void dispInit();

void displedOut(int led, int value);

User’s Manual 99

C.9.3 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library
located in the Dynamic C LIB\DISPLAYS\GRAPHIC library folder. When x and y coordi-
nates on the display screen are specified, x can range from 0 to 121, and y can range from
0 to 31. These numbers represent pixels from the top left corner of the display.

Initializes the display devices, clears the screen.

RETURN VALUE
None.

SEE ALSO
glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Turns the display backlight on or off.

PARAMETER
onOff turns the backlight on or off

1—turn the backlight on
0—turn the backlight off

RETURN VALUE
None.

SEE ALSO
glInit, glDispOnoff, glSetContrast

Sets the LCD screen on or off. Data will not be cleared from the screen.

PARAMETER
onOff turns the LCD screen on or off

1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE
None.

SEE ALSO
glInit, glSetContrast, glBackLight

void glInit(void);

void glBackLight(int onOff);

void glDispOnOff(int onOff);

100 RabbitCore RCM3600

Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits
are not available on the LCD/keypad module.

Fills the LCD display screen with a pattern.

PARAMETER
The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes
for any other pattern.

RETURN VALUE
None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

Fills a rectangular block in the LCD buffer with the pattern specified. Any portion of the block that is
outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

pattern is the bit pattern to display (all black if pattern is 0xFF, all white if pattern is 0x00, and
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

void glSetContrast(unsigned level);

void glFillScreen(int pattern);

void glBlankScreen(void);

void glFillRegion(int left, int top, int width,
int height, char pattern);

User’s Manual 101

Fills a rectangular block in the LCD buffer with the pattern specified. The block left and width parame-
ters must be byte-aligned. Any portion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

pattern is the bit pattern to display (all black if pattern is 0xFF, all white if pattern is 0x00, and
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

Clears a region on the LCD display. The block left and width parameters must be byte-aligned. Any por-
tion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block (x must be evenly divisible by 8).

top is the y coordinate of the top left corner of the block.

width is the width of the block (must be evenly divisible by 8).

height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock

void glFastFillRegion(int left, int top, int width,
int height, char pattern);

void glBlankRegion(int left, int top, int width,
int height);

102 RabbitCore RCM3600

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the
block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

void glBlock(int left, int top, int width,
int height);

void glPlotVPolygon(int n, int *pFirstCoord);

User’s Manual 103

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

y1 is the y coordinate of the first vertex.

x1 is the x coordinate of the first vertex.

y2 is the y coordinate of the second vertex.

x2 is the x coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of
the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified,
the function will return without doing anything.

PARAMETERS
n is the number of vertices.
pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

void glPlotPolygon(int n, int y1, int x2, int y2,
...);

void glFillVPolygon(int n, int *pFirstCoord);

104 RabbitCore RCM3600

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the
function will return without doing anything.

PARAMETERS
n is the number of vertices.
x1 is the x coordinate of the first vertex.
y1 is the y coordinate of the first vertex.
x2 is the x coordinate of the second vertex.
y2 is the y coordinate of the second vertex.
... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
yc is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

void glFillCircle(int xc, int yc, int rad);

User’s Manual 105

Initializes the font descriptor structure, where the font is stored in xmem. Each font character's bitmap is
column major and byte aligned.

PARAMETERS
pInfo is a pointer to the font descriptor to be initialized.

pixWidth is the width (in pixels) of each font item.

pixHeight is the height (in pixels) of each font item.

startChar is the value of the first printable character in the font character set.

endChar is the value of the last printable character in the font character set.

xmemBuffer is the xmem pointer to a linear array of font bitmaps.

RETURN VALUE
None.

SEE ALSO
glPrinf

Returns the xmem address of the character from the specified font set.

PARAMETERS
*pInfo is the xmem address of the bitmap font set.

letter is an ASCII character.

RETURN VALUE
xmem address of bitmap character font, column major and byte-aligned.

SEE ALSO
glPutFont, glPrintf

void glXFontInit(fontInfo *pInfo, char pixWidth,
char pixHeight, unsigned startChar,
unsigned endChar, unsigned long xmemBuffer);

unsigned long glFontCharAddr(fontInfo *pInfo,
char letter);

106 RabbitCore RCM3600

Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font
character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside
the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

pInfo is a pointer to the font descriptor.

code is the ASCII character to display.

RETURN VALUE
None.

SEE ALSO
glFontCharAddr, glPrintf

Sets the glPrintf() printing step direction. The x and y step directions are independent signed values.
The actual step increments depend on the height and width of the font being displayed, which are multi-
plied by the step values.

PARAMETERS
stepX is the glPrintf x step value

stepY is the glPrintf y step value

RETURN VALUE
None.

SEE ALSO
Use glGetPfStep() to examine the current x and y printing step direction.

Gets the current glPrintf() printing step direction. Each step direction is independent of the other,
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the
font being displayed, which are multiplied by the step values.

RETURN VALUE
The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO
Use glGetPfStep() to control the x and y printing step direction.

void glPutFont(int x, int y, fontInfo *pInfo,
char code);

void glSetPfStep(int stepX, int stepY);

int glGetPfStep(void);

User’s Manual 107

Provides an interface between the STDIO string-handling functions and the graphic library. The
STDIO string-formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will
be clipped.

PARAMETERS
ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.

*cnt is not used, is a place holder for STDIO string functions.

pInst is a pointer to the font descriptor.

RETURN VALUE
None.

SEE ALSO
glPrintf, glPutFont, doprnt

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in
the font set are printed, all others are skipped. For example, '\b', '\t', '\n' and '\r' (ASCII backspace, tab,
new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have
any effect as control characters. Any portion of the bitmap character that is outside the LCD display area
will be clipped.

PARAMETERS
x is the x coordinate (column) of the upper left corner of the text.

y is the y coordinate (row) of the upper left corner of the text.

pInfo is a pointer to the font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
glXFontInit

void glPutChar(char ch, char *ptr, int *cnt,
glPutCharInst *pInst)

void glPrintf(int x, int y, fontInfo *pInfo,
char *fmt, ...);

108 RabbitCore RCM3600

Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are
not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be
sure to balance the calls. It is not a requirement to use these procedures, but a set of
glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds
up the rendering significantly.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glSwap

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD
if the counter goes to zero.

RETURN VALUE
None.

SEE ALSO
glBuffLock, glSwap

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the
counter is zero.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD
that you are using)

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER
type value can be one of the following macros.

PIXBLACK draws black pixels (turns pixel on).
PIXWHITE draws white pixels (turns pixel off).
PIXXOR draws old pixel XOR'ed with the new pixel.

RETURN VALUE
None.

SEE ALSO
glGetBrushType

void glBuffLock(void);

void glBuffUnlock(void);

void glSwap(void);

void glSetBrushType(int type);

User’s Manual 109

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE
The current brush type.

SEE ALSO
glSetBrushType

Gets a bitmap from the LCD page buffer and stores it in xmem RAM. This function automatically calls
glXGetFastmap if the left edge of the bitmap is byte-aligned and the left edge and width are each
evenly divisible by 8.

This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad
module.

PARAMETERS
x is the x coordinate in pixels of the top left corner of the bitmap (x must be evenly divisible by 8).
y is the y coordinate in pixels of the top left corner of the bitmap.
bmWidth is the width in pixels of the bitmap (must be evenly divisible by 8).
bmHeight is the height in pixels of the bitmap.
xBm is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is similar
to glXPutBitmap, except that it's faster. The bitmap must be byte-aligned. Any portion of a bitmap
image or character that is outside the LCD display area will be clipped.

This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad
module.

PARAMETERS
left is the x coordinate of the top left corner of the bitmap (x must be evenly divisible by 8).
top is the y coordinate in pixels of the top left corner of the bitmap.
width is the width of the bitmap (must be evenly divisible by 8).
height is the height of the bitmap.
xmemptr is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

int glGetBrushType(void);

void glXGetBitmap(int x, int y, int bmWidth,
int bmHeight, unsigned long xBm);

void glXGetFastmap(int left, int top, int width,
int height, unsigned long xmemptr);

110 RabbitCore RCM3600

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are
outside the LCD display area, the dot will not be plotted.

PARAMETERS
x is the x coordinate of the dot.

y is the y coordinate of the dot.

RETURN VALUE
None.

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is
beyond the LCD display area will be clipped.

PARAMETERS
x0 is the x coordinate of one endpoint of the line.

y0 is the y coordinate of one endpoint of the line.

x1 is the x coordinate of the other endpoint of the line.

y1 is the y coordinate of the other endpoint of the line.

RETURN VALUE
None.

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glRight1

void glPlotDot(int x, int y);

void glPlotLine(int x0, int y0, int x1, int y1);

void glLeft1(int left, int top, int cols, int rows);

User’s Manual 111

Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glLeft1

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glDown1

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glUp1

void glRight1(int left, int top, int cols, int rows);

void glUp1(int left, int top, int cols, int rows);

void glDown1(int left, int top, int cols, int rows);

112 RabbitCore RCM3600

Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
to the left).

RETURN VALUE
None.

SEE ALSO
glVScroll

void glHScroll(int left, int top, int cols,
int rows, int nPix);

User’s Manual 113

Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
up).

RETURN VALUE
None.

SEE ALSO
glHScroll

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls
glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each
evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap.

top is the top left corner of the bitmap.

width is the width of the bitmap.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutFastmap, glPrintf

void glVScroll(int left, int top, int cols,
int rows, int nPix);

void glXPutBitmap(int left, int top, int width,
int height, unsigned long bitmap);

114 RabbitCore RCM3600

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like
glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

Defines a text-only display window. This function provides a way to display characters within the text
window using only character row and column coordinates. The text window feature provides end-of-line
wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWindowFrame function before other Text... functions.

PARAMETERS
window is a pointer to the window frame descriptor.

pFont is a pointer to the font descriptor.

x is the x coordinate of the top left corner of the text window frame.

y is the y coordinate of the top left corner of the text window frame.

winWidth is the width of the text window frame.

winHeight is the height of the text window frame.

RETURN VALUE
 0—window frame was successfully created.
 -1—x coordinate + width has exceeded the display boundary.
-2—y coordinate + height has exceeded the display boundary.
-3—Invalid winHeight and/or winWidth parameter value.

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

int TextWindowFrame(windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)

User’s Manual 115

This function initializes the window frame structure with the border and title information.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

border is the border style:
SINGLE_LINE—The function will draw a single-line border around the text window.
DOUBLE_LINE—The function will draw a double-line border around the text window.

title is a pointer to the title information:
If a NULL string is detected, then no title is written to the text menu.
If a string is detected, then it will be written center-aligned to the top of the text menu box.

RETURN VALUE
None.

SEE ALSO
TextBorder, TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

This function displays the border for a given window frame. This function will automatically adjust the
text window parameters to accommodate the space taken by the text border. This adjustment will only
occur once after the TextBorderInit function executes.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO
TextBorderInit, TextGotoXY, TextPutChar, TextWindowFrame,
TextCursorLocation

void TextBorderInit(windowFrame *wPtr, int border,
char *title);

void TextBorder(windowFrame *wPtr);

116 RabbitCore RCM3600

Sets the cursor location to display the next character. The display location is based on the height and
width of the character to be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

col is a character column location.

row is a character row location.

RETURN VALUE
None.

SEE ALSO
TextPutChar, TextPrintf, TextWindowFrame

Gets the current cursor location that was set by a Graphic Text... function.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

col is a pointer to cursor column variable.

row is a pointer to cursor row variable.

RETURN VALUE
Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextGotoXY(windowFrame *window, int col,
int row);

void TextCursorLocation(windowFrame *window,
int *col, int *row);

User’s Manual 117

Displays a character on the display where the cursor is currently pointing. Once a character is displayed,
the cursor will be incremented to the next character position. If any portion of a bitmap character is out-
side the LCD display area, the character will not be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

ch is a character to be displayed on the LCD.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

Prints a formatted string (much like printf) on the LCD screen. Only printable characters in the font
set are printed; escape sequences '\r' and '\n' are also recognized. All other escape sequences will be
skipped over; for example, '\b' and \'t' will cause nothing to be displayed.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed. The cursor then remains at the end of the string.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
TextPrintf(&TextWindow, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void TextPutChar(struct windowFrame *window, char ch);

void TextPrintf(struct windowFrame *window,
char *fmt, ...);

118 RabbitCore RCM3600

This function returns the maximum number of characters that can be displayed within the text window.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
The maximum number of characters that can be displayed within the text window.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

This functions clears the entire area within the specified text window.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

int TextMaxChars(windowFrame *wPtr);

void TextWinClear(windowFrame *wPtr);

User’s Manual 119

C.9.4 Keypad

The functions used to control the keypad are contained in the Dynamic C LIB\KEY-
PADS\KEYPAD7.LIB library.

Initializes keypad process

RETURN VALUE
None.

SEE ALSO
brdInit

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and
debouncing.

PARAMETERS
cRaw is a raw key code index.

1x7 keypad matrix with raw key code index assignments (in brackets):

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef() for default press codes.

cRelease is a key release code.

An 8-bit value is returned when a key is pressed.
0 = Unused.

cCntHold is a hold tick, which is approximately one debounce period or 5 µs.

How long to hold before repeating.
0 = No Repeat.

cSpdLo is a low-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat.
0 = None.

cCntLo is a low-speed hold tick, which is approximately one debounce period or 5 µs.

How long to hold before going to high-speed repeat.
0 = Slow Only.

void keyInit(void);

void keyConfig(char cRaw, char cPress,
char cRelease, char cCntHold, char cSpdLo,
char cCntLo, char cSpdHi);

[0] [1] [2] [3]
[4] [5] [6]

120 RabbitCore RCM3600

cSpdHi is a high-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat after low speed repeat.
0 = None.

RETURN VALUE
None.

SEE ALSO
keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 x 8 matrix keypad.

RETURN VALUE
None

SEE ALSO
keyConfig, keyGet, keypadDef

Get next keypress.

RETURN VALUE
The next keypress, or 0 if none

SEE ALSO
keyConfig, keyProcess, keypadDef

Pushes the value of cKey to the top of the input queue, which is 16 bytes deep.

PARAMETER
cKey

RETURN VALUE
None.

SEE ALSO
keyGet

void keyProcess(void);

char keyGet(void);

int keyUnget(char cKey);

User’s Manual 121

Configures the physical layout of the keypad with the desired ASCII return key codes.

Keypad physical mapping 1 x 7

where
'D' represents Down Scroll
'U' represents Up Scroll
'R' represents Right Scroll
'L' represents Left Scroll
'–' represents Page Down
'+' represents Page Up
'E' represents the ENTER key

Example: Do the following for the above physical vs. ASCII return key codes.

keyConfig (3,'R',0, 0, 0, 0, 0);
keyConfig (6,'E',0, 0, 0, 0, 0);
keyConfig (2,'D',0, 0, 0, 0, 0);
keyConfig (4,'-',0, 0, 0, 0, 0);
keyConfig (1,'U',0, 0, 0, 0, 0);
keyConfig (5,'+',0, 0, 0, 0, 0);
keyConfig (0,'L',0, 0, 0, 0, 0);

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit
position.

PARAMETER

pcKeys is a pointer to the address of the value read.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

0 4 1 5 2 6 3
['L'] ['U'] ['D'] ['R']

['–'] ['+'] ['E']

void keyScan(char *pcKeys);

122 RabbitCore RCM3600

User’s Manual 123

APPENDIX D. POWER SUPPLY

Appendix D provides information on the current requirements
of the RCM3600, and includes some background on the chip
select circuit used in power management.

D.1 Power Supplies
Power is supplied from the motherboard to which the RCM3600 is connected via header
J1. The RCM3600 has an onboard +3.3 V linear power regulator that provides the +3.3 V
supply to operate the RCM3600. Figure D-1 shows the power-supply circuit.

Figure D-1. RCM3600 Power Supply

The input voltage should be 5 V ± 0.25 V DC. An RCM3600 with no loading at the outputs
typically draws 60 mA when operating at 22.1 MHz. Take care that any DC loading (for
example, sourcing digital outputs) does not increase the overall current to more than 190
mA to keep the +3.3 V linear regulator from overheating.

D.1.1 Battery-Backup Circuits

The RCM3600 does not have a battery, but there is provision for a customer-supplied bat-
tery to back up the data SRAM and keep the internal Rabbit 3000 real-time clock running.

Header J1, shown in Figure D-1, allows access to the external battery. This header makes
it possible to connect an external 3 V battery. This allows the SRAM and the internal Rab-
bit 3000 real-time clock to retain data with the RCM3600 powered down.

 �	������5������1 ����

�
�
5
�
�

�	

/(

(!�H2

 7(((+
1+

�)6)��

)

(

"

).

)-

#!

(!�H2

��	

)+ �%��3�4�

�,������
%������

124 RabbitCore RCM3700

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is
recommended. A lithium battery is strongly recommended because of its nearly constant
nominal voltage over most of its life.

The drain on the battery by the RCM3600 is typically 6 µA when no other power is sup-
plied. If a 235 mA·h battery is used, the battery can last about 4.5 years:

The actual life in your application will depend on the current drawn by components not on
the RCM3600 and the storage capacity of the battery. The RCM3600 does not drain the
battery while it is powered up normally.

Cycle the main power off/on on the RCM3600 after you install a backup battery for the
first time, and whenever you replace the battery. This step will minimize the current drawn
by the real-time clock oscillator circuit from the backup battery should the RCM3600
experience a loss of main power.

NOTE: Remember to cycle the main power off/on any time the RCM3600 is removed
from the Protoyping Board or motherboard since that is where the backup battery
would be located.

D.1.2 Reset Generator

The RCM3600 uses a reset generator to reset the Rabbit 3000 microprocessor when the
voltage drops below the voltage necessary for reliable operation. The reset occurs between
2.55 V and 2.70 V, typically 2.63 V.

The RCM3600 has a reset pin, pin 36 on header J1. This pin provides access to the reset
output from the reset generator, and is also connected to the reset input of the Rabbit 3000
to allow you to reset the microprocessor externally. A resistor divider consisting of R21
and R22 attenuates the signal associated with an externally applied reset to prevent it from
affecting the reset generator.

235 mA·h
6 µA

------------------------ 4.5 years.=

User’s Manual 125

INDEX

A
A/D converter

calibration 79
calibration constants 79
CONVERT pin 78
function calls

anaIn 40
anaInCalib 42
anaInConfig 36
anaInDiff 45
anaInDriver 38
anaInEERd 47
anaInEEWr 49
anaInmAmps 46
anaInVolts 44
digConfig 50
digIn 51
digOut 51

inputs
current measurements ... 77
differential measure-

ments 76
negative voltages 76
single-ended measure-

ments 75
reference voltage (VREF) . 78

additional information
online documentation 5

analog inputs
See A/D converter

auxiliary I/O bus 26
software 98

B
battery backup

battery life 124
board initialization

function calls 35
brdInit 35

bus loading 60

C
clock doubler 31

effect on clock cycle 62
conformal coating 65
connectivity interface kits

Wi-Fi Add-On Kit 5

D
Development Kit 4, 7

AC adapter 4
DC power supply 4
Getting Started instructions 4
programming cable 4

digital I/O 22
I/O buffer sourcing and sink-

ing limits 64
memory interface 26
SMODE0 28
SMODE1 28

dimensions
LCD/keypad module 87
LCD/keypad template 90
Prototyping Board 71
RCM3600 56

Dynamic C 7, 11, 33
add-on modules 7

installation 7
libraries 35
sample programs 14
standalone operation 33
standard features 34

debugging 34
telephone-based technical

support 5, 54
upgrades and patches 54
USB port settings 11

E
exclusion zone 57

F
features 1

Prototyping Board 68, 69
flash memory addresses

user blocks 32

H
hardware connections

install RCM3600 on Prototyp-
ing Board 8

power supply 10
programming cable 9

hardware reset 10
headers

Prototyping Board
JP1 83
JP2 80

I
I/O address assignments

LCD/keypad module 91
I/O buffer sourcing and sinking

limits 64

J
jumper configurations 66

JP3 (flash memory size) 66
JP4 (flash memory bank

select) 32, 66
jumper locations 66
Prototyping Board 84

JP1 (RS-485 bias and termi-
nation resistors) 83, 85

JP2 (RS-232/RS-485 on
Serial Port E) 85

JP4 (A/D converter outputs)
..................................... 85

JP5 (analog inputs refer-
ence) 85

JP6 (analog inputs refer-
ence) 85

126 RabbitCore RCM3600

jumper configurations
Prototyping Board (continued)

JP7 (analog inputs refer-
ence)85

JP8 (analog voltage/4–20
mA measurement options)
.....................................85

K
keypad template90

removing and inserting la-
bel90

L
LCD/keypad module

bezel-mount installation94
dimensions87
function calls

dispInit98
header pinout91
I/O address assignments91
keypad

function calls
keyConfig119
keyGet120
keyInit119
keypadDef121
keyProcess120
keyScan121
keyUnget120

keypad template90
LCD display

function calls
glBackLight99
glBlankRegion101
glBlankScreen100
glBlock102
glBuffLock108
glBuffUnlock108
glDispOnOff99
glDown1111
glFastFillRegion101
glFillCircle104
glFillPolygon104
glFillRegion100
glFillScreen100
glFillVPolygon103
glFontCharAddr105
glGetBrushType109
glGetPfStep106
glHScroll112
glInit99
glLeft1110
glPlotCircle104

glPlotDot110
glPlotLine110
glPlotPolygon103
glPlotVPolygon102
glPrintf107
glPutChar107
glPutFont106
glRight1111
glSetBrushType108
glSetContrast100
glSetPfStep106
glSwap108
glUp1111
glVScroll113
glXFontInit105
glXGetBitmap109
glXGetFastmap109
glXPutBitmap113
glXPutFastmap114
TextBorder115
TextBorderInit115
TextCursorLocation ..116
TextGotoXY116
TextMaxChars118
TextPrintf117
TextPutChar117
TextWinClear118
TextWindowFrame ...114

LEDs
function calls98

displedOut98
mounting instructions93
reconfigure keypad90
remote cable connection96
removing and inserting keypad

label90
sample programs97
specifications88
versions87
voltage settings89

M
mounting instructions

LCD/keypad module93

P
pinout

LCD/keypad module91
Prototyping Board73
RCM3600

alternate configurations .24
RCM3600 headers22

power supplies
+5 V123
battery backup123
linear voltage regulator ...123

Program Mode29
switching modes29

programming cable
PROG connector29
RCM3600 connections9

programming port28
Prototyping Board68

adding components74
dimensions71
expansion area69
features68, 69
jumper configurations .84, 85
jumper locations84
mounting RCM36008
pinout73
power supply72
prototyping area74
RS-485 network82
specifications72
thermistor input77
thermistor installation73

R
Rabbit 3000

data and clock delays62
spectrum spreader time delays

.......................................62
Rabbit subsystems23
RCM3600

mounting on Prototyping
Board8

reset10
reset generator124
use of reset pin124

reset generator124
RS-485 network

termination and bias resis-
tors83

Run Mode29
switching modes29

User’s Manual 127

S
sample programs 14

A/D converter
AD_CALDIFF_CH.C 18, 79
AD_CALMA_CH.C 18, 79
AD_CALSE_ALL.C 18, 79
AD_CALSE_CH.C 79
AD_CALSE_CHAN.C . 18
AD_RDDIFF_CH.C 18, 79
AD_RDMA_CH.C .. 18, 79
AD_RDSE_ALL.C . 18, 79
AD_SAMPLE.C 19
ANAINCONFIG.C 19
DNLOADCALIB.C 19
THERMISTOR.C ... 19, 77
UPLOADCALIB.C 20

getting to know the RCM3600
CONTROLLED.C 14
DIO.C 15
FLASHLED1.C 14
IR_DEMO.C 15
TOGGLESWITCH.C 15

LCD/keypad module 97
KEYBASIC.C 90
KEYPADTOLED.C 97
LCDKEYFUN.C 97
reconfigure keypad 90
SWITCHTOLED.C 97

PONG.C 11
serial communication

FLOWCONTROL.C 16
PARITY.C 16
SIMPLE3WIRE.C 17
SIMPLE485MASTER.C 17
SIMPLE485SLAVE.C .. 17
SIMPLE5WIRE.C 17
SWITCHCHAR.C 17

serial communication 27
Prototyping Board

RS-232 81
RS-485 network 82
RS-485 termination and bias

resistors 83
serial ports 27

programming port 28

software 5
auxiliary I/O bus 26, 52
I/O drivers 52
libraries 35

LCD/keypad module
keypad 119
LCD display 98

PACKET.LIB 53
RCM36XX.LIB 35
RS232.LIB 53

serial communication driv-
ers 53

specifications 55
bus loading 60
digital I/O buffer sourcing and

sinking limits 64
dimensions 56
electrical, mechanical, and

environmental 56, 58
exclusion zone 57
header footprint 59
headers 59
LCD/keypad module

dimensions 87
electrical 88
header footprint 88
mechanical 88
relative pin 1 locations .. 88
temperature 88

Prototyping Board 72
Rabbit 3000 DC characteris-

tics 63
Rabbit 3000 timing dia-

gram 61
relative pin 1 locations 59

spectrum spreader 62
effect on clock cycle 62

standalone operation 33
subsystems

digital inputs and outputs .. 22
switching modes 29

T
technical support 12
troubleshooting

changing COM port 11
connections 11
lower debugging baud rate 11

U
USB/serial port converter 9

Dynamic C settings 11
user block

function calls
readUserBlock 32
writeUserBlock 32

W
Wi-Fi Add-On Kit 5

128 RabbitCore RCM3600

User’s Manual 129

SCHEMATICS

090-0176 RCM3600 Schematic
www.rabbit.com/documentation/schemat/090-0176.pdf

090-0180 Prototyping Board Schematic
www.rabbit.com/documentation/schemat/090-0180.pdf

090-0156 LCD/Keypad Module Schematic
www.rabbit.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic
www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.

http://www.rabbit.com/documentation/schemat/090-0176.pdf
http://www.rabbit.com/documentation/schemat/090-0180.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0156.pdf

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Rabbit Semiconductor:

 101-0679

http://www.mouser.com/rabbitsemi
http://www.mouser.com/access/?pn=101-0679

	RabbitCore RCM3600 User's Manual
	Table of Contents
	1. Introduction
	1.1 RCM3600 Features
	1.2 Advantages of the RCM3600
	1.3 Development and Evaluation Tools
	1.3.1 Development Kit
	1.3.2 Software
	1.3.3 Connectivity Interface Kits
	1.3.4 Online Documentation

	2. Getting Started
	2.1 Install Dynamic C
	2.2 Hardware Connections
	2.2.1 Attach Module to Prototyping�Board
	2.2.2 Connect Programming Cable
	2.2.3 Connect Power

	2.3 Starting Dynamic C
	2.4 Run a Sample Program
	2.4.1 Troubleshooting

	2.5 Where Do I Go From Here?
	2.5.1 Technical Support

	3. Running Sample Programs
	3.1 Introduction
	3.2 Sample Programs
	3.2.1 Serial Communication
	3.2.2 A/D Converter Inputs

	4. Hardware Reference
	4.1 RCM3600 Digital Inputs and Outputs
	4.1.1 Memory I/O Interface
	4.1.2 Other Inputs and Outputs

	4.2 Serial Communication
	4.2.1 Serial Ports
	4.2.2 Serial Programming Port

	4.3 Serial Programming Cable
	4.3.1 Changing Between Program Mode and Run Mode
	4.3.2 Standalone Operation of the RCM3600

	4.4 Other Hardware
	4.4.1 Clock Doubler
	4.4.2 Spectrum Spreader

	4.5 Memory
	4.5.1 SRAM
	4.5.2 Flash EPROM
	4.5.3 Dynamic C BIOS Source Files

	5. Software Reference
	5.1 More About Dynamic C
	5.2 Dynamic C Functions
	5.2.1 Board Initialization
	5.2.2 Analog Inputs
	5.2.3 Digital I/O
	5.2.4 Serial Communication Drivers

	5.3 Upgrading Dynamic C
	5.3.1 Add-On Modules

	Appendix A. RCM3600 Specifications
	A.1 Electrical and Mechanical Characteristics
	A.1.1 Headers

	A.2 Bus Loading
	A.3 Rabbit 3000 DC Characteristics
	A.4 I/O Buffer Sourcing and Sinking Limit
	A.5 Conformal Coating
	A.6 Jumper Configurations

	Appendix B. Prototyping Board
	B.1 Introduction
	B.1.1 Prototyping Board Features

	B.2 Mechanical Dimensions and Layout
	B.3 Power Supply
	B.4 Using the Prototyping Board
	B.4.1 Adding Other Components
	B.4.2 Analog Features
	B.4.3 Serial Communication
	B.4.4 Other Prototyping Board Modules

	B.5 RCM3600 Prototyping Board Jumper Configurations

	Appendix C. LCD/Keypad Module
	C.1 Specifications
	C.2 Contrast Adjustments for All Boards
	C.3 Keypad Labeling
	C.4 Header Pinouts
	C.4.1 I/O Address Assignments

	C.5 Install Connectors on Prototyping Board
	C.6 Mounting LCD/Keypad Module on the Prototyping Board
	C.7 Bezel-Mount Installation
	C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board

	C.8 Sample Programs
	C.9 LCD/Keypad Module Function Calls
	C.9.1 LCD/Keypad Module Initialization
	C.9.2 LEDs
	C.9.3 LCD Display
	C.9.4 Keypad

	Appendix D. Power Supply
	D.1 Power Supplies
	D.1.1 Battery-Backup Circuits
	D.1.2 Reset Generator

	Index
	Schematics

