3V electronic governor BA6235F

The BA6235F is an IC for controlling the speed of low voltage DC motors. It consists of a reference voltage generator, current multiplier, and DC amplifier. The speed of DC motor is controlled by detecting the counter-electromotive force generated by the motor. Various DC motors can be driven by changing the external CR time constants.

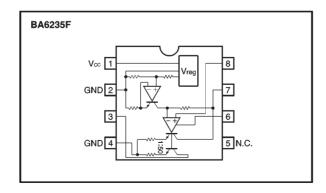
Applications

3V radio cassette tape recorders Micro-cassette tape recorders

Features

- 1) Wide range of operating voltage. (1.8 \sim 5V)
- 2) Low current consumption. ($I_Q = 2.0 \text{mA}$)

 Various DC motors can be driven by changing the external CR time constants.

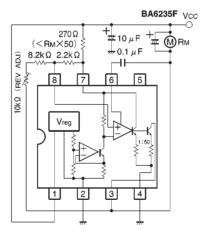

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Power supply voltage		Vcc	8.0	V
Power dissipation	BA6235F	Pd	350*	mW
Operating temperature		Topr	−20~+75	°C
Storage temperature		Tstg	−55∼+125	°C

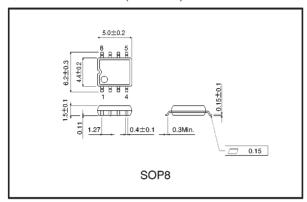
• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	1.8	3.0	5.0	٧
Maximum motor current	Ім	_	_	800	mA

Block diagram



Motor driver ICs BA6235F


● Electrical characteristics (unless otherwise noted, Ta = 25°C and Vcc = 3.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current	la	_	2.0	5.5	mA	I _M =0mA
Output saturation voltage	Vo sat	_	0.1	0.3	V	I _M =120mA
Reference voltage	Vref	165	190	215	mV	I _M =120mA
Current ratio	К	45	50	55	_	I _M =50∼150mA
Reference voltage vs. voltage	$\frac{\Delta V_{ref}}{V_{ref}} / \Delta V_{CC}$	_	0.1	_	%/V	Iм=120mA, Vcc=1.8~3.5V
Current ratio vs. voltage	$\frac{\Delta K}{K} / \Delta V_{CC}$	_	0.1	_	%/V	Iм=50~150mA, Vcc=1.8~3.5V
Reference voltage vs. current	$\frac{\Delta V_{ref}}{V_{ref}} / \Delta I_{M}$	_	0.002	_	% / mA	Iм=20~200mA
Current ratio vs. current	$\frac{\Delta K}{K} / \Delta I_M$	_	0.05	_	% / mA	Iм=20~200mA
Reference voltage vs. temperature	$\frac{\Delta V_{ref}}{V_{ref}} / \Delta Ta$	_	0.02		%/℃	I _M =120mA, Ta=-20~+75℃
Current ratio vs. temperature	$\frac{\Delta K}{K} / \Delta Ta$	_	0.02	_	%/°C	Iм=50~150mA, Та=−20~+75°С

Application example

●External dimensions (Units: mm)

