www.ti.com

LM4844 Boomer™ Audio Power Amplifier Series Stereo 1.2W Audio Sub-System with 3D Enhancement

Check for Samples: LM4844

FEATURES

- Stereo Speaker Amplifier
- Stereo OCL Headphone Amplifier
- Independent Left, Right, and Mono Volume Controls
- Texas Instruments 3D Enhancement
- I²C Compatible Interface
- Ultra Low Shutdown Current
- Click and Pop Suppression Circuit
- 10 Distinct Output Modes

APPLICATIONS

- Cell Phones
- PDAs
- Portable Gaming Devices
- Internet Appliances
- Portable DVD, CD, AAC, and MP3 Players

KEY SPECIFICATIONS

- P_{OUT}, Stereo BTL, 8Ω, 3.3V, 1% THD+N, 495mW (Typ)
- P_{OUT} HP, 32Ω, 3.3V, 1% THD+N, 33mW (Typ)
- Shutdown Current, 3.3V, 0.1µA (Typ)

DESCRIPTION

The LM4844 is an integrated audio sub-system designed for stereo cell phone applications. Operating on a 3.3V supply, it combines a stereo speaker amplifier delivering 495mW per channel into an 8Ω load and a stereo OCL headphone amplifier delivering 33mW per channel into a 32Ω load.

It integrates the audio amplifiers, volume control, mixer, power management control, and Texas Instruments 3D enhancement all into a single package. In addition, the LM4844 routes and mixes the stereo and mono inputs into 10 distinct output modes. The LM4844 is controlled through an I²C compatible interface.

Boomer audio power amplifiers are designed specifically to provide high quality output power with a minimal amount of external components.

The LM4844 is available in a very small 2.5mm x 2.9mm 30-bump DSBGA (YZR) package.

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Boomer is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Block Diagram

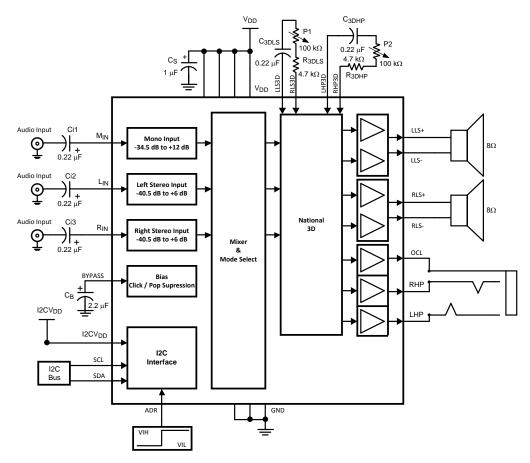


Figure 1. Audio Sub-System Block Diagram

Connection Diagram

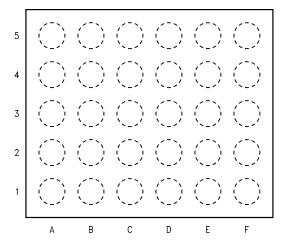


Figure 2. 30 Bump DSBGA (YZR) Package
Top View
(Bump-side down)
See Package Number YZR0030

PIN CONNECTION (YZR)

Pin	Name	Pin Description
A1	RLS+	Right Loudspeaker Positive Output
A2	V_{DD}	Power Supply
A3	SDA	Data
A4	RHP3D	Right Headphone 3D
A5	RHP	Right Headphone Output
B1	GND	Ground
B2	I ² CV _{DD}	I ² C Interface Power Supply
B3	ADR	I ² C Address Select
B4	LHP3D	Left Headphone 3D
B5	V_{DD}	Power Supply
C1	RLS-	Right Loudspeaker Negative Output
C2	NC	No Connect
C3	SCL	Clock
C4	NC	No Connect
C5	GND	Ground
D1	LLS-	Left Loudspeaker Negative Output
D2	V_{DD}	Power Supply
D3	M _{IN}	Mono Input
D4	NC	No Connect
D5	OCL	V _{DD} /2 Supply for headphone jack's sleeve
E1	GND	Ground
E2	BYPASS	Half-supply bypass
E3	LLS3D	Left Loudspeaker 3D
E4	R _{IN}	Right Stereo Input
E5	NC	No Connect
F1	LLS+	Left Loudspeaker Positive Output
F2	V_{DD}	Power Supply
F3	RLS3D	Right Loudspeaker 3D
F4	L _{IN}	Left Stereo Input
F5	LHP	Left Headphone Output

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)(3)

Supply Voltage		6.0V
Storage Temperature		-65°C to +150°C
Input Voltage		-0.3V to V _{DD} +0.3V
Power Dissipation (4)		Internally Limited
ESD Susceptibility ⁽⁵⁾		2000V
ESD Susceptibility ⁽⁶⁾		200V
Junction Temperature (T _J)		150°C
Thermal Resistance	θ _{JA} (YZR0030)	62°C/W

- (1) All voltages are measured with respect to the GND pin unless otherwise specified.
- (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- (3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (4) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} T_A) / \theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4844 typical application with $V_{DD} = 3.3V$ and $R_L = 8\Omega$ stereo operation, the total power dissipation is TBDW. $\theta_{JA} = TBD^{\circ}C/W$.
- (5) Human body model, 100pF discharged through a 1.5k Ω resistor.
- (6) Machine Model, 220pF-240pF discharged through all pins.

Operating Ratings

Temperature Range	$T_{MIN} \le T_A \le T_{MAX}$	-40°C ≤ T _A ≤ +85°C
Supply Voltage (V _{DD})		$2.7 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$
Supply Voltage (I ² CV _{DD}) ⁽¹⁾		$I^2CV_{DD} \le V_{DD}$
Supply voltage (I CV _{DD})\/		$1.7V \le I^2CV_{DD} \le 5.5V$

(1) Refer to Control Interface Electrical Characteristics tables.

Audio Amplifier Electrical Characteristics $V_{DD} = 5.0V^{(1)(2)}$

The following specifications apply for $V_{DD} = 5.0V$, unless otherwise specified. Limits apply for $T_A = 25$ °C.

Symbol	Parameter	Conditions	LN	/ 14844	Units
			Typical ⁽³⁾	Limits ⁽⁴⁾⁽⁵⁾	(Limits)
		V _{IN} = 0V, No load; LD5 = RD5 = 0			
I _{DD}	Supply Current ⁽⁶⁾	Mode 4, 9, 14	5	8	mA (max)
55		Mode 2, 7, 12	12	18	mA (max)
		Mode 3, 8, 13	13	20	mA (max)
I _{SD}	Shutdown Current ⁽⁶⁾	Mode 0	0.2	2.5	μA (max)
D	Output Power	Speaker; THD+N = 1%; f = 1kHz; 8Ω BTL	1.2	0.9	W (min)
P _O	Output Power	Headphone; THD+N = 1%; f = 1kHz; 32Ω SE	80	60	mW (min)
		LD5 = RD5 = 0			
THD+N	Total Harmonic Distortion Plus Noise	Speaker; $P_O = 400$ mW; $f = 1$ kHz; 8Ω BTL	0.05		%
	Noise	Headphone; $P_0 = 15$ mW; $f = 1$ kHz; 32Ω SE	0.06		%
. /	Offact Voltage	Speaker; LD5 = RD5 = 0	5	40	mV (max)
V _{OS}	Offset Voltage	Headphone; LD5 = RD5 = 0	2	30	mV (max)
N _{OUT}	Output Noise	A-weighted, 0dB gain; LD5 = RD5 = 0			
		Speaker; Mode 2, 3, 7, 8	31		μV
		Speaker; Mode 12, 13	35		μV
		Headphone; Mode 3, 4, 8, 9	12		μV
		Headphone; Mode 13, 14	14		μV
		$f = 217Hz$; $V_{rip} = 200mV_{pp}$; $C_B = 2.2\mu F$; 0dB Gain Setting; LD5 = RD5 = 0			
		Speaker; Mode 2, 3, 7, 8	71		dB
PSRR	Power Supply Rejection Ratio	Speaker; Mode 12, 13,	65	55	dB (min)
		Headphone; Mode 3, 4, 8, 9	76		dB
		Headphone; Mode 13, 14	72	62	dB (min)
		LD5 = RD5 = 0			
Xtalk Cr	Crosstalk	Loudspeaker; P _O = 400mW; f = 1kHz	84		dB
		Headphone; P _O = 15mW; f = 1kHz	60		dB
т	Woko un Timo	CD4 = 0; C _B = 2.2µF	103		ms
T_{WU}	Wake-up Time	$CD4 = 1$; $C_B = 2.2\mu F$	42		ms

- (1) All voltages are measured with respect to the GND pin unless otherwise specified.
- (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- (3) Typicals are measured at +25°C and represent the parametric norm.
- (4) Limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).
- (5) Datasheet min/max specification limits are specified by design, test, or statistical analysis.
- 6) Shutdown current and supply current are measured in a normal room environment.

Copyright © 2005–2013, Texas Instruments Incorporated

Audio Amplifier Electrical Characteristics $V_{DD} = 3.0V^{(1)(2)}$

The following specifications apply for V_{DD} = 3.0V, unless otherwise specified. Limits apply for T_A = 25°C.

Symbol	Parameter	Conditions	LN	1 4844	Units
			Typical ⁽³⁾	Limits ⁽⁴⁾⁽⁵⁾	(Limits)
		V _{IN} = 0V, No load; LD5 = RD5 = 0			
DD Supply Current (6	Supply Current ⁽⁶⁾	Mode 4, 9, 14	4.5	7.5	mA (max)
22		Mode 2, 7, 12	10	16	mA (max)
		Mode 3, 8, 13	11	18	mA (max)
SD	Shutdown Current ⁽⁶⁾	Mode 0	0.1	2	μA (max)
2	Output Power	Speaker; THD+N = 1%; f = 1kHz; 4Ω BTL	390	320	mW (min)
Po	Output Power	Headphone; THD+N = 1%; f = 1kHz; 32Ω SE	28	21	mW (min)
		LD5 = RD5 = 0			
THD+N	Total Harmonic Distortion Plus	Speaker; $P_O = 200$ mW; $f = 1$ kHz; 8Ω BTL	0.05		%
	Noise	Headphone; $P_0 = 10$ mW; $f = 1$ kHz; 32Ω SE	0.05		%
,	Officet Voltage	Speaker; LD5 = RD5 = 0	5	40	mV (max)
V _{os}	Offset Voltage	Headphone; LD5 = RD5 = 0	2	30	mV (max)
		A-weighted; 0dB gain; LD5 = RD5 = 0			
		Speaker; Mode 2, 3, 7, 8	32		μV
N _{OUT}	Output Noise	Speaker; Mode 12, 13	41		μV
		Headphone; Mode 3, 4, 8, 9	13		μV
		Headphone; Mode 13, 14	15		μV
		$f = 217Hz$, $V_{rip} = 200mV_{pp}$; $C_B = 2.2\mu F$; 0dB Gain Setting; LD5 = RD5 = 0			
		Speaker; Mode 2, 3, 7, 8	73		dB
PSRR	Power Supply Rejection Ratio	Speaker; Mode 12, 13,	66	55	dB (min)
		Headphone; Mode 3, 4, 8, 9	78		dB
		Headphone; Mode 13, 14	72	62	dB (min)
		LD5 = RD5 = 0			
Xtalk Crossta	Crosstalk	Loudspeaker; P _O = 200mW; f = 1kHz	85		dB
		Headphone; P _O = 10mW; f = 1kHz	60		dB
г	Woke up Time	CD4 = 0; C _B = 2.2µF	70		ms
T _{WU}	Wake-up Time	CD4 = 1; C _B = 2.2µF	30		ms

- (1) All voltages are measured with respect to the GND pin unless otherwise specified.
- (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- (3) Typicals are measured at +25°C and represent the parametric norm.
- (4) Limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).
- (5) Datasheet min/max specification limits are specified by design, test, or statistical analysis.
- 6) Shutdown current and supply current are measured in a normal room environment.

Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

Volume Control Electrical Characteristics (1)(2)

The following specifications apply for $3V \le V_{DD} \le 5V$ and $3V \le I^2CV_{DD} \le 5V$, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	LN	14844	Units	
			Typical ⁽³⁾	Limits ⁽⁴⁾⁽⁵⁾	(Limits)	
	Stereo Volume Control Range	maximum gain setting	6	5.5 6.5	dB (min) dB (max)	
	Stereo volume Control Range	minimum gain setting	-40.5	-41 -40	dB (min) dB (max)	
	Mono Volume Control Range	maximum gain setting	12	11.5 12.5	dB (min) dB (max)	
		minimum gain setting	-34.5	-35 -34	dB (min) dB (max)	
	Volume Control Step Size		1.5		dB	
	Volume Control Step Size Error		+/-0.2	+/-0.5	dB (max)	
	Stereo Channel to Channel Gain Mismatch		0.3		dB	
	Marta Attanuation	Mode 12, V _{in} = 1V _{RMS}				
	Mute Attenuation	Headphone	100		dB	
	L and D land lands	maximum gain setting	33	25 42	kΩ (min) kΩ (max)	
	L _{IN} and R _{IN} Input Impedance	minimum gain setting	100	75 125	kΩ (min) kΩ (max)	
	M _{IN} Input Impedance	maximum gain setting	20	15 25	kΩ (min) kΩ (max)	
		minimum gain setting	96	73 123	kΩ (min) kΩ (max)	

⁽¹⁾ All voltages are measured with respect to the GND pin unless otherwise specified.

⁽²⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

⁽³⁾ Typicals are measured at +25°C and represent the parametric norm.

⁽⁴⁾ Limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).

⁽⁵⁾ Datasheet min/max specification limits are specified by design, test, or statistical analysis.

Control Interface Electrical Characteristics (1)(2)

The following specifications apply for $V_{DD} = 5.0V$ and 3.0V, $T_A = 25^{\circ}C$, $2.2V \le I^2CV_{DD} \le 5.5V$, unless otherwise specified.

Symbol	Parameter	Conditions	LI	LM4844		
			Typical ⁽³⁾	Limits ⁽¹⁾⁽⁴⁾⁽⁵⁾	(Limits)	
t ₁	I ² C Clock Period			2.5	μs (min)	
t ₂	I ² C Data Setup Time			100	ns (min)	
t ₃	I ² C Data Stable Time			0	ns (min)	
t ₄	Start Condition Time			100	ns (min)	
t ₅	Stop Condition time			100	ns (min)	
t ₆	I ² C Data Hold Time			100	ns (min)	
V _{IH}	I ² C Input Voltage High			0.7 x I ² CV _{DD}	V (min)	
V _{IL}	I ² C Input Voltage Low			$0.3 \times I^2CV_{DD}$	V (max)	

- (1) All voltages are measured with respect to the GND pin unless otherwise specified.
- (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- (3) Typicals are measured at +25°C and represent the parametric norm.
- 4) Limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).
- (5) Datasheet min/max specification limits are specified by design, test, or statistical analysis.

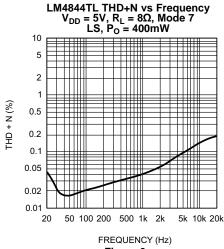
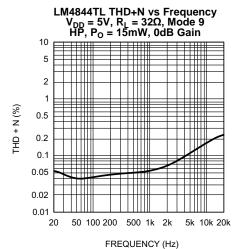
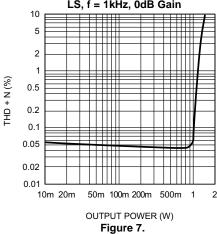
Control Interface Electrical Characteristics (1)(2)

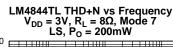
The following specifications apply for $V_{DD} = 5.0V$ and 3.0V, $T_A = 25^{\circ}C$, $1.7V \le I^2CV_{DD} \le 2.2V$, unless otherwise specified.

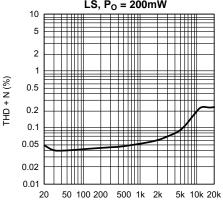
Symbol	Parameter	Conditions	LI	LM4844		
			Typical ⁽³⁾	Limits ⁽¹⁾⁽⁴⁾⁽⁵⁾	(Limits)	
t ₁	I ² C Clock Period			2.5	μs (min)	
t ₂	I ² C Data Setup Time			250	ns (min)	
t ₃	I ² C Data Stable Time			0	ns (min)	
t ₄	Start Condition Time			250	ns (min)	
t ₅	Stop Condition time			250	ns (min)	
t ₆	I ² C Data Hold Time			250	ns (min)	
V _{IH}	I ² C Input Voltage High			0.7 x I ² CV _{DD}	V (min)	
V _{IL}	I ² C Input Voltage Low			0.25 x I ² CV _{DD}	V (max)	

- (1) All voltages are measured with respect to the GND pin unless otherwise specified.
- (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- (3) Typicals are measured at +25°C and represent the parametric norm.
- (4) Limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).
- (5) Datasheet min/max specification limits are specified by design, test, or statistical analysis.

Typical Performance Characteristics

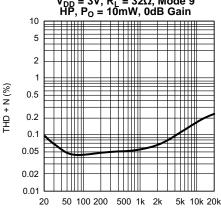





Figure 3.



LM4844TL THD+N vs Output Power $I_{DD} = 5V, R_{L} = 8\Omega, Mode 7$ LS, f = 1kHz, 0dB Gain

Figure 5.

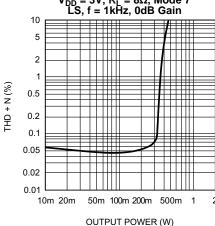
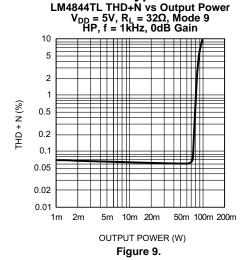


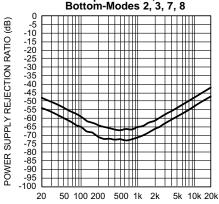
FREQUENCY (Hz) Figure 4.

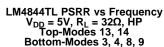
$\begin{array}{l} \text{LM4844TL THD+N vs Frequency} \\ \text{V}_{DD} = 3\text{V}, \, \text{R}_{L} = 32\Omega, \, \text{Mode 9} \\ \text{HP, P}_{O} = 10\text{mW}, \, \text{0dB Gain} \end{array}$

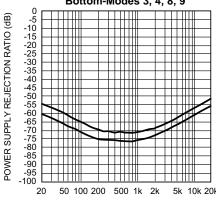
FREQUENCY (Hz) Figure 6.

LM4844TL THD+N vs Output Power $V_{DD}=3V,\,R_L=8\Omega,\,$ Mode 7 LS, f = 1kHz, 0dB Gain

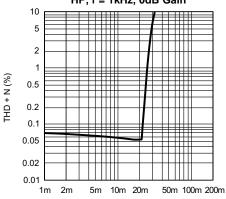



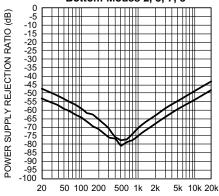

Figure 8.



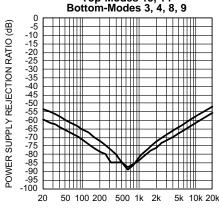


LM4844TL PSRR vs Frequency $V_{DD} = 5V$, $R_L = 8\Omega$, LS Top-Modes 12, 13


FREQUENCY (Hz) Figure 11.


FREQUENCY (Hz) Figure 13.

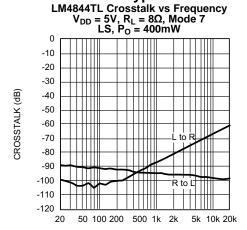
LM4844TL THD+N vs Output Power V_{DD} = 3V, R_L = 32 Ω , Mode 9 HP, f = 1kHz, 0dB Gain


OUTPUT POWER (W) Figure 10.

LM4844TL PSRR vs Frequency $V_{DD} = 3V$, $R_L = 8\Omega$, LS Top-Modes 12, 13 Bottom-Modes 2, 3, 7, 8

FREQUENCY (Hz) Figure 12.

LM4844TL PSRR vs Frequency V_{DD} = 3V, R_L = 32 Ω , HP Top-Modes 13, 14



FREQUENCY (Hz)

Figure 14.

Typical Performance Characteristics (continued)

FREQUENCY (Hz) Figure 15.

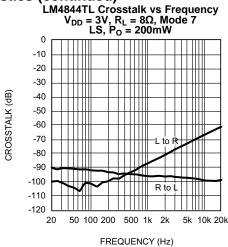
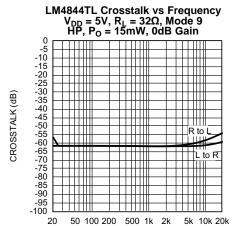



Figure 16.

FREQUENCY (Hz) Figure 17.

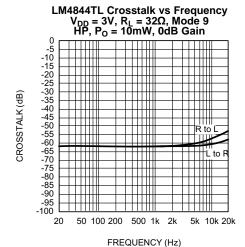
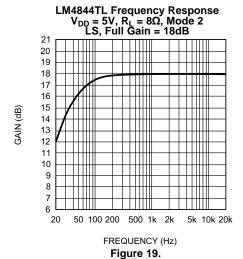



Figure 18.

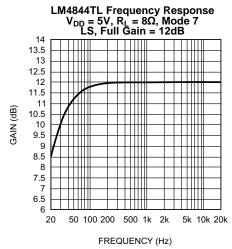
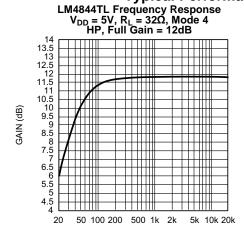



Figure 20.

Typical Performance Characteristics (continued)

FREQUENCY (Hz) Figure 21.

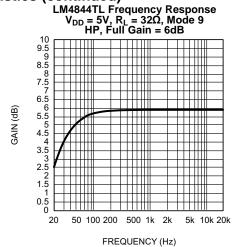


Figure 22.

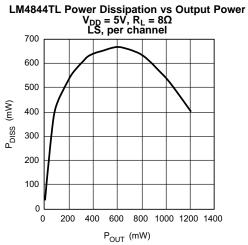
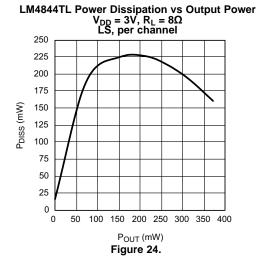



Figure 23.

LM4844TL Power Dissipation vs Output Power V_{DD} = 3V, R_L = 32 Ω OCL HP, per channel

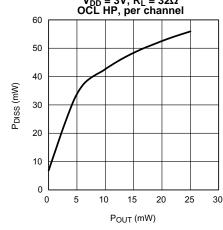


Figure 26.

LM4844TL Power Dissipation vs Output Power V_{DD} = 5V, R_L = 8 Ω OCL HP, per channel

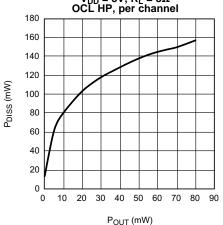
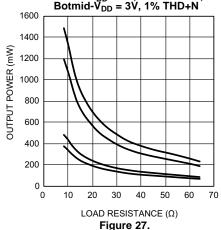
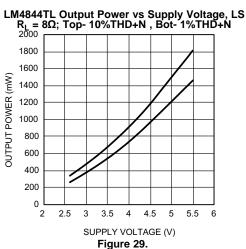


Figure 25.

Typical Performance Characteristics (continued)


LM4844TL Output Power vs Load Resistance, LS


Top- V_{DD} = 5V, 10% THD+N; Topmid- V_{DD} = 5V, 1%THD+N

Botmid- V_{DD} = 3V, 10% THD+N;

Botmid- V_{DD} = 3V, 1% THD+N

Botmid- V_{DD} = 3V, 1% THD+N

LM4844TL Output Power vs Load Resistance, HP Top- V_{DD} = 5V, 10% THD+N; Topmid- V_{DD} = 5V, 1%THD+N Botmid- V_{DD} = 3V, 10% THD+N; Botmid- V_{DD} = 3V, 1% THD+N

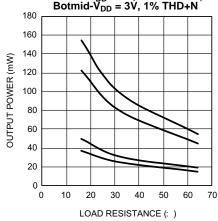


Figure 28.

LM4844TL Output Power vs Supply Voltage, HP R_L = 32Ω; Top- 10%THD+N, Bot- 1%THD+N

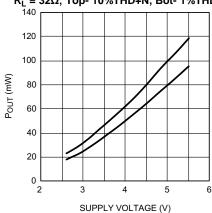


Figure 30.

APPLICATION INFORMATION

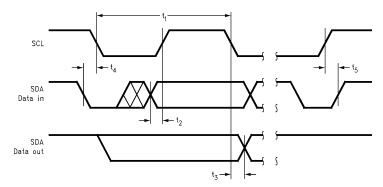


Figure 31. I²C Timing Diagram

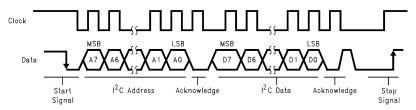


Figure 32. I²C Bus Format

Table 1. Chip Address

	A7	A6	A5	A4	А3	A2	A1	A0
Chip Address	1	1	1	1	1	0	EC	0
ADR = 0	1	1	1	1	1	0	0	0
ADR = 1	1	1	1	1	1	0	1	0

Table 2. Control Registers

	D7	D6	D5	D4	D3	D2	D1	D0
Mono Volume control	0	0	0	MD4	MD3	MD2	MD1	MD0
Left Volume control	0	1	LD5	LD4	LD3	LD2	LD1	LD0
Right Volume control	1	0	RD5	RD4	RD3	RD2	RD1	RD0
Mode control	1	1	CD5	0	CD3	CD2	CD1	CD0

Table 3. Mono Volume Control

MD4	MD3	MD2	MD1	MD0	Gain (dB)
0	0	0	0	0	-34.5
0	0	0	0	1	-33.0
0	0	0	1	0	-31.5
0	0	0	1	1	-30.0
0	0	1	0	0	-28.5
0	0	1	0	1	-27.0
0	0	1	1	0	-25.5
0	0	1	1	1	-24.0
0	1	0	0	0	-22.5
0	1	0	0	1	-21.0
0	1	0	1	0	-19.5
0	1	0	1	1	-18.0

Table 3. Mono Volume Control (continued)

MD4	MD3	MD2	MD1	MD0	Gain (dB)
0	1	1	0	0	-16.5
0	1	1	0	1	-15.0
0	1	1	1	0	-13.5
0	1	1	1	1	-12.0
1	0	0	0	0	-10.5
1	0	0	0	1	-9.0
1	0	0	1	0	-7.5
1	0	0	1	1	-6.0
1	0	1	0	0	-4.5
1	0	1	0	1	-3.0
1	0	1	1	0	-1.5
1	0	1	1	1	0.0
1	1	0	0	0	1.5
1	1	0	0	1	3.0
1	1	0	1	0	4.5
1	1	0	1	1	6.0
1	1	1	0	0	7.5
1	1	1	0	1	9.0
1	1	1	1	0	10.5
1	1	1	1	1	12.0

Table 4. Stereo Volume Control

LD4//RD4	LD3//RD3	LD2//RD2	LD1//RD1	LD0//RD0	Gain (dB)
0	0	0	0	0	-40.5
0	0	0	0	1	-39.0
0	0	0	1	0	-37.5
0	0	0	1	1	-36.0
0	0	1	0	0	-34.5
0	0	1	0	1	-33.0
0	0	1	1	0	-31.5
0	0	1	1	1	-30.0
0	1	0	0	0	-28.5
0	1	0	0	1	-27.0
0	1	0 1		0	-25.5
0	1	0	0 1		-24.0
0	1	1	0	0	-22.5
0	1	1	0	1	-21.0
0	1	1	1	0	-19.5
0	1	1	1	1	-18.0
1	0	0	0	0	-16.5
1	0	0	0	1	-15.0
1	0	0	1	0	-13.5
1	0	0	1	1	-12.0
1	0	1	0	0	-10.5
1	0	1	0	1	-9.0
1	0	1	1	0	-7.5
1	0	1	1	1	-6.0

Table 4. Stereo Volume Control (continued)

LD4//RD4	LD3//RD3	LD2//RD2	LD1//RD1	LD0//RD0	Gain (dB)
1	1	0	0	0	-4.5
1	1	0	0	1	-3.0
1	1	0	1	0	-1.5
1	1	0	1	1	0.0
1	1	1	0	0	1.5
1	1	1	0	1	3.0
1	1	1	1	0	4.5
1	1	1	1	1	6.0

Table 5. Mixer and Output Mode

Mode	CD3	CD2	CD1	CD0	Loudspeaker L	Loudspeaker R	Headphone L	Headphone R		
0	0	0	0	0	SD SD		SD	SD		
1	0	0	0	1	RESERVED					
2	0	0	1	0	2(G _M x M)	2(G _M x M)	MUTE	MUTE		
3	0	0	1	1	2(G _M x M)	2(G _M x M)	$(G_M \times M)$	(G _M x M)		
4	0	1	0	0	SD	SD	$(G_M \times M)$	(G _M x M)		
5	0	1	0	1		RESE	RVED			
6	0	1	1	0	RESERVED					
7	0	1	1	1	2(G _L x L) 2(G _R x R)		MUTE	MUTE		
8	1	0	0	0	2(G _L x L)	2(G _R x R)	(G _L x L)	(G _R x R)		
9	1	0	0	1	SD	SD	(G _L x L)	(G _R x R)		
10	1	0	1	0	RESERVED					
11	1	0	1	1		RESE	RVED			
12	1	1	0	0	$2(G_L \times L) + 2(G_M \times M)$	$2(G_R x R) + 2(G_M x M)$	MUTE	MUTE		
13	1	1	0	1	$2(G_L \times L) + 2(G_M \times M)$	2(G _R x R) + 2(G _M x M)	(G _L x L) + (G _M x M)	(G _R x R) + (G _M x M)		
14	1	1	1	0	SD	SD	(G _L x L) + (G _M x M)	(G _R x R) + (G _M x M)		
15	1	1	1	1	RESERVED					

M - M_{IN} Input Level

L - L_{IN} Input Level

R - R_{IN} Input Level

 G_M - Mono Volume Control Gain

G_L - Left Stereo Volume Control Gain

 G_R - Right Stereo Volume Control Gain

SD - Shutdown

MUTE - Mute

Table 6. Texas Instruments 3D Enhancement

LD5	0	Loudspeaker Texas Instruments 3D Off
	1	Loudspeaker Texas Instruments 3D On
RD5	0	Headphone Texas Instruments 3D Off
	1	Headphone Texas Instruments 3D On

Table 7. Wake-up Time Select

CD5	0	Fast Wake-up Setting
CDS	1	Slow Wake-up Setting

I²C COMPATIBLE INTERFACE

The LM4844 uses a serial bus, which conforms to the I²C protocol, to control the chip's functions with two wires: clock (SCL) and data (SDA). The clock line is uni-directional. The data line is bi-directional (open-collector). The maximum clock frequency specified by the I²C standard is 400kHz. In this discussion, the master is the controlling microcontroller and the slave is the LM4844.

The I^2C address for the LM4844 is determined using the ADR pin. The LM4844's two possible I^2C chip addresses are of the form 111110 X_1 0 (binary), where $X_1 = 0$, if ADR is logic low; and $X_1 = 1$, if ADR is logic high. If the I^2C interface is used to address a number of chips in a system, the LM4844's chip address can be changed to avoid any possible address conflicts.

The bus format for the I²C interface is shown in Figure 31. The bus format diagram is broken up into six major sections:

The "start" signal is generated by lowering the data signal while the clock signal is high. The start signal will alert all devices attached to the I²C bus to check the incoming address against their own address.

The 8-bit chip address is sent next, most significant bit first. The data is latched in on the rising edge of the clock. Each address bit must be stable while the clock level is high.

After the last bit of the address bit is sent, the master releases the data line high (through a pull-up resistor). Then the master sends an acknowledge clock pulse. If the LM4844 has received the address correctly, then it holds the data line low during the clock pulse. If the data line is not held low during the acknowledge clock pulse, then the master should abort the rest of the data transfer to the LM4844.

The 8 bits of data are sent next, most significant bit first. Each data bit should be valid while the clock level is stable high.

After the data byte is sent, the master must check for another acknowledge to see if the LM4844 received the data.

If the master has more data bytes to send to the LM4844, then the master can repeat the previous two steps until all data bytes have been sent.

The "stop" signal ends the transfer. To signal "stop", the data signal goes high while the clock signal is high. The data line should be held high when not in use.

I²C INTERFACE POWER SUPPLY PIN (I²CV_{DD})

The LM4844's I^2C interface is powered up through the I^2CV_{DD} pin. The LM4844's I^2C interface operates at a voltage level set by the I^2CV_{DD} pin which can be set independent to that of the main power supply pin V_{DD} . This is ideal whenever logic levels for the I^2C interface are dictated by a microcontroller or microprocessor that is operating at a lower supply voltage than the main battery of a portable system.

TEXAS INSTRUMENTS 3D ENHANCEMENT

The LM4844 features a 3D audio enhancement effect that widens the perceived soundstage from a stereo audio signal. The 3D audio enhancement improves the apparent stereo channel separation whenever the left and right speakers are too close to one another, due to system size constraints or equipment limitations.

An external RC network, shown in Figure 1, is required to enable the 3D effect. There are separate RC networks for both the stereo loudspeaker outputs as well as the stereo headphone outputs, so the 3D effect can be set independently for each set of stereo outputs.

The amount of the 3D effect is set by the R_{3D} resistor. Decreasing the value of R_{3D} will increase the 3D effect. The C_{3D} capacitor sets the low cutoff frequency of the 3D effect. Increasing the value of C_{3D} will decrease the low cutoff frequency at which the 3D effect starts to occur, as shown by Equation 1.

$$f_{3D(-3dB)} = 1 / 2\pi(R_{3D})(C_{3D})$$
 (1)

Activating the 3D effect will cause an increase in gain by a multiplication factor of $(1 + 20k\Omega/R_{3D})$. Setting R_{3D} to $20k\Omega$ will result in a gain increase by a multiplication factor of $(1+20k\Omega/20k\Omega)=2$ or 6dB whenever the 3D effect is activated. The volume control can be programmed through the I^2C compatible interface to compensate for the extra 6dB increase in gain. For example, if the stereo volume control is set at 0dB (11011 from Table 4) before the 3D effect is activated, the volume control should be programmed to -6dB (10111 from Table 4) immediately after the 3D effect has been activated. Setting $R_{3D}=20k\Omega$ and $C_{3D}=0.22\mu F$ allows the LM4844 to produce a pronounced 3D effect with a minimal increase in output noise.

OUTPUT CAPACITOR-LESS (OCL) OPERATION AND LAYOUT TECHNIQUES FOR OPTIMUM CROSSTALK

The LM4844's OCL headphone architecture eliminates output coupling capacitors. Unless the headphone is in shutdown, the OCL output will be at a bias voltage of ½V_{DD}, which is applied to the stereo headphone jack's sleeve. This voltage matches the bias voltage present on LHP and RHP outputs that drive the headphones. The headphones operate in a manner similar to a bridge-tied load (BTL). Because the same DC voltage is applied to both headphone speaker terminals there is no net DC current flow through the speaker. AC current flows through a headphone speaker as an audio signal's output amplitude increases on the speaker's terminal.

The headphone jack's sleeve is not connected to circuit ground when used in OCL mode. Using the headphone output jack as a line-level output will place the LM4844's ½V_{DD} bias voltage on a plug's sleeve connection.

Since the LHP and RHP outputs of the LM4844 share the OCL output as a reference, certain layout techniques should be used in order to achieve optimum crosstalk performance. The crosstalk will depend on the parasitic resistance of the trace connecting the LM4844 OCL output to the headphone jack sleeve and on the load resistance value. Since the load resistance is often predetermined, it is advisable to use a trace that is as short and as wide as possible. Reasonable application of this layout technique will result in crosstalk values of 60dB, as specified in the electrical characteristics table.

BRIDGE CONFIGURATION EXPLANATION

The LM4844 consists of two sets of bridged-tied amplifier pairs that drive the left loudspeaker (LLS) and the right loudspeaker (RLS). For this discussion, only the LLS bridge-tied amplifier pair will be referred to. The LM4844 drives a load, such as a speaker, connected between outputs, LLS+ and LLS-. In the LLS amplifier block, the output of the amplifier that drives LLS- serves as the input to the unity gain inverting amplifier that drives LLS+.

This results in both amplifiers producing signals identical in magnitude, but 180° out of phase. Taking advantage of this phase difference, a load is placed between LLS- and LLS+ and driven differentially (commonly referred to as 'bridge mode'). This results in a differential or BTL gain of:

$$A_{VD} = 2(R_f / R_i) = 2$$
 (2)

Both the feedback resistor, R_f, and the input resistor, R_i, are internally set.

Bridge mode amplifiers are different from single-ended amplifiers that drive loads connected between a single amplifier's output and ground. For a given supply voltage, bridge mode has a distinct advantage over the single-ended configuration: its differential output doubles the voltage swing across the load. Theoretically, this produces four times the output power when compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited and that the output signal is not clipped.

Another advantage of the differential bridge output is no net DC voltage across the load. This is accomplished by biasing LLS- and LLS+ outputs at half-supply. This eliminates the coupling capacitor that single supply, single-ended amplifiers require. Eliminating an output coupling capacitor in a typical single-ended configuration forces a single-supply amplifier's half-supply bias voltage across the load. This increases internal IC power dissipation and may permanently damage loads such as speakers.

POWER DISSIPATION

Power dissipation is a major concern when designing a successful single-ended or bridged amplifier.

A direct consequence of the increased power delivered to the load by a bridge amplifier is higher internal power dissipation. The LM4844 has 2 sets of bridged-tied amplifier pairs driving LLS and RLS. The maximum internal power dissipation operating in the bridge mode is twice that of a single-ended amplifier. From Equation 3 and Equation 4, assuming a 5V power supply and an 8Ω load, the maximum power dissipation for LLS and RLS is 634mW per channel.

 $P_{DMAX-LLS} = 4(V_{DD})^2/(2\pi^2 R_L)$: Bridged

(3)

$$P_{DMAX-RLS} = 4(V_{DD})^2/(2\pi^2 R_L)$$
: Bridged

(4)

The LM4844 also has a pair of single-ended amplifiers driving LHP and RHP. The maximum internal power dissipation for ROUT and LOUT is given by Equation 5 and Equation 6. FromEquation 5 and Equation 6, assuming a 5V power supply and a 32Ω load, the maximum power dissipation for LOUT and ROUT is 40mW per channel.

$$P_{DMAX-LHP} = (V_{DD})^2 / (2\pi^2 R_L): Single-ended$$
 (5)

$$P_{\text{DMAX,RHP}} = (V_{\text{DD}})^2 / (2\pi^2 R_{\text{I}}): \text{Single-ended}$$
 (6)

The maximum internal power dissipation of the LM4844 occurs during output modes 3, 8, and 13 when both loudspeaker and headphone amplifiers are simultaneously on; and is given by Equation 7.

$$P_{DMAX-TOTAL} = P_{DMAX-LLS} + P_{DMAX-RLS} + P_{DMAX-LHP} + P_{DMAX-RHP}$$
(7)

The maximum power dissipation point given by Equation 7 must not exceed the power dissipation given by Equation 8:

$$P_{DMAX}' = (T_{JMAX} - T_A) / \theta_{JA}$$
(8)

The LM4844's $T_{JMAX} = 150^{\circ}C$. In the TL package, the LM4844's θ_{JA} is 62°C/W. At any given ambient temperature T_A , use Equation 8 to find the maximum internal power dissipation supported by the IC packaging. Rearranging Equation 8 and substituting $P_{DMAX-TOTAL}$ for P_{DMAX} ' results in Equation 9. This equation gives the maximum ambient temperature that still allows maximum stereo power dissipation without violating the LM4844's maximum junction temperature.

$$T_{A} = T_{JMAX} - P_{DMAX-TOTAL} \theta_{JA}$$
(9)

For a typical application with a 5V power supply, stereo 8Ω loudspeaker load, and the stereo 32Ω headphone load, the maximum ambient temperature that allows maximum stereo power dissipation without exceeding the maximum junction temperature is approximately 100° C for the TL package.

$$T_{\text{JMAX}} = P_{\text{DMAX-TOTAL}} \theta_{\text{JA}} + T_{\text{A}} \tag{10}$$

Equation 10 gives the maximum junction temperature T_{JMAX} . If the result violates the LM4844's 150°C, reduce the maximum junction temperature by reducing the power supply voltage or increasing the load resistance. Further allowance should be made for increased ambient temperatures.

The above examples assume that a device is a surface mount part operating around the maximum power dissipation point. Since internal power dissipation is a function of output power, higher ambient temperatures are allowed as output power or duty cycle decreases. If the result of Equation 7 is greater than that of Equation 8, then decrease the supply voltage, increase the load impedance, or reduce the ambient temperature. If these measures are insufficient, a heat sink can be added to reduce θ_{JA} . The heat sink can be created using additional copper area around the package, with connections to the ground pin(s), supply pin and amplifier output pins. External, solder attached SMT heatsinks such as the Thermalloy 7106D can also improve power dissipation. When adding a heat sink, the θ_{JA} is the sum of θ_{JC} , θ_{CS} , and θ_{SA} . (θ_{JC} is the junction-to-case thermal impedance, θ_{CS} is the case-to-sink thermal impedance, and θ_{SA} is the sink-to-ambient thermal impedance.) Refer to the Typical Performance Characteristics curves for power dissipation information at lower output power levels.

POWER SUPPLY BYPASSING

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. Applications that employ a 5V regulator typically use a 10µF in parallel with a 0.1µF filter capacitors to stabilize the regulator's output, reduce noise on the supply line, and improve the supply's transient response. However, their presence does not eliminate the need for a local 1.0µF tantalum bypass capacitance connected between the LM4844's supply pins and ground. Keep the length of leads and traces that connect capacitors between the LM4844's power supply pin and ground as short as possible.

SELECTING EXTERNAL COMPONENTS

Input Capacitor Value Selection

Amplifying the lowest audio frequencies requires a high value input coupling capacitor (C_i in Figure 1). In many cases, however, the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 50Hz. Applications using speakers with this limited frequency response reap little improvement; by using a large input capacitor.

The internal input resistor (R_i) and the input capacitor (C_i) produce a high pass filter cutoff frequency that is found using Equation 11.

$$f_{c} = 1 / (2\pi R_{i}C_{i}) \tag{11}$$

As an example when using a speaker with a low frequency limit of 50Hz and $R_i = 20k\Omega$, C_i , using Equation 11 is 0.19 μ F. The 0.22 μ F C_i shown in Figure 33 allows the LM4844 to drive high efficiency, full range speaker whose response extends below 40Hz.

Bypass Capacitor Value Selection

Besides minimizing the input capacitor size, careful consideration should be paid to value of C_B , the capacitor connected to the BYPASS pin. Since C_B determines how fast the LM4844 settles to quiescent operation, its value is critical when minimizing turn-on pops. The slower the LM4844's outputs ramp to their quiescent DC voltage (nominally $V_{DD}/2$), the smaller the turn-on pop. Choosing C_B equal to $2.2\mu F$ along with a small value of C_i (in the range of $0.1\mu F$ to $0.39\mu F$), produces a click-less and pop-less shutdown function. As discussed above, choosing C_i no larger than necessary for the desired bandwidth helps minimize clicks and pops. C_B 's value should be in the range of 5 times to 10 times the value of C_i . This ensures that output transients are eliminated when the LM4844 transitions in and out of shutdown mode. Connecting a $2.2\mu F$ capacitor, C_B , between the BYPASS pin and ground improves the internal bias voltage's stability and improves the amplifier's PSRR. The PSRR improvements increase as the bypass pin capacitor value increases. However, increasing the value of C_B will increase wake-up time. The selection of bypass capacitor value, C_B , depends on desired PSRR requirements, click and pop performance, wake-up time, system cost, and size constraints.

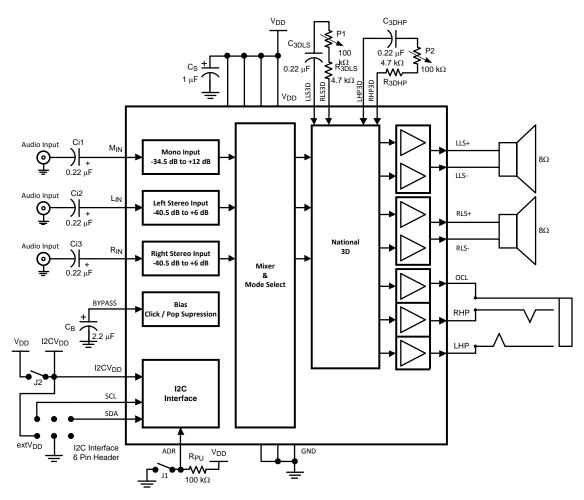


Figure 33. Reference Design Board Schematic

Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

Demonstration Board Layout

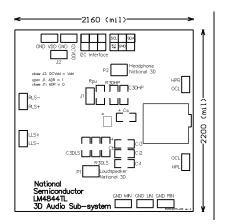


Figure 34. Recommended YZR PCB Layout: Silkscreen Layer

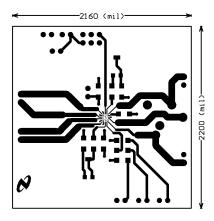


Figure 35. Recommended YZR PCB Layout: Top Layer

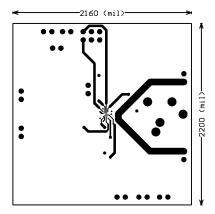


Figure 36. Recommended YZR PCB Layout: Mid Layer 1

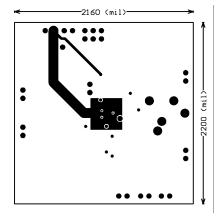


Figure 37. Recommended YZR PCB Layout: Mid Layer 2

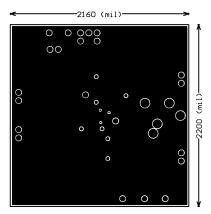


Figure 38. Recommended YZR PCB Layout: Bottom Layer

Copyright © 2005–2013, Texas Instruments Incorporated

Revision History

Rev	Date	Description
1.1	06/01/06	Initial WEB.
1.2	07/20/07	Edited the Control Interface Electrical Characteristics tables.
1.3	08/07/07	Changed the I ² CVdd from 1.8V into 1.7V (under the Operating Ratings).
1.4	08/23/07	Fixed one place of typo.
D	04/05/13	Changed layout of National Data Sheet to TI format

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LM4844TL/NOPB	ACTIVE	DSBGA	YZR	30	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	GF3	Samples
LM4844TLX/NOPB	ACTIVE	DSBGA	YZR	30	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	GF3	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

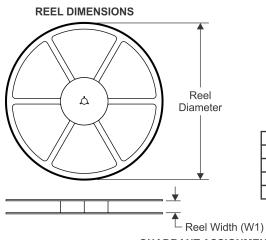
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

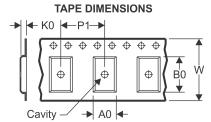
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

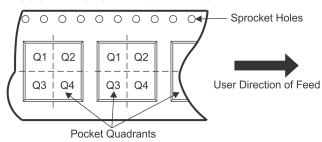
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

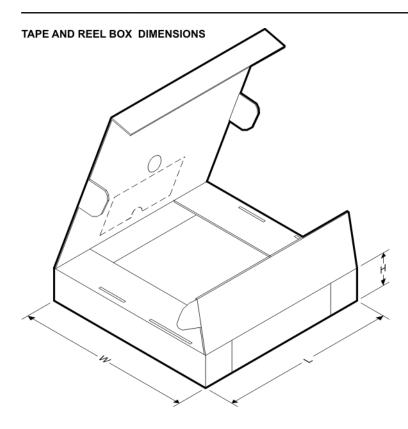

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

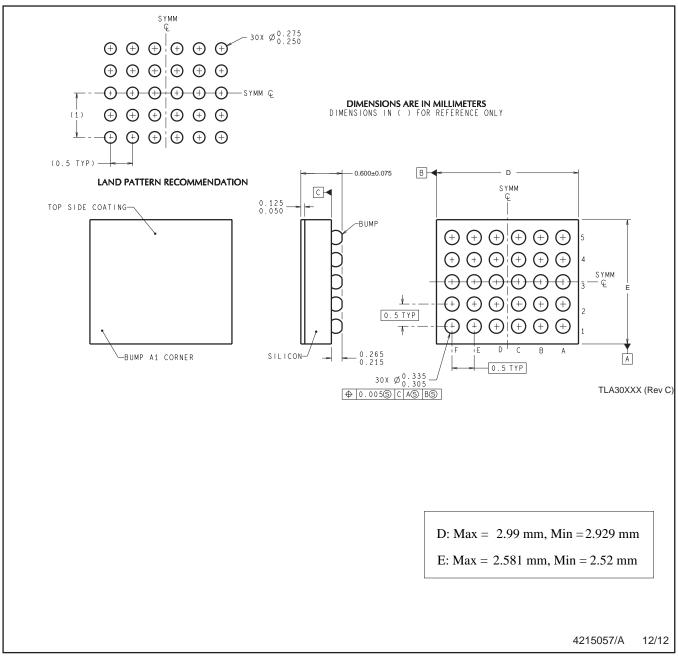
www.ti.com 8-Apr-2013


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4844TL/NOPB	DSBGA	YZR	30	250	178.0	8.4	2.74	3.15	0.76	4.0	8.0	Q1
LM4844TLX/NOPB	DSBGA	YZR	30	3000	178.0	8.4	2.74	3.15	0.76	4.0	8.0	Q1

www.ti.com 8-Apr-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4844TL/NOPB	DSBGA	YZR	30	250	210.0	185.0	35.0
LM4844TLX/NOPB	DSBGA	YZR	30	3000	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>