

Quad Line Driver with NAND Enabled Three-State Outputs

The Motorola AM26LS31 is a quad differential line driver intended for digital data transmission over balanced lines. It meets all the requirements of EIA–422 Standard and Federal Standard 1020.

The AM26LS31 provides an enable/disable function common to all four drivers as opposed to the split enables on the MC3487 EIA–422 driver.

The high impedance output state is assured during power down.

- Full EIA-422 Standard Compliance
- Single +5.0 V Supply
- Meets Full V $_{O}$ = 6.0 V, V $_{CC}$ = 0 V, I $_{O}$ < 100 μA Requirement
- Output Short Circuit Protection
- Complementary Outputs for Balanced Line Operation
- High Output Drive Capability
- Advanced LS Processing
- PNP Inputs for MOS Compatibility

Representative Block Diagrams Non-Inverting Output Controls Enable Enable

TRUTH TABLE					
Input	Control Inputs (E/E)	Non-Inverting Output	Inverting Output		
Н	H/L	Н	L		
L	H/L	L	Н		
Х	L/H	Z	Z		

L = Low Logic State

X = Irrelevant

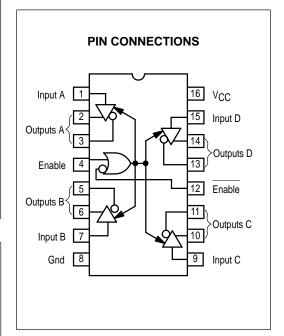
H = High Logic State

Z = Third-State (High Impedance)

* Note that the surface mount MC26LS31D device uses the same die as in the plastic DIP AM26LS31DC device, but with an MC prefix to prevent confusion with the package suffix.

AM26LS31

QUAD EIA-422 LINE DRIVER WITH THREE-STATE OUTPUTS


SEMICONDUCTOR TECHNICAL DATA

D SUFFIXPLASTIC PACKAGE
CASE 751B
(SO–16)

PC SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

Device	Operating Temperature Range	Package
AM26LS31PC	$T_A = 0 \text{ to } +70^{\circ}\text{C}$	Plastic DIP
MC26LS31D*	1A = 0 10 +70 C	SO-16

AM26LS31

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	VCC	8.0	Vdc
Input Voltage	٧ _I	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to + 70	°C
Operating Junction Temperature Range	TJ	150	°C
Storage Temperature Range	T _{stg}	- 65 to + 150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply $4.75~\text{V} \leqslant \text{V}_{CC} \leqslant 5.25~\text{V}$ and $0^{\circ}\text{C} \leqslant \text{T}_{A} \leqslant 70^{\circ}\text{C}$. Typical values measured at VCC = 5.0 V, and TA = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage – Low Logic State	VIL	-	-	0.8	Vdc
Input Voltage – High Logic State	VIH	2.0	-	-	Vdc
Input Current – Low Logic State (V _{IL} = 0.4 V)	Iμ	-	_	- 360	μА
Input Current – High Logic State (V _{IH} = 2.7 V) (V _{IH} = 7.0 V)	lін	- -	_ _	+ 20 + 100	μА
Input Clamp Voltage (I _{IK} = -18 mA)	VIK	-	_	– 1.5	V
Output Voltage – Low Logic State (IOL = 20 mA)	VOL	-	_	0.5	V
Output Voltage – High Logic State (IOH = -20 mA)	VOH	2.5	_	_	V
Output Short Circuit Current (V _{IH} = 2.0 V) Note 1	los	- 30	_	- 150	mA
Output Leakage Current – Hi–Z State_ (V _{OL} = 0.5 V, V _{IL} (E) = 0.8 V, V _{IH} (E) = 2.0 V) (V _{OH} = 2.5 V, V _{IL} (E) = 0.8 V, V _{IH} (E) = 2.0 V)	I _O (Z)	- -	_ _	- 20 + 20	μА
Output Leakage Current – Power OFF (V _{OH} = 6.0 V, V _{CC} = 0 V) (V _{OL} = -0.25 V, V _{CC} = 0 V)	IO(off)	- -	_ _	+ 100 - 100	μА
Output Offset Voltage Difference, Note 2	V _{OS} - V _{OS}	-	-	± 0.4	V
Output Differential Voltage, Note 2	V _{OD}	2.0	-	-	V
Output Differential Voltage Difference, Note 2	lΔV _{OD} l	-	_	± 0.4	V
Power Supply Current (Output Disabled) Note 3	ICCX	-	60	80	mA

NOTES: 1. Only one output may be shorted at a time.
2. See EIA Specification EIA-422 for exact test conditions.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times High to Low Output Low to High Output	tPHL tPLH	- -	- -	20 20	ns
Output Skew		-	_	6.0	ns
Propagation Delay – Control to Output $ \begin{array}{l} (C_L=10~\text{pF},~R_L=75~\Omega~\text{to Gnd})\\ (C_L=10~\text{pF},~R_L=180~\Omega~\text{to V}_{CC})\\ (C_L=30~\text{pF},~R_L=75~\Omega~\text{to Gnd})\\ (C_L=30~\text{pF},~R_L=180~\Omega~\text{to V}_{CC}) \end{array} $	[†] PHZ(E) [†] PLZ(E) [†] PZH(E) [†] PZL(E)			30 35 40 45	ns

^{3.} Circuit in three-state condition.

Figure 1. Three-State Enable Test Circuit and Waveforms

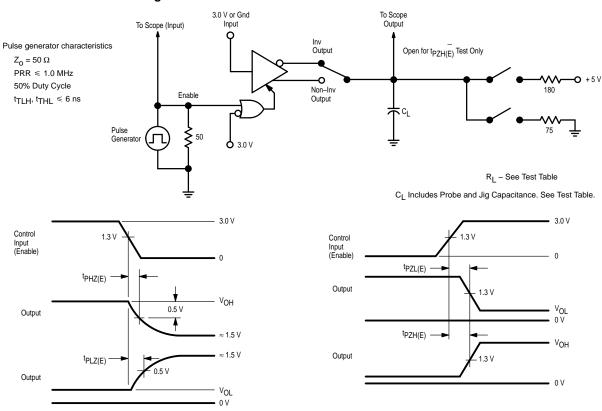
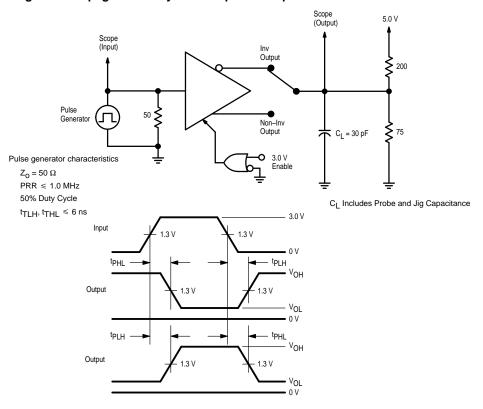
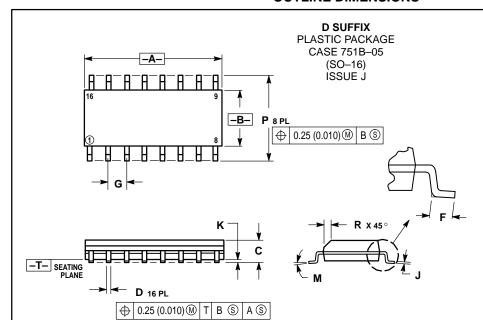
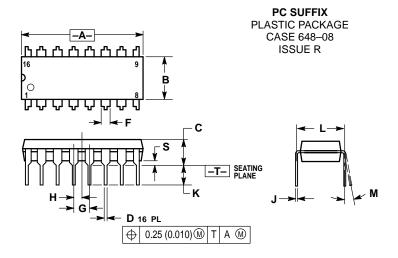




Figure 2. Propagation Delay Times Input to Output Waveforms and Test Circuit

AM26LS31


OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27 BSC		0.050 BSC		
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050 BSC		1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 **JAPAN**: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

