

INSULATED GATE BIPOLAR TRANSISTOR

Features

- Low $V_{CE(ON)}$ Trench IGBT Technology
- Low Switching Losses
- Maximum Junction Temperature 175 °C
- Short Circuit Rated
- Square RBSOA
- Positive $V_{CE(ON)}$ Temperature Coefficient
- Tight Parameter Distribution

G	C	E
Gate	Collector	Emitter

Benefits

- High Efficiency in a Wide Range of Applications
- Suitable for a Wide Range of Switching Frequencies due to Low $V_{CE(ON)}$ and Low Switching Losses
- Rugged Transient Performance for Increased Reliability
- Excellent Current Sharing in Parallel Operation

Applications

- UPS
- HEV Inverters
- Welding

Base part number	Package Type	Standard Pack		Orderable part number
		Form	Quantity	
IRGC4067B	Die on Film	Wafer	1	IRGC4067B

Mechanical Parameters

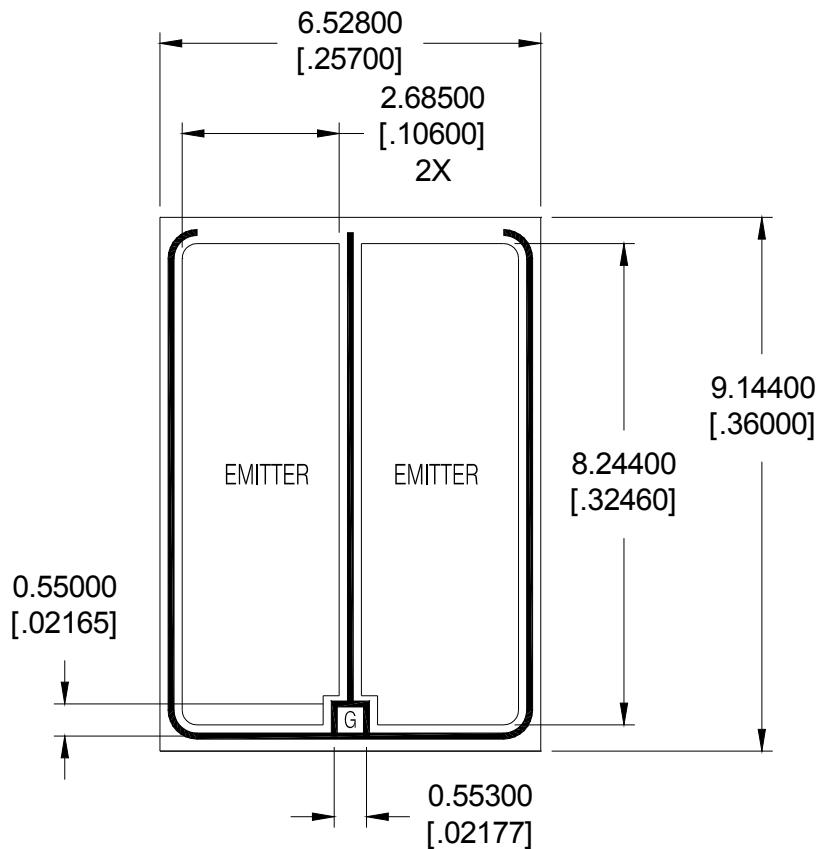
Die Size	6.528 x 9.144	mm ²
Minimum Street Width	75	μm
Emiter Pad Size (Included Gate Pad)	See Die Drawing	
Gate Pad Size	0.55 x 0.553	mm ²
Area Total / Active	59.69/ 44	
Thickness	70	μm
Wafer Size	150	mm
Flat Position	0	Degrees
Maximum-Possible Chips per Wafer	250pcs.	
Passivation Front side	Silicon Nitride	
Front Metal	Al (4μm), Si (1%)	
Backside Metal	Al (1kA°), Ti (1kA°), Ni (4kA°), Ag (6kA°)	
Die Bond	Electrically conductive epoxy or solder	
Reject Ink Dot Size	0.25mm min (black, center)	
Recommended Storage Environment	Store in original container, in dry Nitrogen, < 6 months at an ambient temperature of 23°C	
Reference Packaged Part	IRGPS4067DPbF	

Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, $T_J=25^\circ\text{C}$	600	V
I_C	DC Collector Current	①	A
I_{LM}	Clamped Inductive Load Current ④	480	A
V_{GE}	Gate Emitter Voltage	± 20	V
T_J, T_{STG}	Operating Junction and Storage Temperature	-40 to +175	$^\circ\text{C}$

Static Characteristics (Tested on wafers) . $T_J=25^\circ\text{C}$

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600	—	—	V	$V_{GE} = 0\text{V}, I_C = 500\mu\text{A}$ ⑤
$V_{CE(\text{sat})}$	Collector-to-Emitter Saturated Voltage	—	1.7	2.05		$V_{GE} = 15\text{V}, I_C = 120\text{A}, T_J = 25^\circ\text{C}$
$V_{GE(\text{th})}$	Gate-Emitter Threshold Voltage	4.0	—	6.5		$I_C = 5.6\text{mA}, V_{GE} = V_{CE}$
I_{CES}	Zero Gate Voltage Collector Current	—	1.0	50		$V_{CE} = 600\text{V}, V_{GE} = 0\text{V}$
I_{GES}	Gate Emitter Leakage Current	—	—	± 400	nA	$V_{CE} = 0\text{V}, V_{GE} = \pm 20\text{V}$


Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{CE(\text{sat})}$	Collector-to-Emitter Saturated Voltage	—	1.7	2.05	V	$V_{GE} = 15\text{V}, I_C = 120\text{A}, T_J = 25^\circ\text{C}$
		—	2.2	—		$V_{GE} = 15\text{V}, I_C = 120\text{A}, T_J = 175^\circ\text{C}$
SCSOA	Short Circuit Safe Operating Area	5	—	—	μs	$V_{GE} = 15\text{V}, V_{CC} = 400\text{V}$, ② $R_G = 4.7\Omega, V_P \leq 600\text{V}, T_J = 150^\circ\text{C}$
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE				$T_J = 175^\circ\text{C}, I_C = 480\text{A}$ $V_{CC} = 480\text{V}, V_P \leq 600\text{V}$ $R_G = 4.7\Omega, V_{GE} = +20\text{V} \text{ to } 0\text{V}$
C_{iss}	Input Capacitance	—	7750	—		$V_{GE} = 0\text{V}$
C_{oss}	Output Capacitance	—	550	—	pF	$V_{CE} = 30\text{V}$
C_{rss}	Reverse Transfer Capacitance	—	225	—		$f = 1.0\text{MHz}$
Q_g	Total Gate Charge (turn-on)	—	240	—		$I_C = 200\text{A}$ ⑥
Q_{ge}	Gate-to-Emitter Charge (turn-on)	—	69	—	nC	$V_{GE} = 15\text{V}$
Q_{gc}	Gate-to-Collector Charge (turn-on)	—	90	—		$V_{CC} = 400\text{V}$

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	Parameter	Min.	Typ.	Max.	Units	Conditions ③
$t_{d(on)}$	Turn-On delay time	—	50	—	ns	$I_C = 120\text{A}, V_{CC} = 400\text{V}$ $R_G = 4.7\Omega, V_{GE} = 15\text{V}$ $T_J = 25^\circ\text{C}$
t_r	Rise time	—	130	—		
$t_{d(off)}$	Turn-Off delay time	—	160	—		
t_f	Fall time	—	130	—		
$t_{d(on)}$	Turn-On delay time	—	50	—		$I_C = 120\text{A}, V_{CC} = 400\text{V}$ $R_G = 4.7\Omega, V_{GE} = 15\text{V}$ $T_J = 175^\circ\text{C}$
t_r	Rise time	—	130	—		
$t_{d(off)}$	Turn-Off delay time	—	200	—		
t_f	Fall time	—	150	—		

Die Drawing

NOTES:

1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

2. CONTROLLING DIMENSION: MILLIMETERS

3. LETTER DESIGNATION:

S = SOURCE SK = SOURCE KELVIN E = Emitter

G = Gate IS = CurrentSense

4. DIMENSIONAL TOLERANCES:

BONDING PADS: < 0.635 TOLERANCE = +/- 0.013

WIDTH < [.0250] TOLERANCE = +/- [.0005]

& > 0.635 TOLERANCE = +/- 0.025

LENGTH > [.0250] TOLERANCE = +/- [.0010]

OVERALL DIE: < 1.270 TOLERANCE = +/- 0.102

WIDTH < [.050] TOLERANCE = +/- [.004]

& > 1.270 TOLERANCE = +/- 0.203

LENGTH > [.050] TOLERANCE = +/- [.008]

5. DIE THICKNESS = 0.070 [.0028] TOL: = 0.007 [.0003]

REFERENCE: IRGC4067B
IRGPS4067PBF
IRGPS4067DPBF
AUIRGPS4067D

Notes:

- ① The current in the application is limited by $T_{J\text{Max}}$ and the thermal properties of the assembly.
- ② Not subject to production test- Verified by design / characterization.
- ③ Values influenced by parasitic L and C in measurement.
- ④ $V_{CC} = 80\%$ (V_{CES}), $V_{GE} = 20V$, $L = 9.0\mu\text{H}$, $R_G = 4.7\Omega$.
- ⑤ Refer to AN-1086 for guidelines for measuring $V_{(BR)CES}$ safely
- ⑥ Die Level Characterization.

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office. <http://die.irf.com>

Revision History

Date	Comments
07/02/2015	<ul style="list-style-type: none">• Updated IFX logo on all pages• Removed Vcesat @ $I_C = 10A$, $V_{GE} = 15V$ on page 2.• Added Vcesat @ $I_C = 170A$, $V_{GE} = 15V$ on page 2.

International
IR Rectifier

AN INFINEON TECHNOLOGIES COMPANY

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit <http://www.irf.com/whoto-call/>