

MCH12140, MCK12140

Phase-Frequency Detector

The MCH/K12140 is a phase frequency-detector intended for phase-locked loop applications which require a minimum amount of phase and frequency difference at lock. When used in conjunction with the MC12147, MC12148 or MC12149 VCO, a high bandwidth PLL can be realized. The device is functionally compatible with the MC12040 phase-frequency detector, however the MOSAIC III™ process is used to push the maximum frequency to 800 MHz and significantly reduce the dead zone of the detector. When the Reference (R) and VCO (V) inputs are unequal in frequency and/or phase, the differential UP (U) and DOWN (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO.

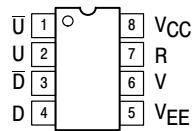
The device is packaged in a small outline, surface mount 8-lead SOIC package. There are two versions of the device to provide I/O compatibility to the two existing ECL standards. The MCH12140 is compatible with MECL 10H™ logic levels while the MCK12140 is compatible to 100 K ECL logic levels. This device can also be used in +5.0 V systems. Please refer to Application Note AN1406/D, "Designing with PECL (ECL at +5.0 V)" for more information.

Features

- 800 MHz Typical Bandwidth
- Small Outline 8-Lead SOIC Package
- 75 kΩ Internal Input Pulldown Resistors
- >1000 V ESD Protection

For proper operation, the input edge rate of the R and V inputs should be less than 5.0 ns.

ON Semiconductor™


<http://onsemi.com>

MARKING DIAGRAM

x = H or K
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Package	Shipping
MCH12140D	SO-8	98 Units/Rail
MCH12140DR2	SO-8	2500 Tape & Reel
MCK12140D	SO-8	98 Units/Rail
MCK12140DR2	SO-8	2500 Tape & Reel

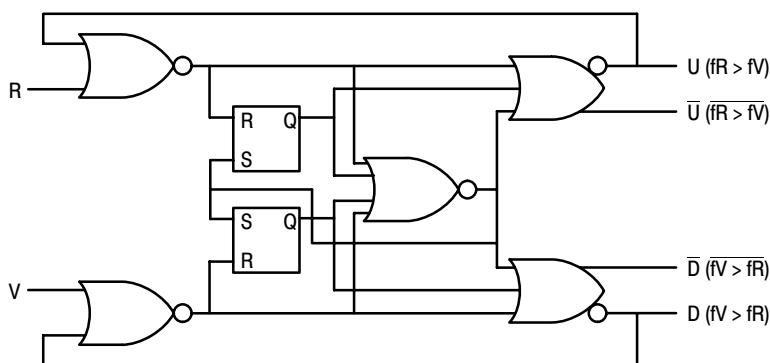


Figure 1. Logic Diagram

MCH12140, MCK12140

TRUTH TABLE*

Input		Output				Input		Output			
R	V	U	D	\bar{U}	\bar{D}	R	V	U	D	\bar{U}	\bar{D}
0	0	X	X	X	X	1	1	0	0	1	1
0	1	X	X	X	X	1	0	0	0	1	1
1	1	X	X	X	X	1	1	0	1	1	0
0	1	X	X	X	X	1	0	0	1	1	0
1	1	1	0	0	1	1	1	0	1	1	0
0	1	1	0	0	1	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	1	1	0
1	0	1	0	0	1	1	1	0	0	1	1

*This is not strictly a functional table; i.e., it does not cover all possible modes of operation. However, it gives a sufficient number of tests to ensure that the device will function properly.

H-SERIES DC CHARACTERISTICS ($V_{EE} = V_{EE}(\text{min}) - V_{EE}(\text{max})$; $V_{CC} = \text{GND}$ (Note 1), unless otherwise noted.)

Characteristic	Symbol	-40°C		0°C		25°C		70°C		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Output HIGH Voltage	V_{OH}	-1080	-890	-1020	-840	-980	-810	-910	-720	mV
Output LOW Voltage	V_{OL}	-1950	-1650	-1950	-1630	-1950	-1630	-1950	-1595	mV
Input HIGH Voltage	V_{IH}	-1230	-890	-1170	-840	-1130	-810	-1060	-720	mV
Input LOW Voltage	V_{IL}	-1950	-1500	-1950	-1480	-1950	-1480	-1950	-1445	mV
Input LOW Current	I_{IL}	0.5	-	0.5	-	0.5	-	0.3	-	μA

K-SERIES DC CHARACTERISTICS ($V_{EE} = V_{EE}(\text{min}) - V_{EE}(\text{max})$; $V_{CC} = \text{GND}$ (Note 2), unless otherwise noted.)

Characteristic	Symbol	-40°C			0°C to 70°C			Unit	Condition
		Min	Typ	Max	Min	Typ	Max		
Output HIGH Voltage	V_{OH}	-1085	-1005	-880	-1025	-955	-880	mV	$V_{IN} = V_{IH}(\text{max})$ or $V_{IL}(\text{min})$
Output LOW Voltage	V_{OL}	-1830	-1695	-1555	-1810	-1705	-1620	mV	
Output HIGH Voltage	V_{OHA}	-1095	-	-	-1035	-	-	mV	$V_{IN} = V_{IH}(\text{min})$ or $V_{IL}(\text{max})$
Output LOW Voltage	V_{OLA}	-	-	-1555	-	-	-1610	mV	
Input HIGH Voltage	V_{IH}	-1165	-	-880	-1165	-	-880	mV	-
Input LOW Voltage	V_{IL}	-1810	-	-1475	-1810	-	-1475	mV	-
Input LOW Current	I_{IL}	0.5	-	-	0.5	-	-	μA	$V_{IN} = V_{IL}(\text{max})$

MAXIMUM RATINGS (Note 3)

Rating				Symbol	Value	Unit
Power Supply ($V_{CC} = 0 \text{ V}$)				V_{EE}	-8.0 to 0	VDC
Input Voltage ($V_{CC} = 0 \text{ V}$)				V_I	0 to -6.0	VDC
Output Current Continuous Surge				I_{out}	50 100	mA
Operating Temperature Range				T_A	-40 to +70	°C
Operating Range (Notes 3 and 4)				V_{EE}	-5.7 to -4.2	V

NOTE: NOTE: ESD data available upon request.

- 10H circuits are designed to meet the DC specifications shown in the table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V except where otherwise specified on the individual data sheets.
- This table replaces the three tables traditionally seen in ECL 100 K data books. The same DC parameter values at $V_{EE} = -4.5 \text{ V}$ now apply across the full V_{EE} range of -4.2 V to -5.5 V. Outputs are terminated through a 50 Ω resistor to -2.0 V except where otherwise specified on the individual data sheets.
- Absolute maximum rating, beyond which, device life may be impaired, unless otherwise specified on an individual data sheet.
- Parametric values specified at: H-Series: -4.20 V to -5.50 V
K-Series: -4.94 V to -5.50 V

DC CHARACTERISTICS (V_{EE} = V_{EE(min)} – V_{EE(max)}; V_{CC} = GND, unless otherwise noted.)

Characteristic	Symbol	-40°C			0°C			25°C			70°C			Unit
		Min	Typ	Max										
Power Supply Current H K	I _{EE}	– –	45 45	– 38	38 45	45 52	52 52	38 38	45 45	52 52	38 42	45 50	52 58	mA
Power Supply Voltage H K	V _{EE}	-4.75 -4.20	-5.2 -4.5	-5.5 -5.5	V									
Input HIGH Current	I _{IH}	–	–	150	–	–	150	–	–	150	–	–	150	μA

AC CHARACTERISTICS (V_{EE} = V_{EE(min)} – V_{EE(max)}; V_{CC} = GND, unless otherwise noted.)

Characteristic	Symbol	-40°C			0°C			25°C			70°C			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Maximum Toggle Frequency	F _{MAX}	–	800	–	650	800	–	650	800	–	650	800	–	–
Propagation Delay R to D R to U V to D V to U	t _{PLH} t _{PHL}	– – – –	440 330 330 440	– 210 210 –	320 330 330 320	440 470 470 440	580 320 210 320	320 330 330 440	440 470 470 580	580 360 240 360	360 480 240 360	480 360 360 480	620 500 500 620	ps
Output Rise/Fall Times Q (20 to 80%)	t _r t _f	–	225	–	100	225	350	100	225	350	100	225	350	ps

APPLICATIONS INFORMATION

The 12140 is a high speed digital circuit used as a phase comparator in an analog phase-locked loop. The device determines the “lead” or “lag” phase relationship and time difference between the leading edges of a VCO (V) signal and a Reference (R) input. Since these edges occur only once per cycle, the detector has a range of $\pm 2\pi$ radians.

The operation of the 12140 can best be described using the plots of Figure 2. Figure 2 plots the average value of \bar{U} , \bar{D} and the difference between \bar{U} and \bar{D} versus the phase difference between the V and R inputs.

There are four potential relationships between V and R: R lags or leads V and the frequency of R is less than or greater than the frequency of V. Under these four conditions the 12140 will function as follows:

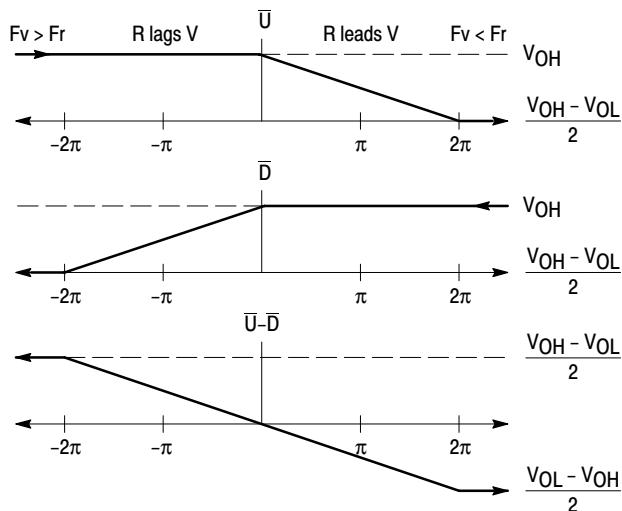


Figure 2. Average Output Voltage vs. Phase Difference

R lags V in phase

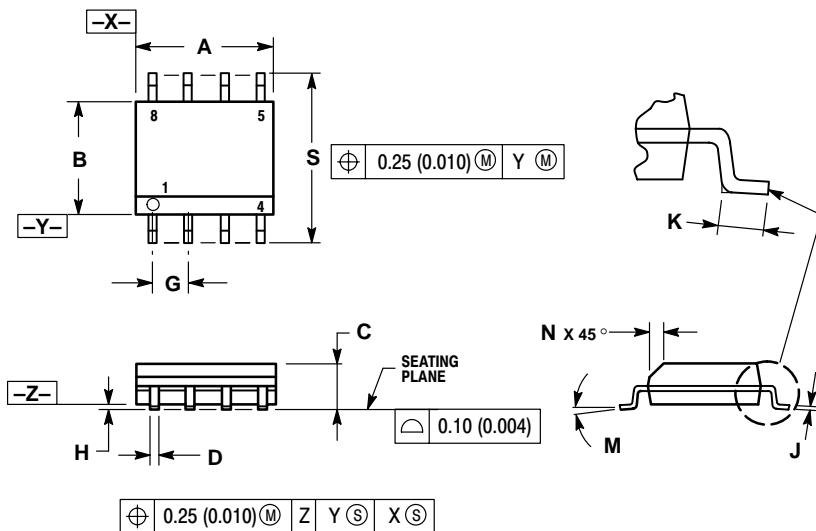
When the R and V inputs are equal in frequency and the phase of R lags that of V the \bar{U} output will stay HIGH while the \bar{D} output will pulse from HIGH to LOW. The magnitude of the pulse will be proportional to the phase difference between the V and R inputs reaching a minimum 50% duty cycle under a 180° out of phase condition. The signal on \bar{D} indicates to the VCO to decrease in frequency to bring the loop into lock.

V frequency > R frequency

When the frequency of V is greater than that of R the 12140 behaves in a similar fashion as above. Again the signal on \bar{D} indicates that the VCO frequency must be decreased to bring the loop into lock.

R leads V in phase

When the R and V inputs are equal in frequency and the phase of R leads that of V the \bar{D} output will stay HIGH while the \bar{U} output pulses from HIGH to LOW. The magnitude of the pulse will be proportional to the phase difference between the V and R inputs reaching a minimum 50% duty cycle under a 180° out of phase condition. The signal on \bar{U} indicates to the VCO to increase in frequency to bring the loop into lock.


V frequency < R frequency

When the frequency of V is less than that of R the 12140 behaves in a similar fashion as above. Again the signal on \bar{U} indicates that the VCO frequency must be decreased to bring the loop into lock.

From Figure 2 when V and R are at the same frequency and in phase the value of $\bar{U} - \bar{D}$ is zero thus providing a zero error voltage to the VCO. This situation indicates the loop is in lock and the 12140 action will maintain the loop in its locked state.

PACKAGE DIMENSIONS

SO-8
D SUFFIX
CASE 751-07
ISSUE W

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

MOSAIC III and MECL 10H are trademarks of Motorola, Inc.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com

ON Semiconductor Website: <http://onsemi.com>

For additional information, please contact your local
Sales Representative.