

74VCX162244

Low Voltage 16-Bit Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs and 26Ω Series Resistor in Outputs

General Description

The VCX162244 contains sixteen non-inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble (4-bit) controlled. Each nibble has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

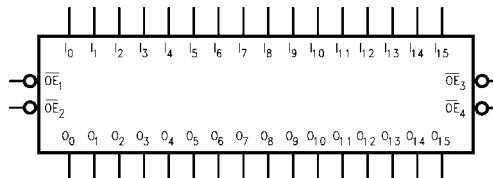
The 74VCX162244 is designed for low voltage (1.2V to 3.6V) V_{CC} applications with I/O capability up to 3.6V. The 74VCX162244 is also designed with 26Ω series resistors in the outputs. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

The 74VCX162244 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

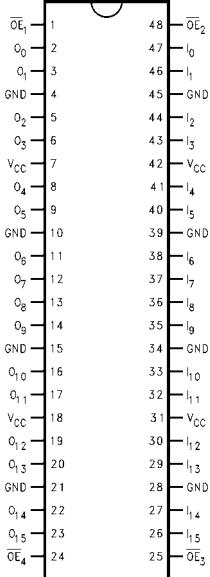
- 1.2V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- 26Ω series resistors in outputs
- t_{PD}
3.3 ns max for 3.0V to 3.6V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal
- Static Drive (I_{OH}/I_{OL})
±12 mA @ 3.0V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 300 mA
- ESD performance:
Human body model > 2000V
Machine model > 200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Note 1: To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.


Ordering Code:

Order Number	Package Number	Package Description
74VCX162244G (Note 2)(Note 3)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74VCX162244MTD (Note 3)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 2: Ordering Code "G" indicates Trays.


Note 3: Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagrams

Pin Assignment for TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
\overline{OE}_n	Output Enable Input (Active LOW)
I_0-I_{15}	Inputs
O_0-O_{15}	Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
A	O_0	NC	\overline{OE}_1	\overline{OE}_2	NC	I_0
B	O_2	O_1	NC	NC	I_1	I_2
C	O_4	O_3	V_{CC}	V_{CC}	I_3	I_4
D	O_6	O_5	GND	GND	I_5	I_6
E	O_8	O_7	GND	GND	I_7	I_8
F	O_{10}	O_9	GND	GND	I_9	I_{10}
G	O_{12}	O_{11}	V_{CC}	V_{CC}	I_{11}	I_{12}
H	O_{14}	O_{13}	NC	NC	I_{13}	I_{14}
J	O_{15}	NC	\overline{OE}_4	\overline{OE}_3	NC	I_{15}

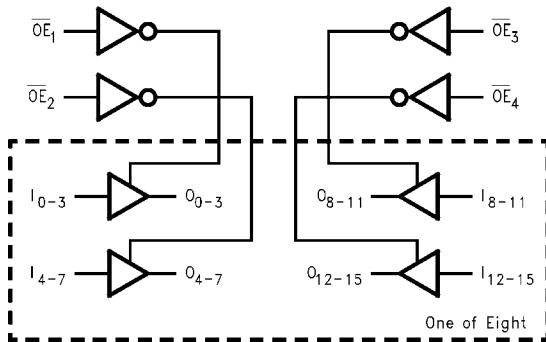
Truth Tables

Inputs	Outputs
\overline{OE}_1	I_0-I_3
L	L
L	H
H	X
	Z

Inputs	Outputs
\overline{OE}_2	I_4-I_7
L	L
L	H
H	X
	Z

Inputs	Outputs
\overline{OE}_3	I_8-I_{11}
L	L
L	H
H	X
	Z

Inputs	Outputs
\overline{OE}_4	$I_{12}-I_{15}$
L	L
L	H
H	X
	Z


H = HIGH Voltage Level
L = LOW Voltage Level
X = Immortal (HIGH or LOW, inputs may not float)
Z = High Impedance

Functional Description

The 74VCX162244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of each other. The control pins may be shorted together to obtain full 16-bit operation. The 3-STATE out-

puts are controlled by an Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs.

Logic Diagram

Absolute Maximum Ratings (Note 4)		Recommended Operating Conditions (Note 6)	
Supply Voltage (V_{CC})	-0.5V to +4.6V	Power Supply	
DC Input Voltage (V_I)	-0.5V to +4.6V	Operating	1.2V to 3.6V
Output Voltage (V_O)		Data Retention Only	1.2V to 3.6V
Outputs 3-STATE	-0.5V to +4.6V	Input Voltage	-0.3V to +3.6V
Outputs Active (Note 5)	-0.5V to V_{CC} +0.5V	Output Voltage (V_O)	
DC Input Diode Current (I_{IK}) $V_I < 0V$	-50 mA	Output in Active States	0V to V_{CC}
DC Output Diode Current (I_{OK}) $V_O < 0V$	-50 mA	Output in 3-State	0.0V to 3.6V
$V_O > V_{CC}$	+50 mA	Output Current in I_{OH}/I_{OL}	
DC Output Source/Sink Current (I_{OH}/I_{OL})	±50 mA	$V_{CC} = 3.0V$ to 3.6V	±12 mA
DC V_{CC} or GND Current per Supply Pin (I_{CC} or GND)	±100 mA	$V_{CC} = 2.3V$ to 2.7V	±8 mA
Storage Temperature Range (T_{STG})	-65°C to +150°C	$V_{CC} = 1.65V$ to 2.3V	±3 mA
		$V_{CC} = 1.4V$ to 1.6V	±2 mA
		$V_{CC} = 1.2V$	±100 µA
		Free Air Operating Temperature (T_A)	-40°C to +85°C
		Minimum Input Edge Rate ($\Delta t/\Delta V$)	
		$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.			
Note 5: I_O Absolute Maximum Rating must be observed.			
Note 6: Floating or unused inputs must be held HIGH or LOW.			
DC Electrical Characteristics (2.7V < $V_{CC} \leq 3.6V$)			
Symbol	Parameter	Conditions	V_{CC} (V)
V_{IH}	HIGH Level Input Voltage		2.7 - 3.6
			2.3 - 2.7
			1.65 - 2.3
			1.4 - 1.6
			1.2
V_{IL}	LOW Level Input Voltage		2.7 - 3.6
			2.3 - 2.7
			1.65 - 2.3
			1.4 - 1.6
			1.2
V_{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.7 - 3.6
		$I_{OH} = -6 mA$	2.7
		$I_{OH} = -8 mA$	3.0
		$I_{OH} = -12 mA$	3.0
			2.2
		$I_{OH} = -100 \mu A$	2.7 - 3.6
		$I_{OH} = -4 mA$	2.3
		$I_{OH} = -6 mA$	2.3
		$I_{OH} = -8 mA$	2.3
			1.7
	$I_{OH} = -100 \mu A$	1.65 - 2.3	
	$I_{OH} = -3 mA$	1.65	
	$I_{OH} = -100 \mu A$	1.4 - 1.6	
	$I_{OH} = -1 mA$	1.4	
	$I_{OH} = -100 \mu A$	1.2	
		$V_{CC} - 0.2$	
		2.2	
		2.4	
		2.2	
		$V_{CC} - 0.2$	
		2.0	
		1.8	
		1.7	
		$V_{CC} - 0.2$	
		1.25	
		$V_{CC} - 0.2$	
		1.05	
		$V_{CC} - 0.1$	

DC Electrical Characteristics (2.7V < VCC £ 3.6V) (Continued)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 µA	2.7 - 3.6		0.2	
		I _{OL} = 6 mA	2.7		0.4	
		I _{OL} = 8 mA	3.0		0.55	
		I _{OL} = 12 mA	3.0		0.8	
		I _{OL} = 100 µA	2.7 - 3.6		0.2	
		I _{OL} = 6 mA	2.3		0.4	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 100 µA	1.65 - 2.3		0.2	
		I _{OL} = 3 mA	1.65		0.3	
		I _{OL} = 100 µA	1.4 - 1.6		0.2	
		I _{OL} = 1 mA	1.4		0.35	
		I _{OL} = 100 µA	1.2		0.1	
I _I	Input Leakage Current	0 ≤ V _I ≤ 3.6V	1.2 - 3.6		±5.0	µA
I _{OZ}	3-STATE Output Leakage	0 ≤ V _O ≤ 3.6V V _I = V _{IH} or V _{IL}	1.2 - 3.6		±10	µA
I _{OFF}	Power-OFF Leakage Current	0 ≤ (V _I , V _O) ≤ 3.6V	0		10	µA
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND V _{CC} ≤ (V _I , V _O) ≤ 3.6V (Note 7)	1.2 - 3.6 1.2 - 3.6		20 ±20	µA
ΔI _{CC}	Increase in I _{CC} per Input	V _{IH} = V _{CC} - 0.6V	2.7 - 3.6		750	µA

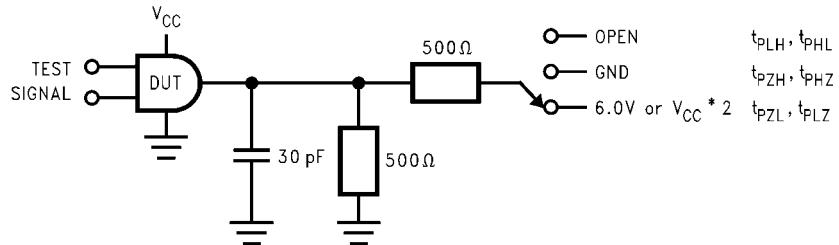
Note 7: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 8)

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = -40°C to +85°C		Units	Figure Number
				Min	Max		
t _{PHL} , t _{PLH}	Propagation Delay	C _L = 30 pF, R _L = 500Ω	3.3 ± 0.3	0.8	3.3	ns	Figures 1, 2
			2.5 ± 0.2	1.0	3.8		
			1.8 ± 0.15	1.5	7.6		
		C _L = 15 pF, R _L = 2kΩ	1.5 ± 0.1	1.0	15.2	ns	Figures 5, 6
			1.2	1.5	38		
			3.3 ± 0.3	0.8	3.8		
t _{PZL} , t _{PZH}	Output Enable Time	C _L = 30 pF, R _L = 500Ω	2.5 ± 0.2	1.0	5.1	ns	Figures 1, 3, 4
			1.8 ± 0.15	1.5	9.8		
			1.5 ± 0.1	1.0	19.6		
		C _L = 15 pF, R _L = 2kΩ	1.2	1.5	49	ns	Figures 5, 7, 8
			3.3 ± 0.3	0.8	3.6		
			2.5 ± 0.2	1.0	4.0		
t _{PLZ} , t _{PHZ}	Output Disable Time	C _L = 30 pF, R _L = 500Ω	1.8 ± 0.15	1.5	7.2	ns	Figures 1, 3, 4
			1.5 ± 0.1	1.0	14.4		
			1.2	1.5	36		
		C _L = 15 pF, R _L = 2kΩ	3.3 ± 0.3	0.5	0.75	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
t _{OSHL} , t _{OSLH}	Output to Output Skew (Note 9)	C _L = 30 pF, R _L = 500Ω	1.5 ± 0.1		1.5	ns	
			1.2		1.5		
		C _L = 15 pF, R _L = 2kΩ	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		

Note 8: For C_L = 50 pF, add approximately 300 ps to the AC maximum specification.

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = +25°C	Units
				Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	C _L = 30 pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.8	0.15	V
			2.5	0.25	
			3.3	0.35	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C _L = 30 pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.8	-0.15	V
			2.5	-0.25	
			3.3	-0.35	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	C _L = 30 pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.8	1.55	V
			2.5	2.05	
			3.3	2.65	

Capacitance

Symbol	Parameter	Conditions	T _A = +25°C	Units
			Typical	
C _{IN}	Input Capacitance	V _{CC} = 1.8, 2.5V or 3.3V, V _I = 0V or V _{CC}	6	pF
C _{OUT}	Output Capacitance	V _I = 0V or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	7	pF
C _{PD}	Power Dissipation Capacitance	V _I = 0V or V _{CC} , f = 10 MHz, V _{CC} = 1.8V, 2.5V or 3.3V	20	pF

AC Loading and Waveforms (V_{CC} 3.3V \pm 0.3V to 1.8V \pm 0.15V)

TEST	SWITCH
t_{PLH}, t_{PHL}	Open
t_{PZL}, t_{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$; $V_{CC} \times 2$ at $V_{CC} = 2.5 \pm 0.2V; 1.8 \pm 0.15V$
t_{PZH}, t_{PHZ}	GND

FIGURE 1. AC Test Circuit

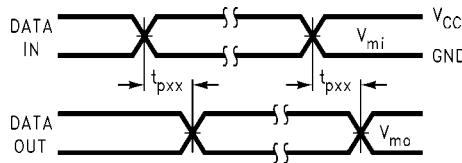


FIGURE 2. Waveform for Inverting and Non-Inverting Functions

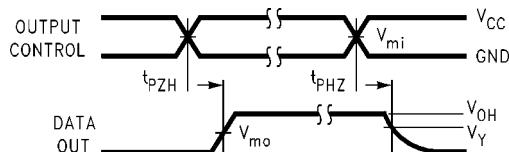


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

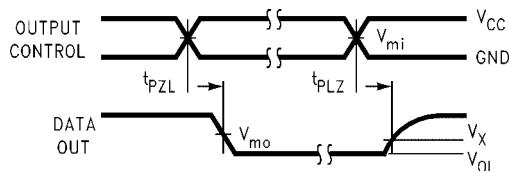
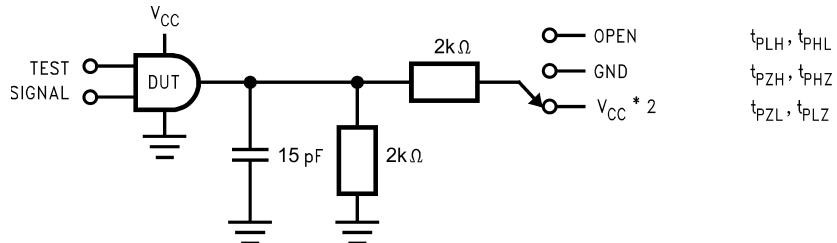



FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V_{CC}		
	$3.3V \pm 0.3V$	$2.5V \pm 0.2V$	$1.8V \pm 0.15V$
V_{mi}	1.5V	$V_{CC}/2$	$V_{CC}/2$
V_{mo}	1.5V	$V_{CC}/2$	$V_{CC}/2$
V_X	$V_{OL} + 0.3V$	$V_{OL} + 0.15V$	$V_{OL} + 0.15V$
V_Y	$V_{OH} - 0.3V$	$V_{OH} - 0.15V$	$V_{OH} - 0.15V$

AC Loading and Waveforms (V_{CC} 1.5V \pm 0.1V to 1.2V)

TEST	SWITCH
t_{PLH}, t_{PHL}	Open
t_{PZH}, t_{PLZ}	$V_{CC} \times 2$ at $V_{CC} = 1.5V \pm 0.1V$
t_{PZL}, t_{PHZ}	GND

FIGURE 5. AC Test Circuit

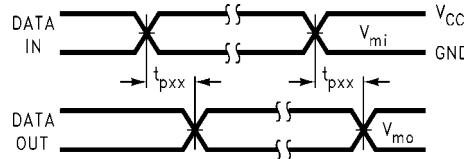


FIGURE 6. Waveform for Inverting and Non-Inverting Functions

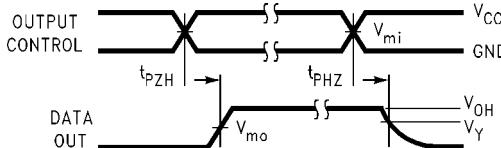


FIGURE 7. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

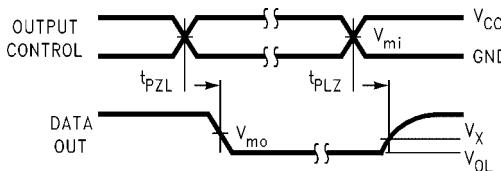
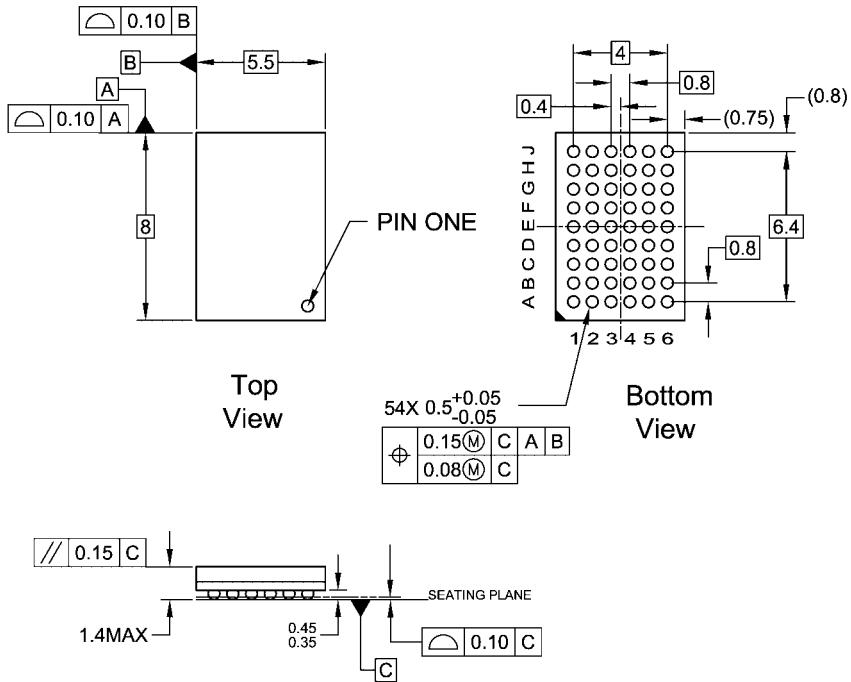
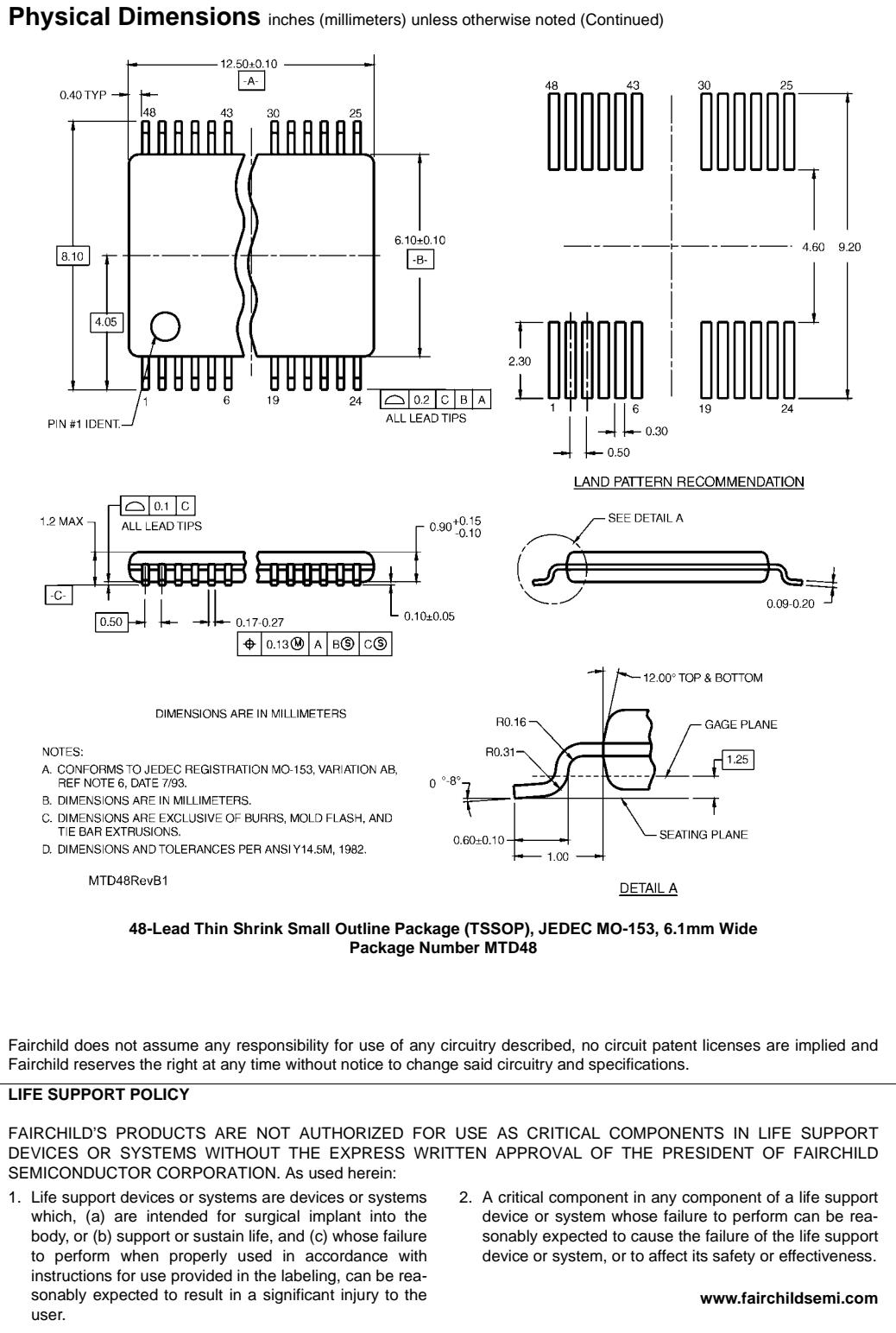



FIGURE 8. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V_{CC}
	$1.5V \pm 0.1V$
V_{mi}	$V_{CC}/2$
V_{mo}	$V_{CC}/2$
V_X	$V_{OL} + 0.1V$
V_Y	$V_{OL} - 0.1V$

Physical Dimensions inches (millimeters) unless otherwise noted


NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205
- B. ALL DIMENSIONS IN MILLIMETERS
- C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
- D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54RevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC M0-205, 5.5mm Wide
Package Number BGA54A

74VCX162244 Low Voltage 16-Bit Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs and 26Ω Series Resistor in Outputs

