

Features

- Advanced Process Technology
- Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to T_{jmax}
- Lead-Free, RoHS Compliant
- Automotive Qualified *

$V_{(BR)DSS}$	24V
$R_{DS(on)}$ typ.	1.25mΩ
	1.6mΩ
I_D (Silicon Limited)	380A®
I_D (Package Limited)	180A

G	D	S
Gate	Drain	Source

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
AUIRFP2602	TO-247AC	Tube	25	AUIRFP2602

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I_D @ $T_C = 25^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$ (Silicon Limited)	380A®	A
I_D @ $T_C = 100^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$ (Silicon Limited)	270A®	
I_D @ $T_C = 25^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$ (Package Limited)	180	
I_{DM}	Pulsed Drain Current ①	1580	
$P_D @ T_C = 25^\circ\text{C}$	Maximum Power Dissipation	380	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E_{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	400	mJ
$E_{AS\ (Tested)}$	Single Pulse Avalanche Energy Tested Value ⑥	1011	
I_{AR}	Avalanche Current ①	See Fig.14,15, 17a, 17b	A
E_{AR}	Repetitive Avalanche Energy ⑤		mJ
T_J	Operating Junction and	-55 to + 175	°C
T_{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds (1.6mm from case)		
	Mounting torque, 6-32 or M3 screw	300	
		10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Typ.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ⑦	—	0.40	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24	—	
$R_{\theta JA}$	Junction-to-Ambient	—	40	

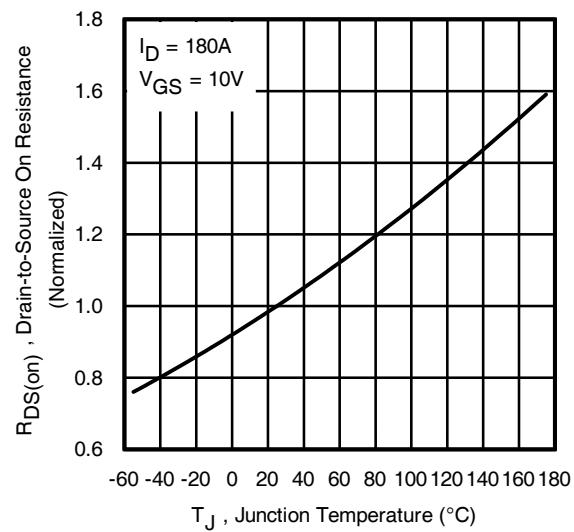
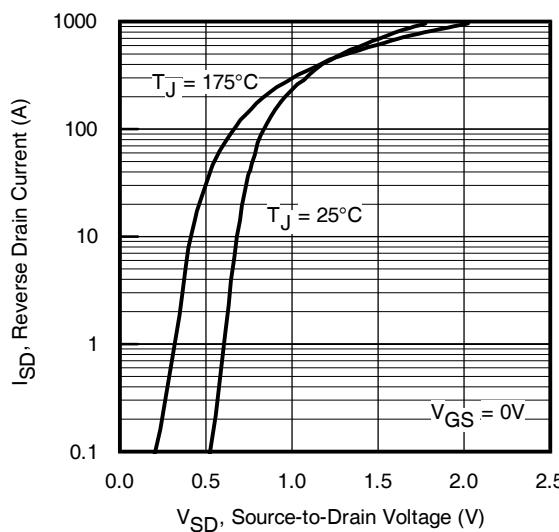
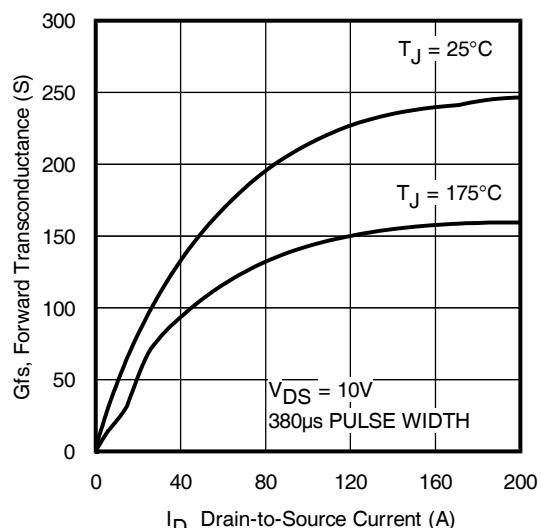
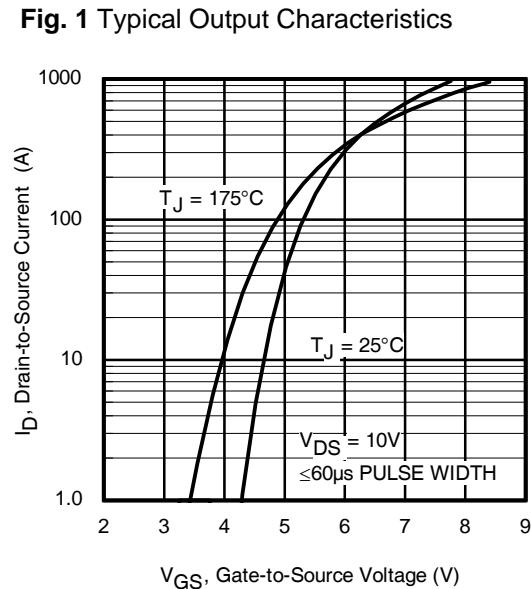
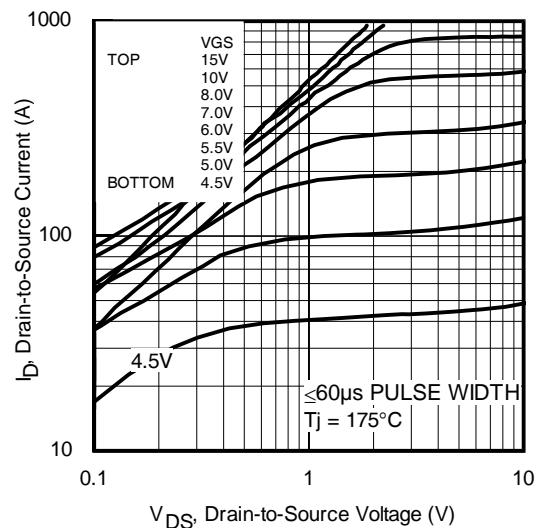
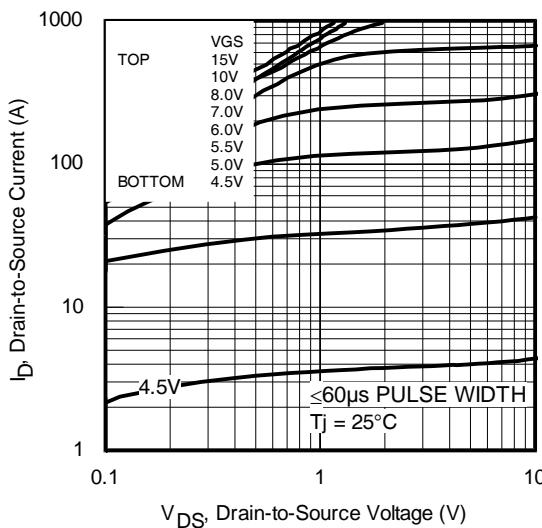
HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

Static @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(\text{BR})\text{DSS}}$	Drain-to-Source Breakdown Voltage	24	—	—	V	$V_{\text{GS}} = 0\text{V}$, $I_D = 250\mu\text{A}$
$\Delta V_{(\text{BR})\text{DSS}}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.02	—	V/ $^\circ\text{C}$	Reference to 25°C , $I_D = 1\text{mA}$
$R_{\text{DS}(\text{on})}$	Static Drain-to-Source On-Resistance	—	1.25	1.6	$\text{m}\Omega$	$V_{\text{GS}} = 10\text{V}$, $I_D = 180\text{A}$ ③
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	2.0	—	4.0	V	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 250\mu\text{A}$
g_{fs}	Forward Trans conductance	230	—	—	S	$V_{\text{DS}} = 10\text{V}$, $I_D = 180\text{A}$
I_{DSS}	Drain-to-Source Leakage Current	—	—	20	μA	$V_{\text{DS}} = 24\text{ V}$, $V_{\text{GS}} = 0\text{V}$
		—	—	250		$V_{\text{DS}} = 24\text{V}$, $V_{\text{GS}} = 0\text{V}$, $T_J = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	200	nA	$V_{\text{GS}} = 20\text{V}$
	Gate-to-Source Reverse Leakage	—	—	-200		$V_{\text{GS}} = -20\text{V}$

Dynamic Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)







Q_g	Total Gate Charge	—	260	390	nC	$I_D = 180\text{A}$ $V_{\text{DS}} = 12\text{V}$ $V_{\text{GS}} = 10\text{V}$ ③
Q_{gs}	Gate-to-Source Charge	—	72	—		
Q_{gd}	Gate-to-Drain Charge	—	100	—		
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	—	70	—		
t_r	Rise Time	—	490	—	ns	$V_{\text{DD}} = 12\text{V}$ $I_D = 180\text{A}$ $R_G = 2.5\Omega$ $V_{\text{GS}} = 10\text{V}$ ③
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time	—	150	—		
t_f	Fall Time	—	270	—		
L_D	Internal Drain Inductance	—	5.0	—		Between lead, 6mm (0.25in.) from package and center of die contact
L_s	Internal Source Inductance	—	13	—		
C_{iss}	Input Capacitance	—	11220	—		$V_{\text{GS}} = 0\text{V}$
C_{oss}	Output Capacitance	—	4800	—		$V_{\text{DS}} = 19\text{V}$
C_{rss}	Reverse Transfer Capacitance	—	2660	—		$f = 1.0\text{KHz}$
C_{oss}	Output Capacitance	—	13020	—		$V_{\text{GS}}=0\text{V}$, $V_{\text{DS}}=1.0\text{V}$, $f = 1.0\text{KHz}$
C_{oss}	Output Capacitance	—	4800	—		$V_{\text{GS}}=0\text{V}$, $V_{\text{DS}}=19\text{V}$, $f = 1.0\text{KHz}$
$C_{\text{oss eff.}}$	Effective Output Capacitance	—	6710	—		$V_{\text{GS}} = 0\text{V}$, $V_{\text{DS}} = 0\text{V}$ to 19V ④

Diode Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
I_s	Continuous Source Current (Body Diode)	—	—	380⑧	A	MOSFET symbol showing the integral reverse p-n junction diode.
	Pulsed Source Current (Body Diode) ①	—	—	1580		
V_{SD}	Diode Forward Voltage	—	—	1.3	V	$T_J = 25^\circ\text{C}$, $I_s = 180\text{A}$, $V_{\text{GS}} = 0\text{V}$ ③
t_{rr}	Reverse Recovery Time	—	55	83	ns	$T_J = 25^\circ\text{C}$, $I_F = 180\text{A}$, $V_{\text{DD}} = 12\text{V}$
Q_{rr}	Reverse Recovery Charge	—	56	84	nC	$\text{di}/\text{dt} = 100\text{A}/\mu\text{s}$ ③
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $L_s + L_D$)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
- ② Limited by T_{Jmax} , starting $T_J = 25^\circ\text{C}$, $L = 0.025\text{mH}$, $R_G = 25\Omega$, $I_{\text{AS}} = 180\text{A}$, $V_{\text{GS}} = 10\text{V}$. Part not recommended for use above this value.
- ③ Pulse width $\leq 1.0\text{ms}$; duty cycle $\leq 2\%$.
- ④ $C_{\text{oss eff.}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- ⑤ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑥ This value determined from sample failure population. 100% tested to this value in production.
- ⑦ R_θ is measured at T_J of approximately 90°C .
- ⑧ Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 180A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.

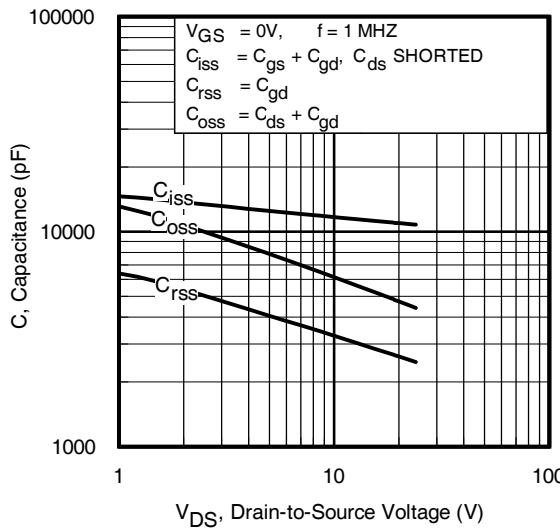


Fig. 7 Typical Capacitance vs. Drain-to-Source Voltage

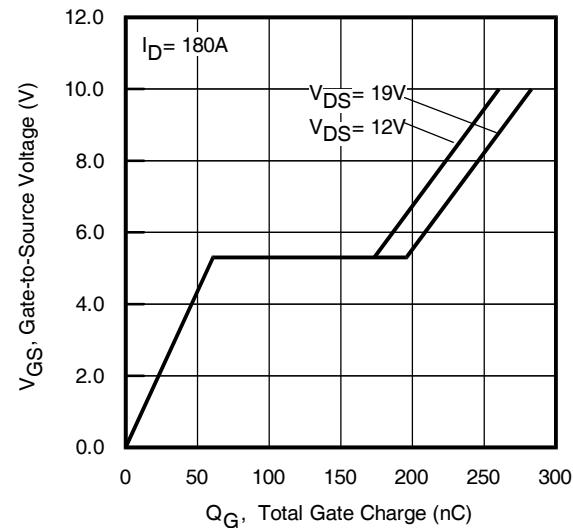


Fig. 8. Typical Gate Charge vs. Gate-to-Source Voltage

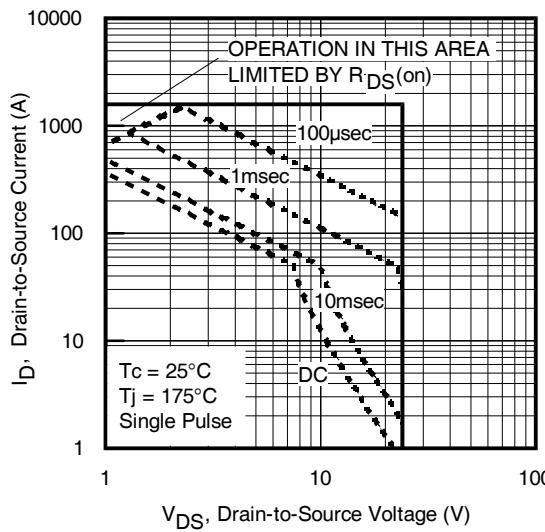


Fig. 9. Maximum Safe Operating Area

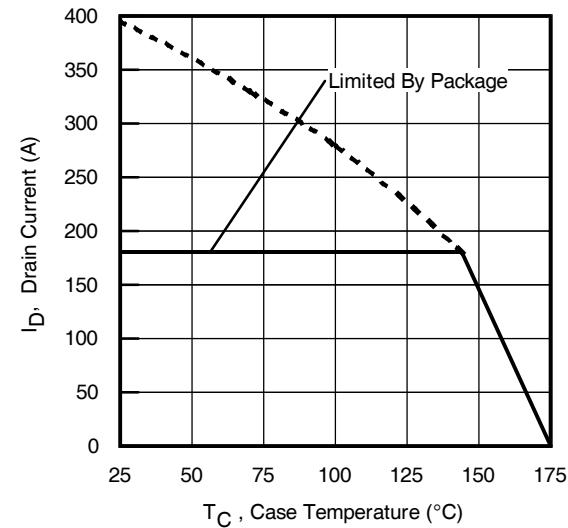


Fig 10. Maximum Drain Current vs. Case Temperature

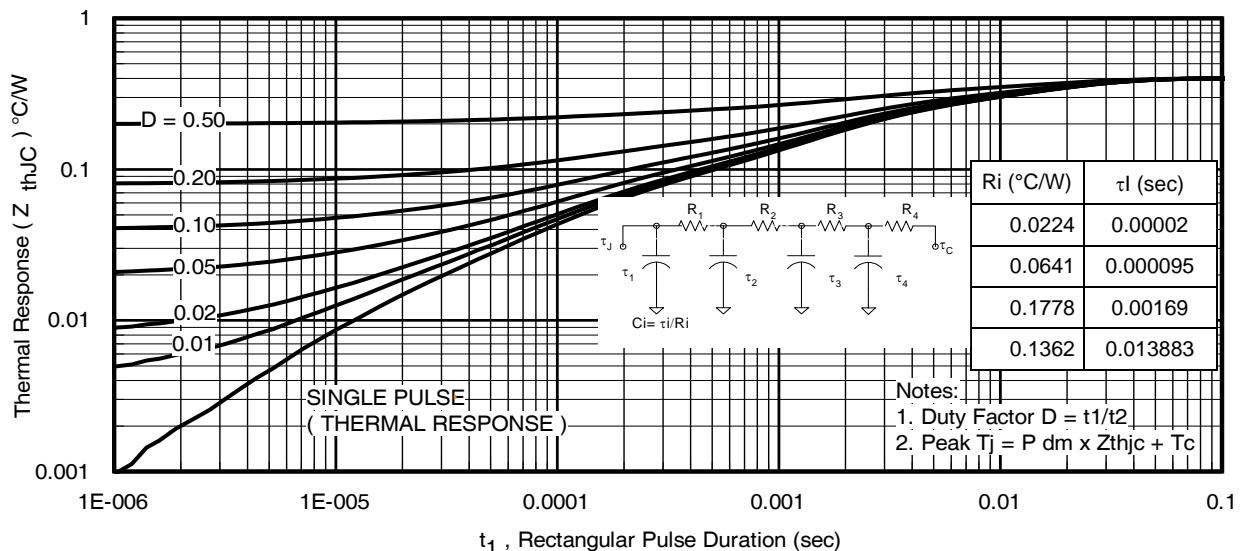


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

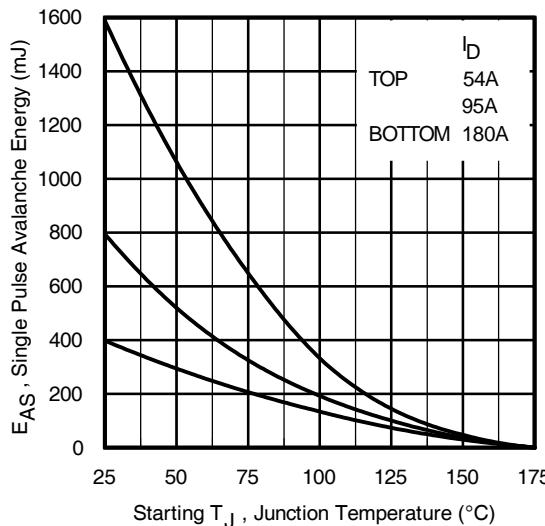


Fig 12. Maximum Avalanche Energy vs. Drain Current

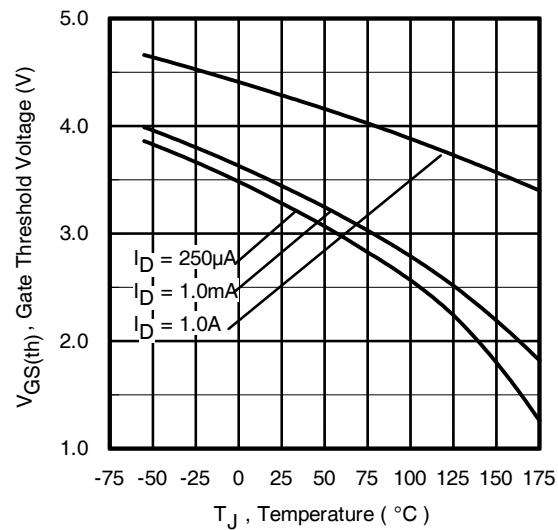


Fig 13. Threshold Voltage vs. Temperature

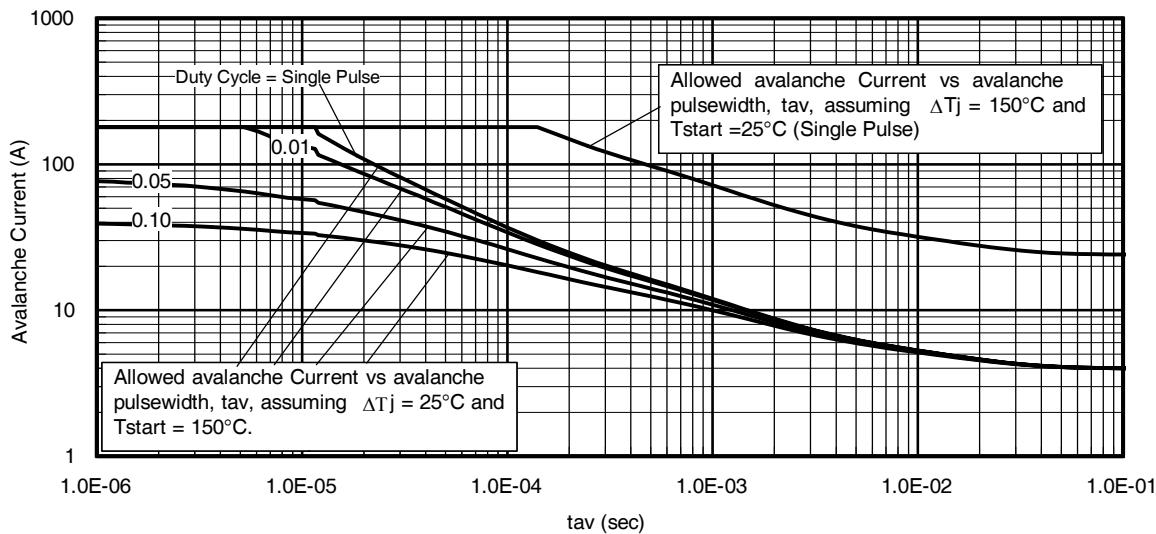


Fig 14. Typical Avalanche Current vs. Pulse width

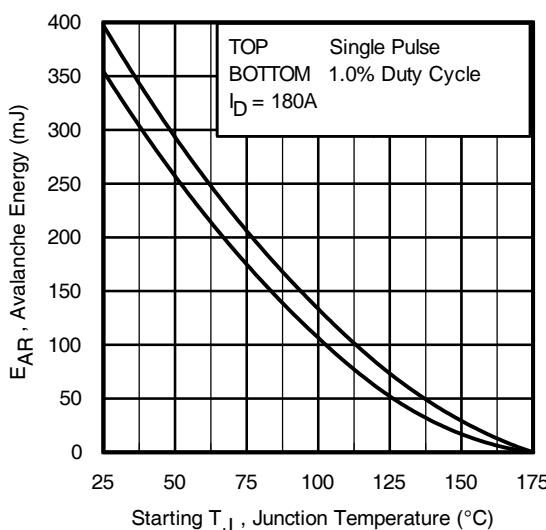
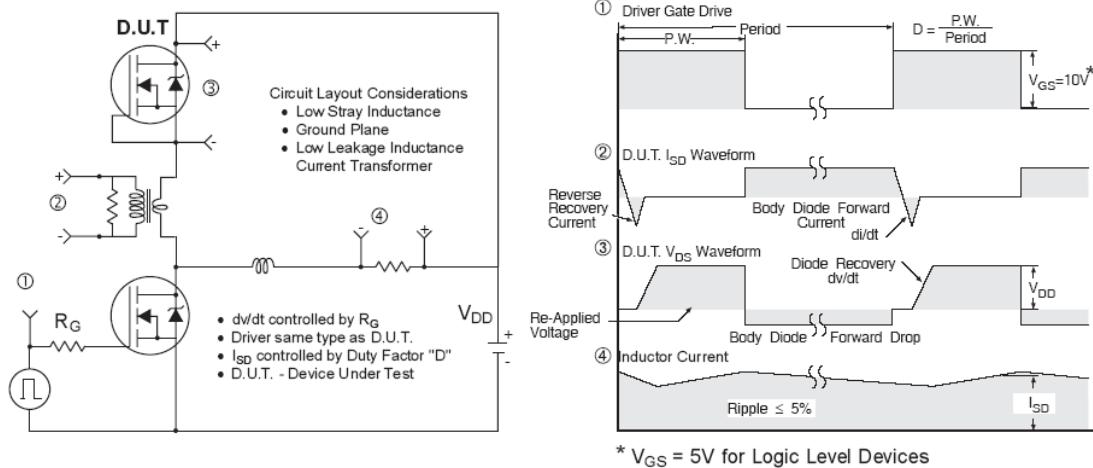
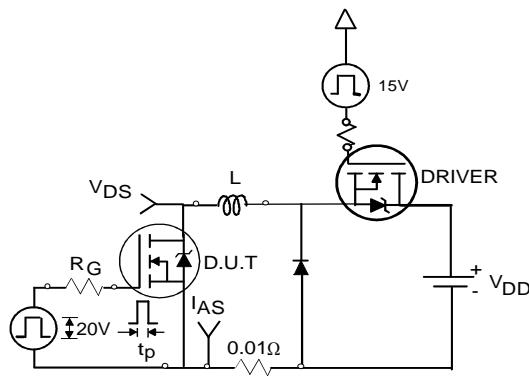


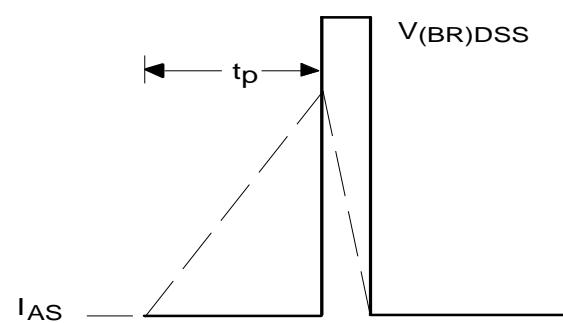
Fig 15. Maximum Avalanche Energy vs. Temperature

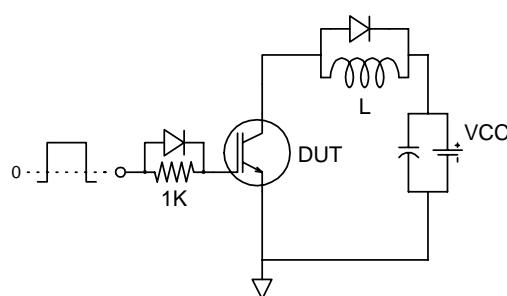

Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.infineon.com)

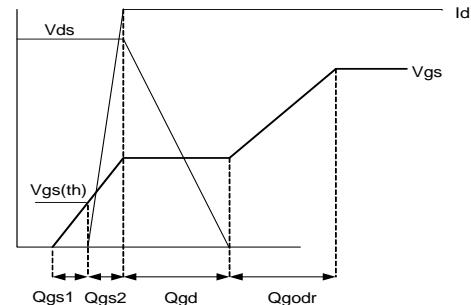
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b.
 4. $P_{D(ave)}$ = Average power dissipation per single avalanche pulse.
 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
 6. I_{av} = Allowable avalanche current.
 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).
- t_{av} = Average time in avalanche.
 D = Duty cycle in avalanche = $t_{av} \cdot f$
 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

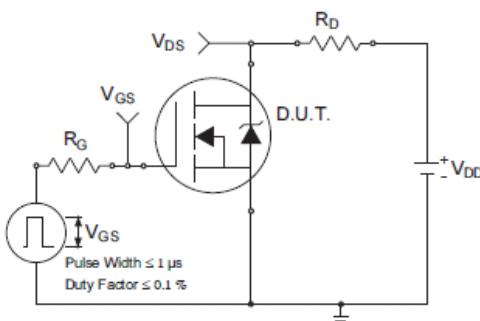

$$P_{D(ave)} = 1/2 (1.3 \cdot BV \cdot I_{av}) = \Delta T / Z_{thJC}$$

$$I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$$


$$E_{AS(AR)} = P_{D(ave)} \cdot t_{av}$$


Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs


Fig 17a. Unclamped Inductive Test Circuit


Fig 17b. Unclamped Inductive Waveforms

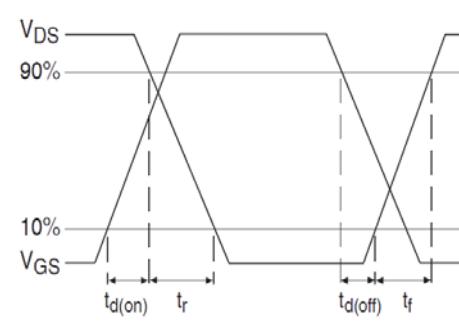

Fig 18a. Gate Charge Test Circuit

Fig 18b. Gate Charge Waveform

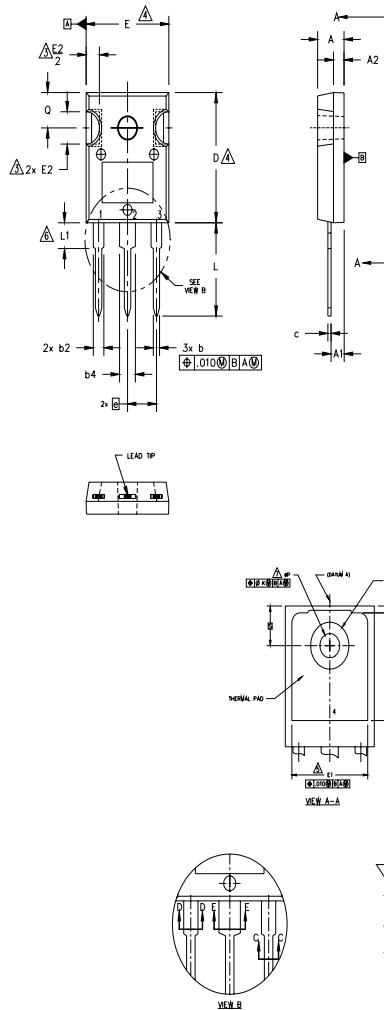


Fig 19a. Switching Time Test Circuit

Fig 19b. Switching Time Waveforms

TO-247AC Package Outline (Dimensions are in millimeters)

NOTES

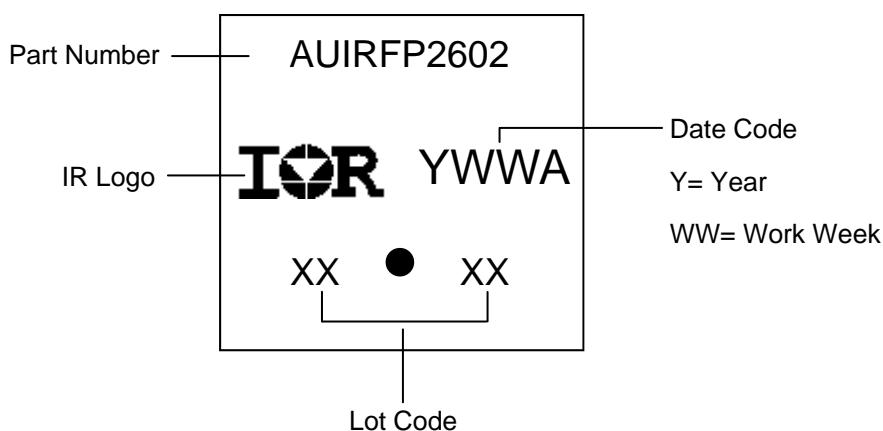
1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
 2. DIMENSIONS ARE SHOWN IN INCHES.
 3. CONTOUR OF SLOT OPTIONAL.
 4. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 5. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
 6. LEAD FINISH UNCONTROLLED IN L1.
 7. ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

SYMBOL	DIMENSIONS				NOTES	
	INCHES		MILLIMETERS			
	MIN.	MAX.	MIN.	MAX.		
A	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1.35		
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2.59	3.38		
c	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	—	13.08	—	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	
E1	.530	—	13.46	—		
E2	.178	.216	4.52	5.49		
e	.215 BSC		5.46 BSC			
øk	.010		0.25			
L	.559	.634	14.20	16.10		
L1	.146	.169	3.71	4.29		
øP	.140	.144	3.56	3.66		
øP1	—	.291	—	7.39		
Q	.209	.224	5.31	5.69		
S	.217 BSC		5.51 BSC			

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
 - 2.- DRAIN
 - 3.- SOURCE
 - 4 - DRAIN


IGBTs, CoPACK

1. - GATE
 2. - COLLECTOR
 3. - Emitter
 4. - COLLECTOR

DIODES

- 1.- ANODE/OPEN
 - 2.- CATHODE
 - 3.- ANODE

TO-247AC Part Marking Information

Note: For the most current drawing please refer to IR website at <http://www.irf.com/package/>

Qualification Information

Qualification Level		Automotive (per AEC-Q101)	
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.	
Moisture Sensitivity Level		TO-247AC	N/A
ESD	Machine Model	Class M4 (+/- 800V) [†] AEC-Q101-002	
	Human Body Model	Class H2 (+/- 4000V) [†] AEC-Q101-001	
	Charged Device Model	Class C5 (+/- 2000V) [†] AEC-Q101-005	
RoHS Compliant		Yes	

[†] Highest passing voltage.

Revision History

Date	Comments
2/16/2016	<ul style="list-style-type: none"> • Updated datasheet with corporate template • Corrected typo, Capacitance test condition from VDS=25V to VDS=19V on page 2

Published by

Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2015

All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.