
ULTRA LOW DROP-LOW NOISE BICMOS VOLTAGE REGULATORS LOW ESR CAPACITORS COMPATIBLE

- INPUT VOLTAGE FROM 2.5V TO 6V
- STABLE WITH LOW ESR CERAMIC CAPACITORS
- ULTRA LOW DROPOUT VOLTAGE (100mV TYP. AT 150mA LOAD, 0.4mV TYP. AT 1mA LOAD)
- VERY LOW QUIESCENT CURRENT (85 μ A TYP. AT NO LOAD, 170 μ A TYP. AT 150mA LOAD; MAX 1.5 μ A IN OFF MODE)
- GUARANTEED OUTPUT CURRENT UP TO 150mA
- WIDE RANGE OF OUTPUT VOLTAGE: 1.25V; 1.35; 1.5; 1.8V; 2V; 2.1V; 2.2V; 2.4V; 2.5V; 2.6V; 2.7V; 2.8V; 2.85V; 2.9V; 3V; 3.1V; 3.2V; 3.3V; 4.7V; 5V
- FAST TURN-ON TIME: TYP. 200 μ s [C_O=1 μ F, C_{BYP}= 10nF AND I_O=1mA]
- LOGIC-CONTROLLED ELECTRONIC SHUTDOWN
- INTERNAL CURRENT AND THERMAL LIMIT
- OUTPUT LOW NOISE VOLTAGE 30 μ VRMS OVER 10Hz to 100KHz
- S.V.R. OF 60dB AT 1KHz, 50dB AT 10KHz
- TEMPERATURE RANGE: -40°C TO 125°C

DESCRIPTION

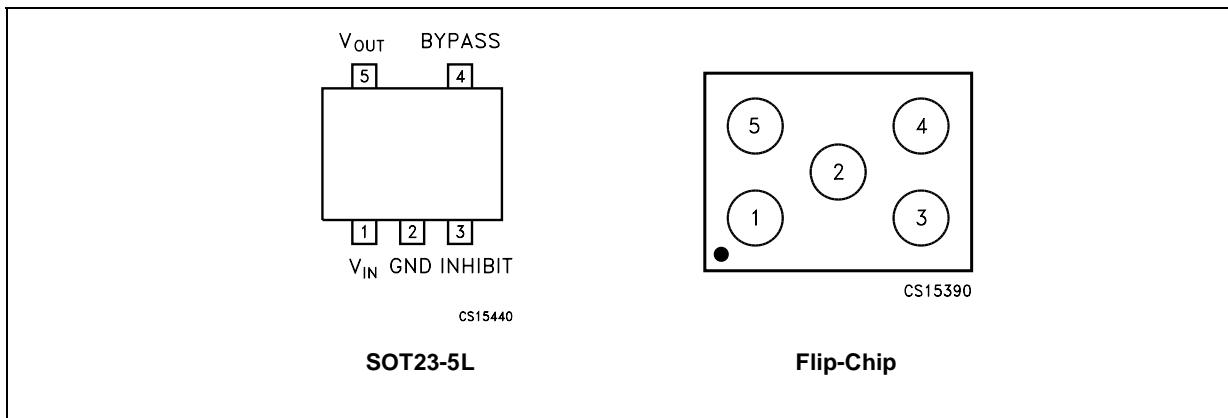
The LD3985 provides up to 150mA, from 2.5V to 6V input voltage.

SCHEMATIC DIAGRAM

LD3985 SERIES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_I	DC Input Voltage	-0.3 to 6 (*)	V
V_O	DC Output Voltage	-0.3 to $V_I+0.3$	V
V_{INH}	INHIBIT Input Voltage	-0.3 to $V_I+0.3$	V
I_O	Output Current	Internally limited	
P_D	Power Dissipation	Internally limited	
T_{STG}	Storage Temperature Range	-65 to 150	°C
T_{OP}	Operating Junction Temperature Range	-40 to 125	°C

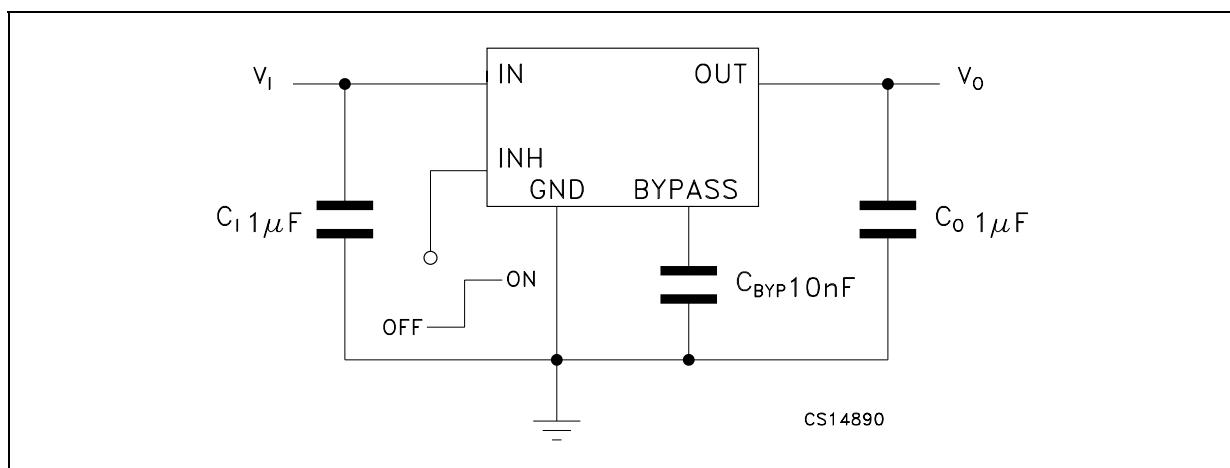

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) The input pin is able to withstand non repetitive spike of 6.5V for 200ms.

THERMAL DATA

Symbol	Parameter	SOT23-5L	Flip-Chip	Unit
$R_{thj\text{-}case}$	Thermal Resistance Junction-case	81		°C/W
$R_{thj\text{-}amb}$	Thermal Resistance Junction-ambient	255	170	°C/W

CONNECTION DIAGRAM (top view for SOT, top through view for Flip-Chip)


PIN DESCRIPTION

Pin N° SOT23-5L	Pin N° Flip-Chip	Symbol	Name and Function
1	4	V_I	Input Voltage of the LDO
2	2	GND	Common Ground
3	1	V_{INH}	Inhibit Input Voltage: ON MODE when $V_{INH} \geq 1.2V$, OFF MODE when $V_{INH} \leq 0.4V$ (Do not leave floating, not internally pulled down/up)
4	5	BYPASS	Bypass Pin: Connect an external capacitor (usually 10nF) to minimize noise voltage
5	3	V_O	Output Voltage of the LDO

ORDERING CODES

SOT23-5L	Flip-Chip	OUTPUT VOLTAGES
LD3985M125	LD3985J125	1.25 V
LD3985M135	LD3985J135	1.35 V
LD3985M15	LD3985J15	1.5 V
LD3985M18	LD3985J18	1.8 V
LD3985M20	LD3985J20	2.0 V
LD3985M21	LD3985J21	2.1 V
LD3985M22	LD3985J22	2.2 V
LD3985M24	LD3985J24	2.4 V
LD3985M25	LD3985J25	2.5 V
LD3985M26	LD3985J26	2.6 V
LD3985M27	LD3985J27	2.7 V
LD3985M28	LD3985J28	2.8 V
LD3985M285	LD3985J285	2.85 V
LD3985M29	LD3985J29	2.9 V
LD3985M30	LD3985J30	3.0 V
LD3985M31	LD3985J31	3.1 V
LD3985M32	LD3985J32	3.2 V
LD3985M33	LD3985J33	3.3 V
LD3985M47	LD3985J47	4.7 V
LD3985M48	LD3985J48	4.8 V
LD3985M49	LD3985J49	4.9 V
LD3985M50	LD3985J50	5.0 V

TYPICAL APPLICATION CIRCUIT

LD3985 SERIES

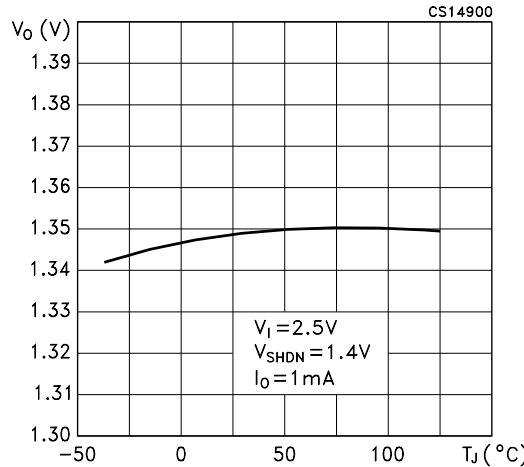
ELECTRICAL CHARACTERISTICS FOR LD3985 ($T_j = 25^\circ\text{C}$, $V_I = V_{O(\text{NOM})} + 0.5\text{V}$, $C_I = 1\mu\text{F}$, $C_{\text{BYP}} = 10\text{nF}$, $I_O = 1\text{mA}$, $V_{\text{INH}} = 1.4\text{V}$, unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
V_I	Operating Input Voltage			2.5		6	V
V_O	Output Voltage	$I_O = 1\text{ mA}$		-2		2	% of $V_{O(\text{NOM})}$
		$T_j = -40 \text{ to } 125^\circ\text{C}$		-3		3	
ΔV_O	Line Regulation (Note 1)	$V_I = V_{O(\text{NOM})} + 0.5 \text{ to } 6\text{V}$ $T_j = -40 \text{ to } 125^\circ\text{C}$		-0.1		0.1	%/V
		$V_O = 4.7 \text{ to } 5\text{V}$		-0.19		0.19	
ΔV_O	Load Regulation	$I_O = 1\text{ mA to } 150\text{mA}$ (for Flip Chip) $T_j = -40 \text{ to } 125^\circ\text{C}$			0.0004	0.002	%/mA
		$I_O = 1\text{ mA to } 150\text{mA}$, $T_j = -40 \text{ to } 125^\circ\text{C}$ (for SOT23-5L)			0.0025	0.005	
ΔV_O	Output AC Line Regulation	$V_I = V_{O(\text{NOM})} + 1\text{V}$, $I_O = 150\text{mA}$, $t_R = t_F = 30\mu\text{s}$			1.5		mV_{PP}
I_Q	Quiescent Current ON MODE: $V_{\text{INH}} = 1.2\text{V}$	$I_O = 0$			85		μA
		$I_O = 0$ $T_j = -40 \text{ to } 125^\circ\text{C}$				150	
		$I_O = 0 \text{ to } 150\text{mA}$				170	
		$I_O = 0 \text{ to } 150\text{mA}$ $T_j = -40 \text{ to } 125^\circ\text{C}$				250	
	OFF MODE: $V_{\text{INH}} = 0.4\text{V}$				0.003		
		$T_j = -40 \text{ to } 125^\circ\text{C}$				1.5	
V_{DROP}	Dropout Voltage (NOTE 1)	$I_O = 1\text{mA}$			0.4		mV
		$I_O = 1\text{mA}$ $T_j = -40 \text{ to } 125^\circ\text{C}$				2	
		$I_O = 50\text{mA}$				20	
		$I_O = 50\text{mA}$ $T_j = -40 \text{ to } 125^\circ\text{C}$				35	
		$I_O = 100\text{mA}$				45	
		$I_O = 100\text{mA}$ $T_j = -40 \text{ to } 125^\circ\text{C}$				70	
		$I_O = 150\text{mA}$				60	
		$I_O = 150\text{mA}$ $T_j = -40 \text{ to } 125^\circ\text{C}$				100	
I_{SC}	Short Circuit Current	$R_L = 0$			600		mA
SVR	Supply Voltage Rejection	$V_I = V_{O(\text{NOM})} + 0.25\text{V} \pm$		$f = 1\text{KHz}$		60	dB
		$V_{\text{RIPPLE}} = 0.1\text{V}$, $I_O = 50\text{mA}$		$f = 10\text{KHz}$		50	
$I_{O(\text{PK})}$	Peak Output Current	$V_O \geq V_{O(\text{NOM})} - 5\%$		300	550		mA
V_{INH}	Inhibit Input Logic Low	$V_I = 2.5\text{V to } 6\text{V}$ $T_j = -40 \text{ to } 125^\circ\text{C}$				0.4	V
	Inhibit Input Logic High					1.2	
I_{INH}	Inhibit Input Current	$V_{\text{INH}} = 0.4\text{V}$ $V_I = 6\text{V}$				± 1	nA
$e\text{N}$	Output Noise Voltage	$B_W = 10\text{ Hz to } 100\text{ KHz}$ $C_O = 1\mu\text{F}$			30		μV_{RMS}
t_{ON}	Turn On Time (Note 4)	$C_{\text{BYP}} = 10\text{nF}$			200		μs
T_{SHDN}	Thermal Shutdown	Note 5			160		$^\circ\text{C}$
C_O	Output Capacitor	Capacitance (Note 6)		1		22	μF
		ESR		5		5000	$\text{m}\Omega$

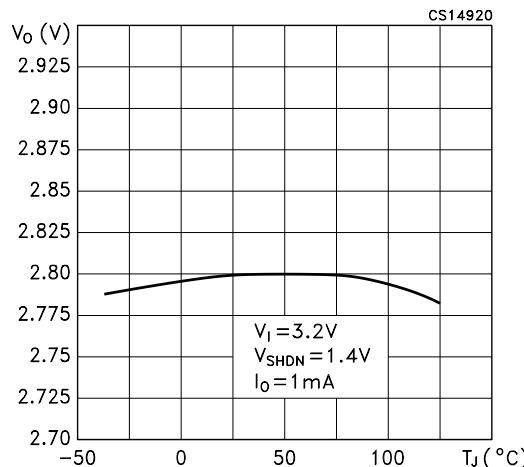
Note 1 – For $V_{O(\text{NOM})} < 2\text{V}$, $V_I = 2.5\text{V}$

Note 2 – For $V_{O(\text{NOM})} = 1.25\text{V}$, $V_I = 2.5\text{V}$

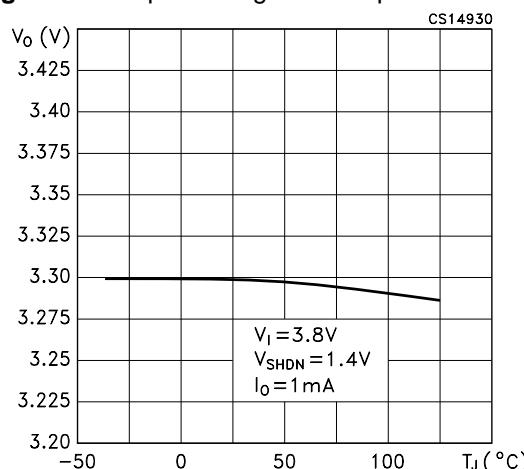
Note 3 – Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification does not apply for input voltages below 2.5V.

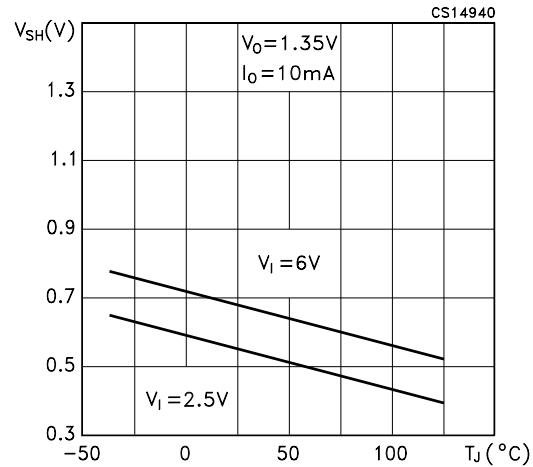

Note 4 – Turn-on time is time measured between the enable input just exceeding V_{INH} High Value and the output voltage just reaching 95% of its nominal value

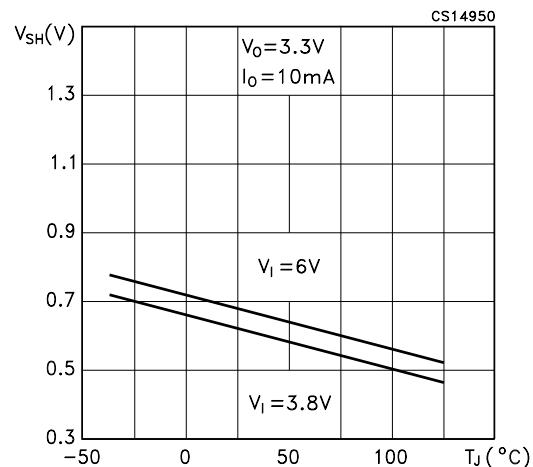
Note 5 – Typical thermal protection hysteresis is 20°C


Note 6 - The minimum capacitor value is $1\mu\text{F}$, anyway the LD3985 is still stable if the compensation capacitor has a 30% tolerance in all temperature range.

TYPICAL PERFORMANCE CHARACTERISTICS ($T_J = 25^\circ\text{C}$, $V_I = V_O(\text{NOM}) + 0.5\text{V}$, $C_I = C_O = 1\mu\text{F}$, $C_{\text{BYP}} = 10\text{nF}$, $I_O = 1\text{mA}$, $V_{\text{INH}} = 1.4\text{V}$, unless otherwise specified)


Figure 1 : Output Voltage vs Temperature


Figure 2 : Output Voltage vs Temperature


Figure 3 : Output Voltage vs Temperature

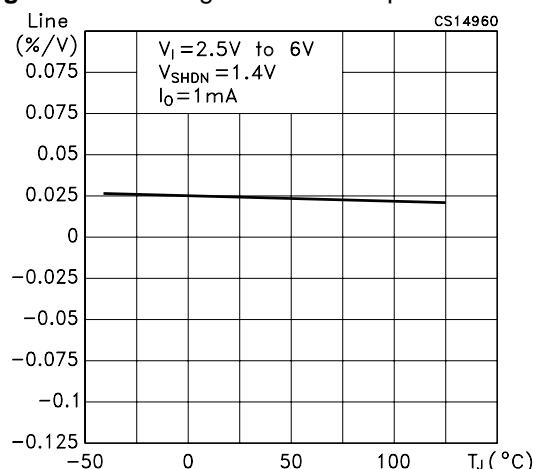

Figure 4 : Shutdown Voltage vs Temperature

Figure 5 : Shutdown Voltage vs Temperature

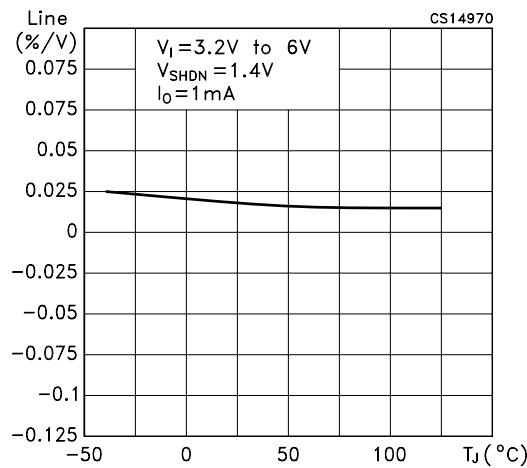
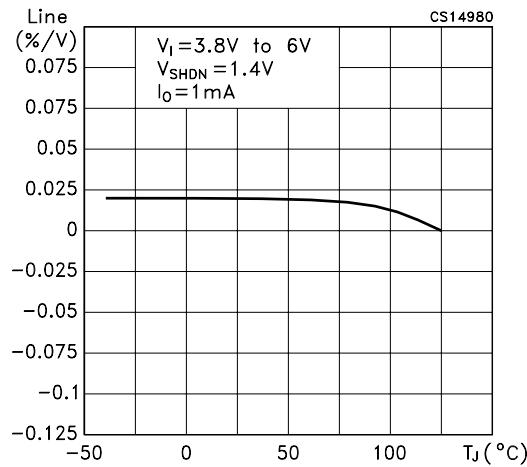
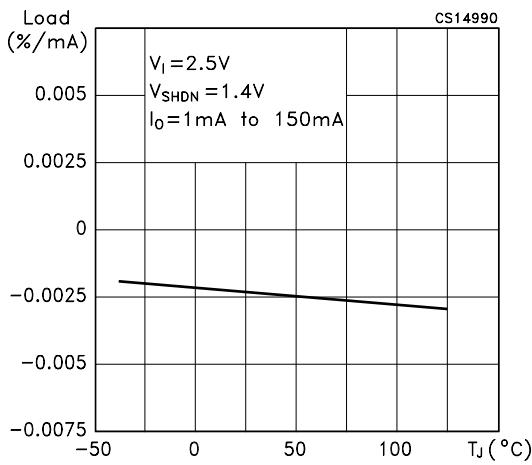
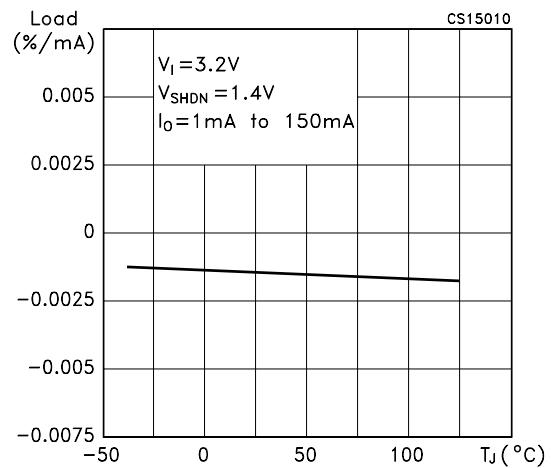


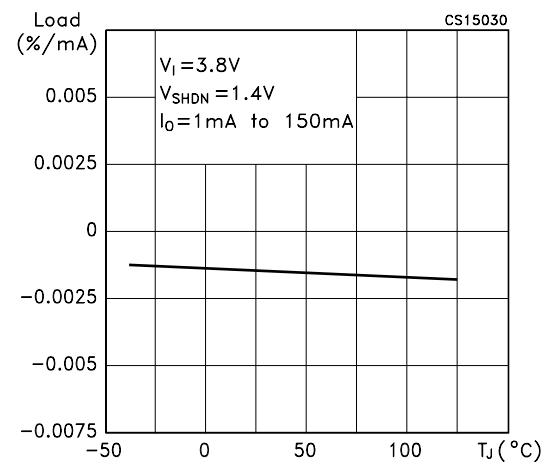
Figure 6 : Line Regulation vs Temperature

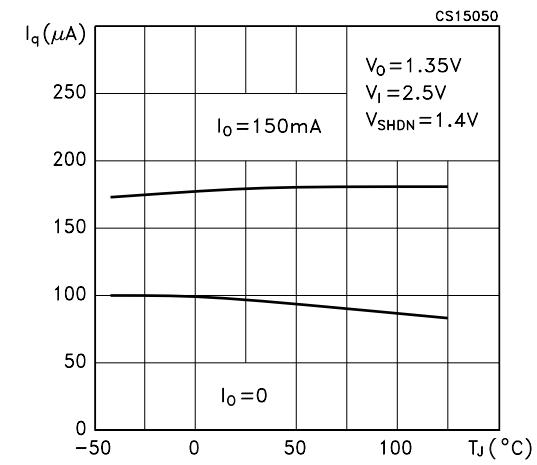


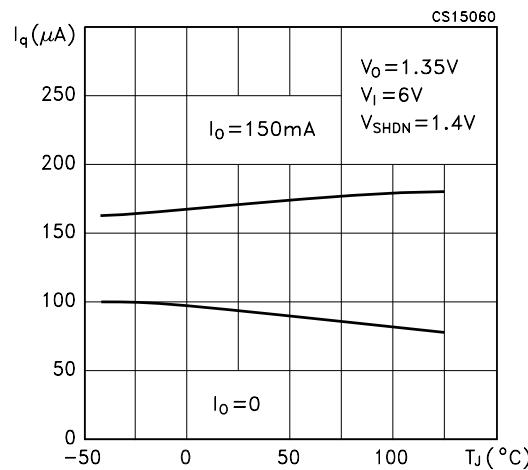
LD3985 SERIES

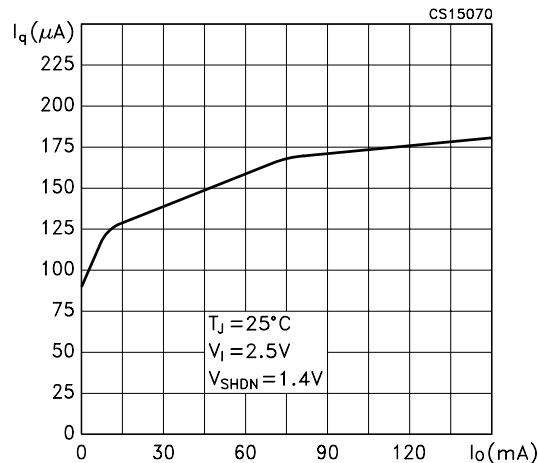

Figure 7 : Line Regulation vs Temperature

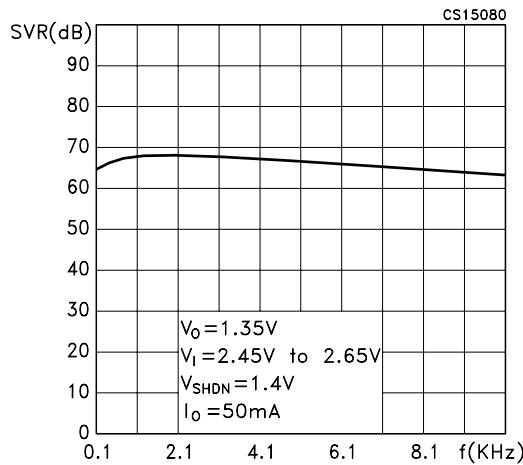

Figure 8 : Line Regulation vs Temperature

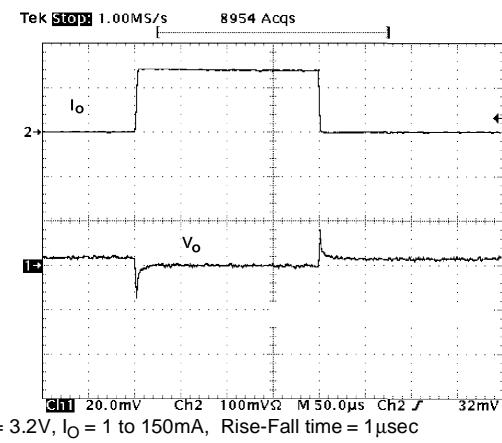

Figure 9 : Load Regulation vs Temperature

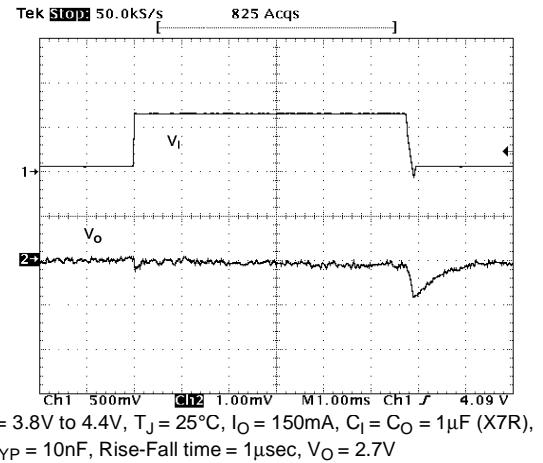

Figure 10 : Load Regulation vs Temperature


Figure 11 : Load Regulation vs Temperature


Figure 12 : Quiescent Current vs Temperature


Figure 13 : Quiescent Current vs Temperature


Figure 14 : Quiescent Current vs Temperature


Figure 15 : Supply Voltage Rejection vs Frequency

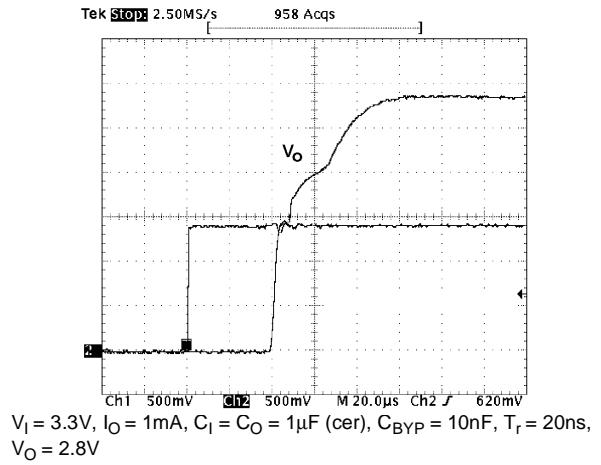
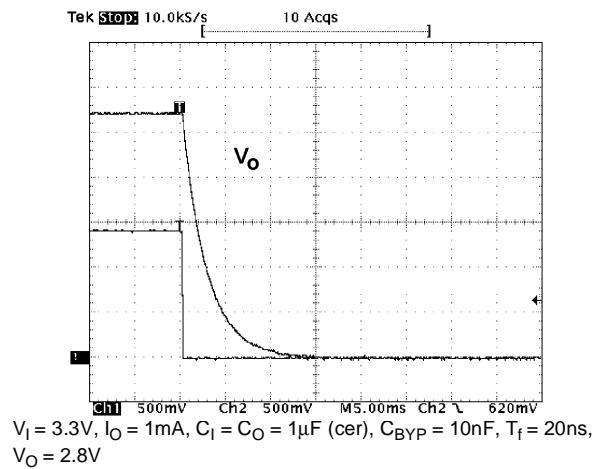

Figure 16 : Load Transient Response

Figure 17 : Line Transient Response


Figure 18 : START-UP

LD3985 SERIES

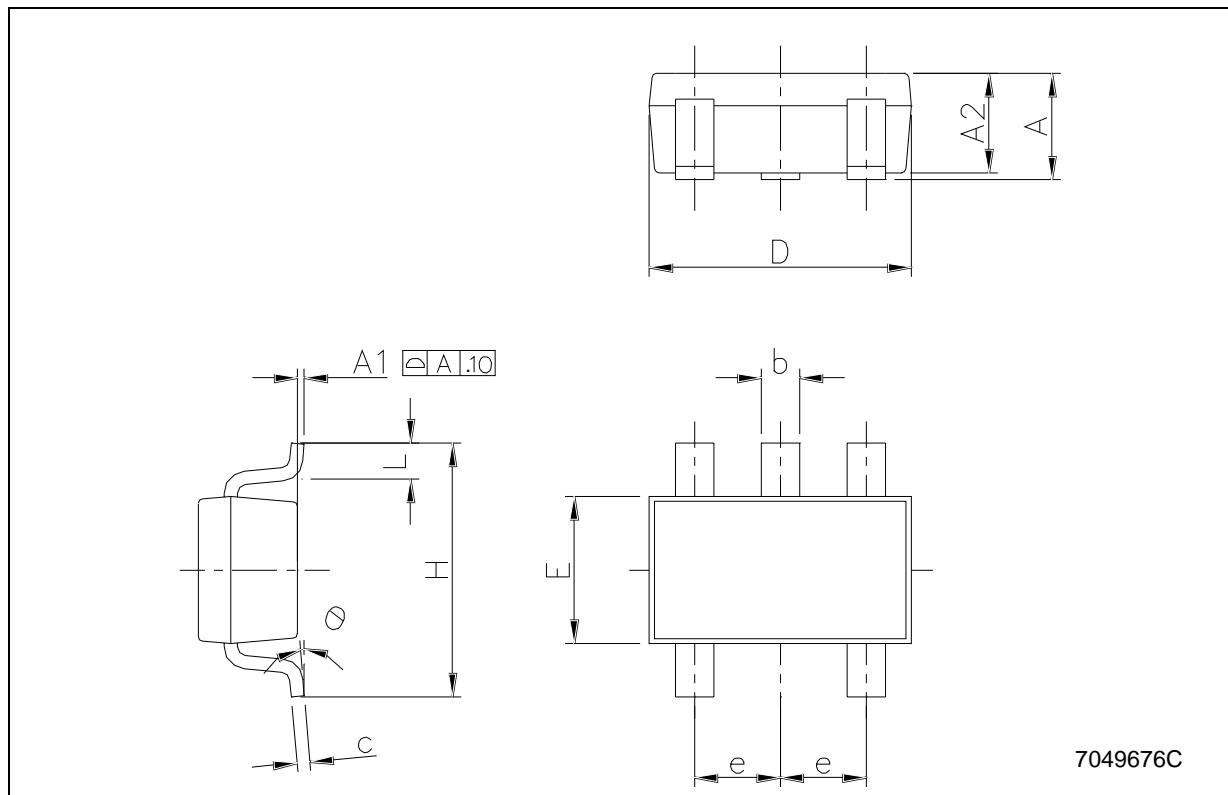
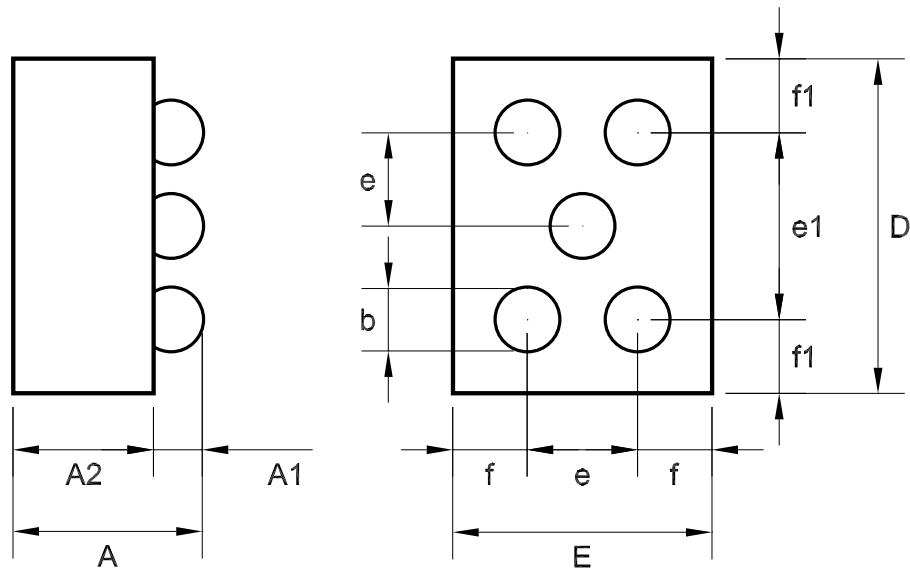
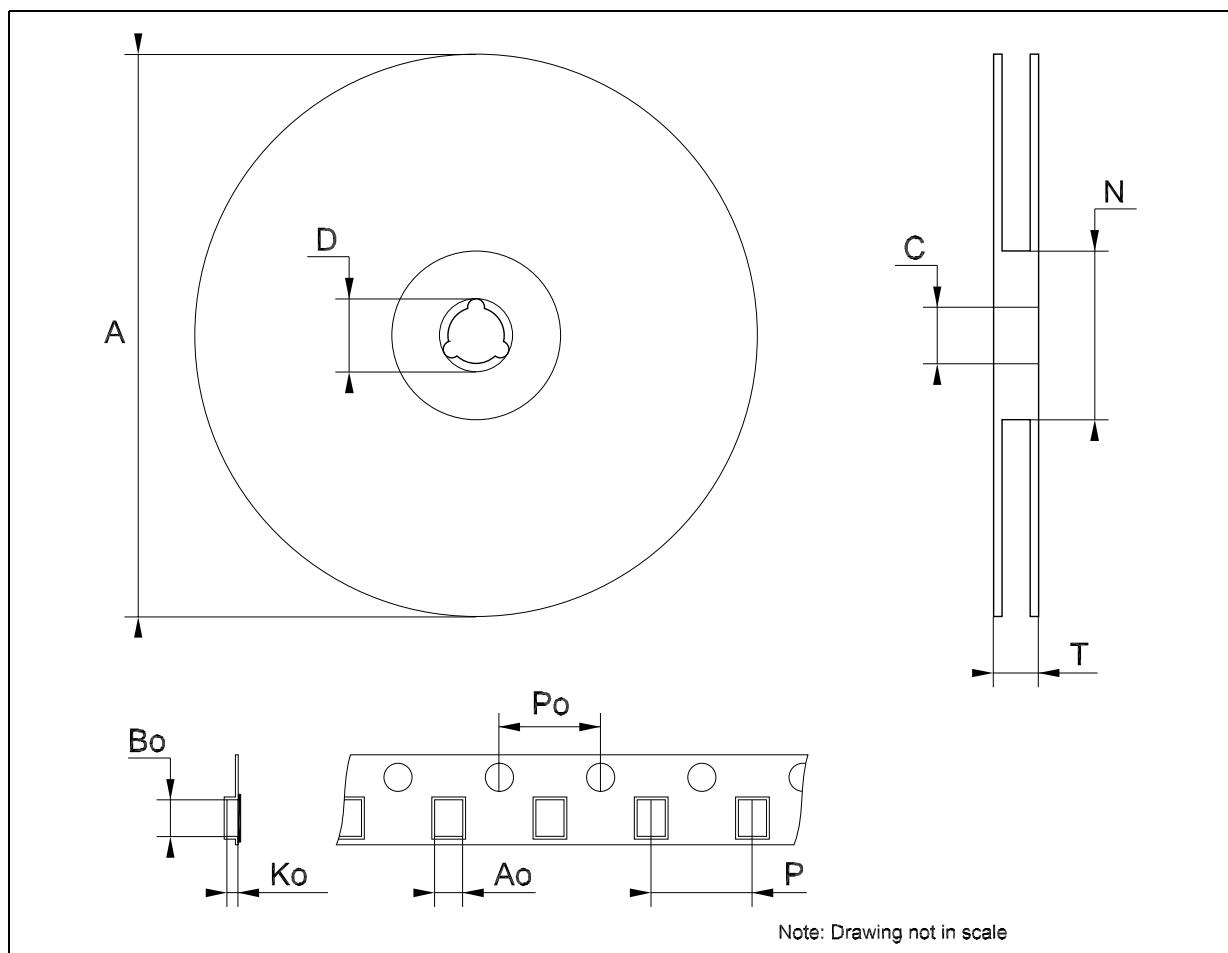


Figure 19 : TURN-OFF


SOT23-5L MECHANICAL DATA

DIM.	mm.			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	0.90		1.45	35.4		57.1
A1	0.00		0.10	0.0		3.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
C	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	1.50		1.75	59.0		68.8
e		0.95			37.4	
H	2.60		3.00	102.3		118.1
L	0.10		0.60	3.9		23.6


Flip-Chip5 MECHANICAL DATA

DIM.	mm.			mils		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	0.835	0.9	0.965	32.874	35.433	37.992
A1	0.21	0.25	0.29	8.268	9.843	11.417
A2	0.625	0.65	0.675	24.606	25.591	26.575
b	0.265	0.315	0.365	10.433	12.402	14.370
D	1.510	1.540	1.570	59.449	60.630	61.811
E	1.16	1.19	1.22	45.669	46.850	48.031
e	0.45	0.5	0.55	17.717	19.685	21.654
e1	0.816	0.866	0.916	32.126	34.094	36.063
f		0.345			13.583	
f1		0.337			13.268	

Tape & Reel SOT23-xL MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			180			7.086
C	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
T			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Bo	3.07	3.17	3.27	0.120	0.124	0.128
Ko	1.27	1.37	1.47	0.050	0.054	0.058
Po	3.9	4.0	4.1	0.153	0.157	0.161
P	3.9	4.0	4.1	0.153	0.157	0.161

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© <http://www.st.com>