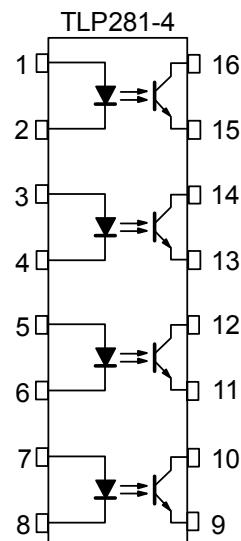
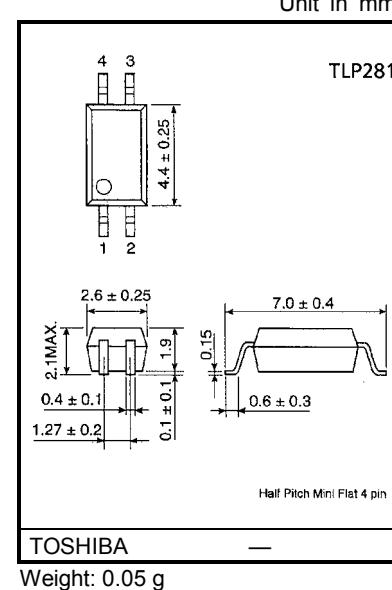


TLP281,TLP281-4


**PROGRAMMABLE CONTROLLERS
AC/DC-INPUT MODULE
PC CARD MODEM(PCMCIA)**

TLP281 and TLP281-4 is a very small and thin coupler,suitable for surface mount assembly in applications such as PCMCIA Fax modem,programmable controllers.



TLP281 and TLP281-4 consist of photo transistor, optically coupled to a gallium arsenide infrared emitting diode.

1:ANODE
2:CATHODE
3:EMITTER
4:COLLECTOR

1,3,5,7 :ANODE
2,4,6,8 :CATHODE
9,11,13,15 :EMITTER
10,12,14,16 :COLLECTOR

TYPE	Classi- Fication(*1)	Current Transfer Ration (%) (I_C / I_F)		Marking of Classification	
		$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}, Ta = 25^\circ\text{C}$			
		Min	Max		
TLP281	Blank	50	600	Blank ,Y [■] ,YE,G,G [■] ,GR,B,BL,GB	
	Rank Y	50	150	YE	
	Rank GR	100	300	GR	
	Rank BL	200	600	BL	
	Rank GB	100	600	GB	
	Rank YH	75	150	Y [■]	
	Rank GRL	100	200	G	
	Rank GRH	150	300	G [■]	
	Rank BLL	200	400	B	
TLP281-4	Blank	50	600	Blank , GB	
	Rank GB	100	600	GB	

*1: Ex. rank GB: TLP281 (GB)

(Note): Application type name for certification test, please use standard product type name, i.e.

TLP281 (GB): TLP281-1 , TLP281-4 (GB): TLP281-4

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING		UNIT
		TLP281	TLP281-4	
LED	Forward Current	I _F	50	mA
	Forward Current Derating	ΔI _F /°C	-0.7 (Ta≥53°C) -0.5 (Ta≥25°C)	mA /°C
	Pulse Forward Current	I _{FP}	1	A
	Reverse Voltage	V _R	5	V
	Junction Temperature	T _j	125	°C
DETECTOR	Collector-Emitter Voltage	V _{CEO}	80	V
	Emitter-Collector Voltage	V _{ECO}	7	V
	Collector Current	I _C	50	mA
	Collector Power Dissipation (1 Circuit)	P _C	150	mW
	Collector Power Dissipation Derating(Ta≥25°C) (1 Circuit)	ΔP _C /°C	-1.5	-1.0
	Junction Temperature	T _j	125	°C
Operating Temperature Range		T _{opr}	-55~100	°C
Storage Temperature Range		T _{stg}	-55~125	°C
Lead Soldering Temperature		T _{sol}	260 (10s)	°C
Total Package Power Dissipation (1 Circuit)		P _T	200	170
Total Package Power Dissipation Derating (Ta≥25°C) (1 Circuit)		ΔP _T /°C	-2.0	-1.7
Isolation Voltage (Note1)	B _{VS}	2500(AC,1min,R.H.≤60%)		V _{rms}

(Note1)Device considered a two terminal device : LED side pins shorted together and DETECTOR side pins shorted together.

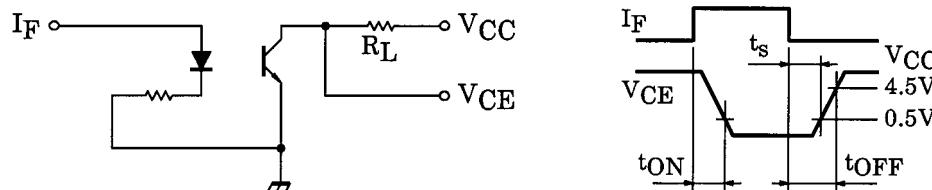
INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

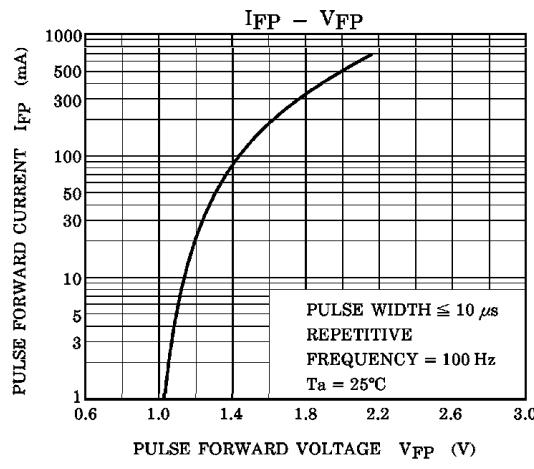
CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
LED	Forward Voltage	V _F	I _F = 10 mA	1.0	1.15	1.3	V
	Reverse Current	I _R	V _R = 5 V	—	—	10	μA
	Capacitance	C _T	V = 0, f = 1 MHz	—	30	—	pF
DETECTOR	Collector-Emitter Breakdown Voltage	V _{(BR) CEO}	I _C = 0.5 mA	80	—	—	V
	Emitter-Collector Breakdown Voltage	V _{(BR) ECO}	I _E = 0.1 mA	7	—	—	V
	Collector Dark Current (Note2)	I _{CEO}	V _{CE} = 48 V, Ambient Light Below (100 lx)	—	0.01 (2)	0.1 (10)	μA
			V _{CE} = 48 V, Ta = 85°C Ambient Light Below (100 lx)	—	2 (4)	50 (50)	μA
	Capacitance (Collector to Emitter)	C _{CE}	V = 0, f = 1 MHz	—	10	—	pF

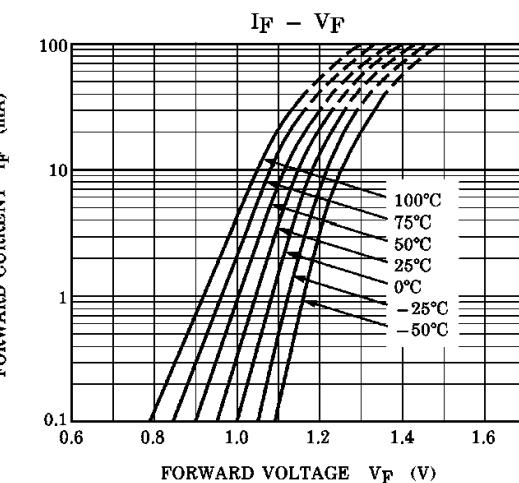
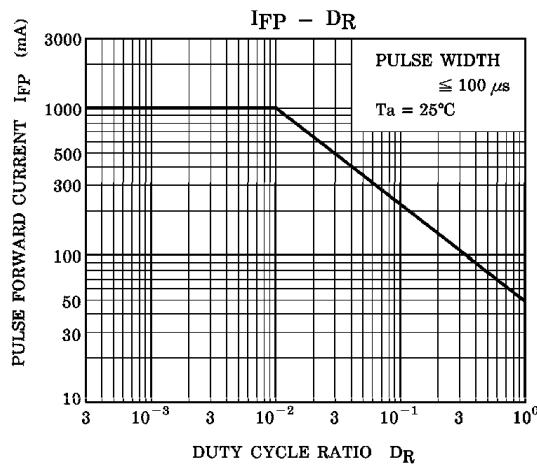
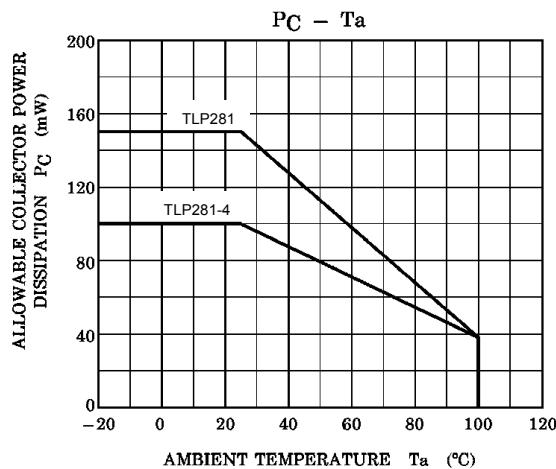
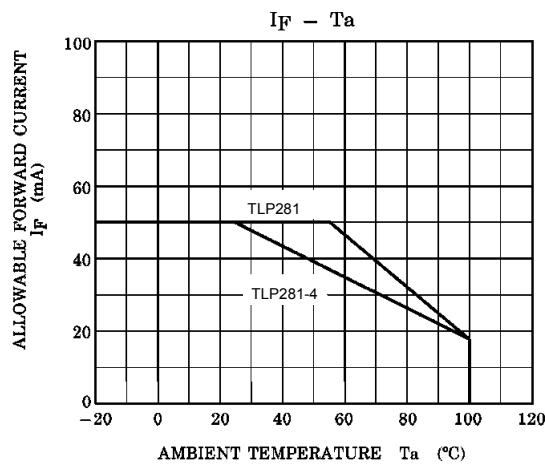
(Note 2) Because of the construction, leak current might be increased by ambient light.
Please use photocoupler with less ambient light.

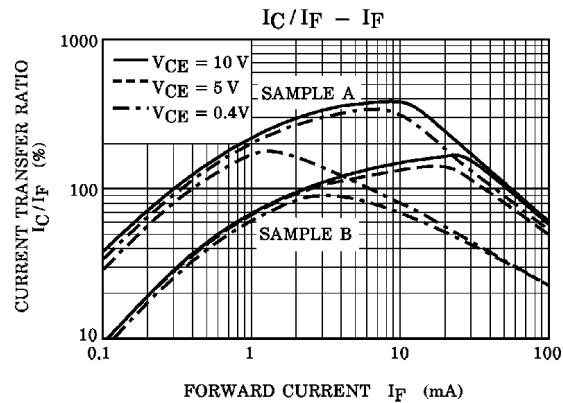
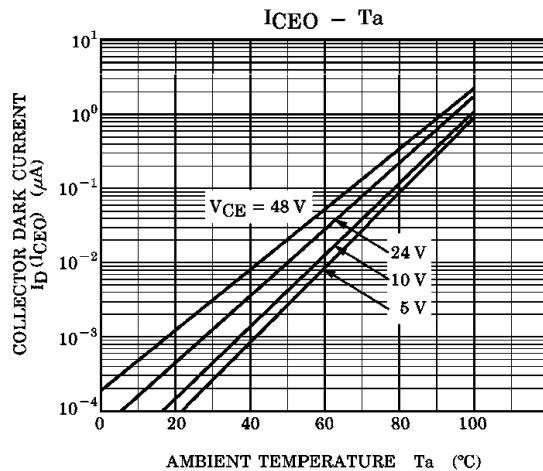
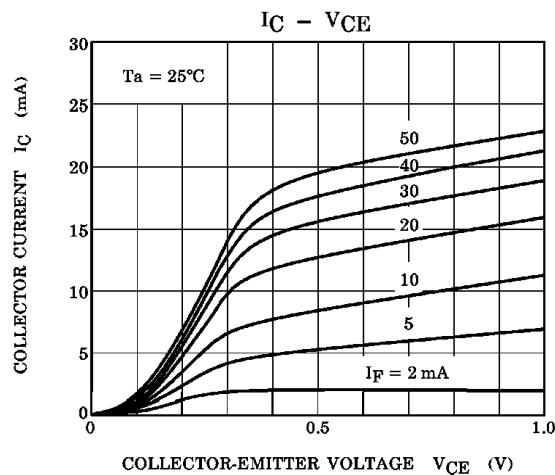
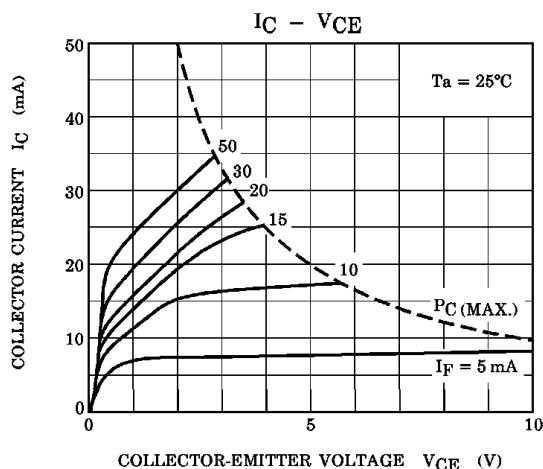
COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

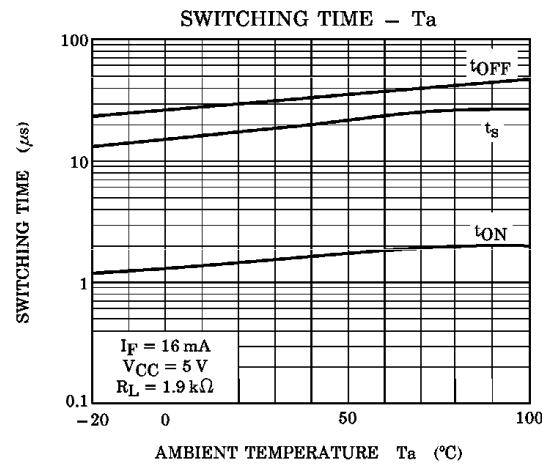
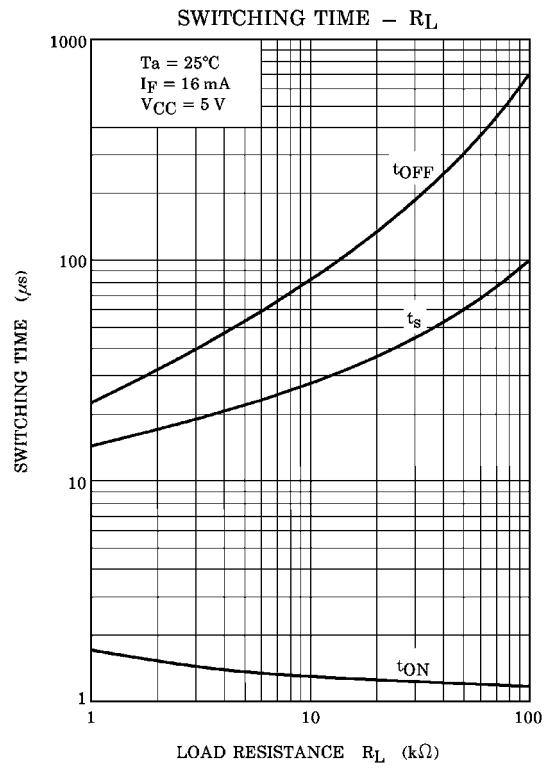
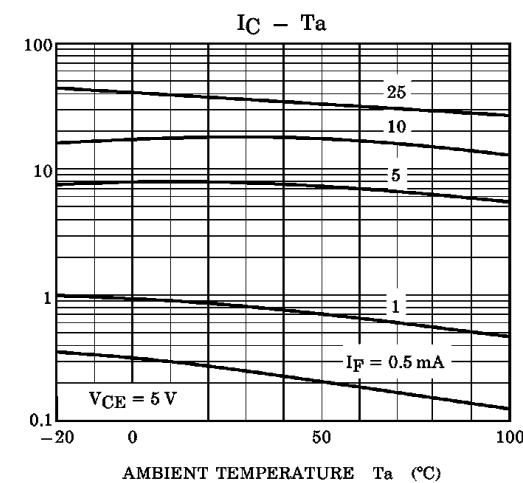
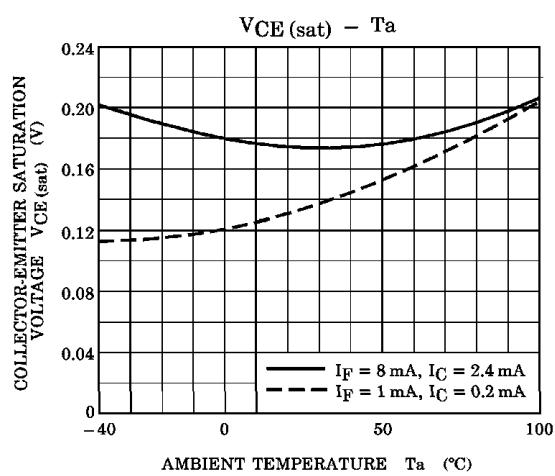
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Current Transfer Ratio	I_C / I_F	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$ Rank GB	50	—	600	%
			100	—	600	
Saturated CTR	$I_C / I_F(\text{sat})$	$I_F = 1 \text{ mA}, V_{CE} = 0.4 \text{ V}$ Rank GB	—	60	—	%
			30	—	—	
Collector-Emitter Saturation Voltage	$V_{CE}(\text{sat})$	$I_C = 2.4 \text{ mA}, I_F = 8 \text{ mA}$	—	—	0.4	V
		$I_C = 0.2 \text{ mA}, I_F = 1 \text{ mA}$ Rank GB	—	0.2	—	
Off-State Collector Current	$I_C(\text{off})$	$V_F = 0.7 \text{ V}, V_{CE} = 48 \text{ V}$	—	—	10	μA


ISOLATION CHARACTERISTICS (Ta = 25°C)







CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance (Input to Output)	C_S	$V_S = 0 \text{ V}, f = 1 \text{ MHz}$	—	0.8	—	pF
Isolation Resistance	R_S	$V_S = 500 \text{ V}, R.H. \leq 60\%$	5×10^{10}	10^{14}	—	Ω
Isolation Voltage	BV_S	AC, 1 minute	2500	—	—	Vrms
		AC, 1 second, in OIL	—	5000	—	
		DC, 1 minute, in OIL	—	5000	—	Vdc





SWITCHING CHARACTERISTICS (Ta = 25°C)





CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Rise Time	t_r	$V_{CC} = 10 \text{ V}, I_C = 2 \text{ mA}$ $R_L = 100\Omega$	—	2	—	μs
Fall Time	t_f		—	3	—	
Turn-On Time	t_{ON}		—	3	—	
Turn-Off Time	t_{OFF}		—	3	—	
Turn-On Time	t_{ON}	$R_L = 1.9 \text{ k}\Omega$ (Fig.1) $V_{CC} = 5 \text{ V}, I_F = 16 \text{ mA}$	—	2	—	μs
Storage Time	t_s		—	25	—	
Turn-Off Time	t_{OFF}		—	40	—	

(Fig.1)SWITCHING TIME TEST CIRCUIT

RESTRICTIONS ON PRODUCT USE

030619EBC

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.