

μ A96172 • μ A96174

Quad Differential Line Drivers

Linear Division Interface Products

Description

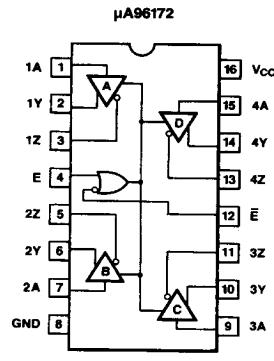
The μ A96172 and μ A96174 are high speed quad differential line drivers designed to meet EIA Standard RS-485. The devices have three-state outputs and are optimized for balanced multipoint data bus transmission at rates up to 10 Mbps. The drivers have wide positive and negative common mode range for multipoint applications in noisy environments. Positive and negative current-limiting is provided which protects the drivers from line fault conditions over a +12 V to -7.0 V common mode range. A thermal shutdown feature is also provided and occurs at junction temperature of approximately 160°C. The μ A96172 features an active high and active low Enable, common to all four drivers. The μ A96174 features separate active high Enables for each driver pair. Compatible RS-485 receivers, transceivers, and repeaters are also offered by Fairchild and are designed to provide optimum bus performance. The respective device types are μ A96173/96175, μ A96176, and μ A96177/96178.

- Meets EIA Standard RS-485 And RS-422A
- Monotonic Differential Output Switching
- Transmission Rate To 10 Mbs
- Three-State Outputs
- Designed For Multipoint Bus Transmission
- Common Mode Output Voltage Range: -7.0 V To +12 V
- Operates From Single +5.0 V Supply
- Thermal Shutdown Protection
- μ A96172/96174 Are Lead And Function Compatible with the SN75172/75174 or the AM26LS31/MC3487 respectively

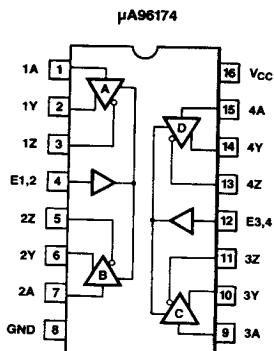
Function Table (Each Driver) μ A96172

Input A	Enables		Outputs	
	E	\bar{E}	Y	Z
H	H	X	H	L
L	H	X	L	H
H	X	L	H	L
L	X	L	L	H
X	L	H	Z	Z

Function Table (Each Driver) μ A96174


Input	Enable	Outputs	
		Y	Z
H	H	H	L
L	H	L	H
X	L	Z	Z

H = High Level


L = Low Level

X = Immaterial

Z = High Impedance (off)

Connection Diagram16-Lead DIP
(Top View)

CD00381F

CD00391F

Order Information

Device Code	Package Code	Package Description
μ A96172DC	7B	Ceramic DIP
μ A96172PC	9B	Molded DIP
μ A96174DC	7B	Ceramic DIP
μ A96174PC	9B	Molded DIP

Absolute Maximum Ratings

Storage Temperature Range

Ceramic DIP -65°C to +175°C
Molded DIP -65°C to +150°C

Operating Temperature Range

0°C to +70°C

Lead Temperature

Ceramic DIP (soldering, 60 s) 300°C
Molded DIP (soldering, 10 s) 265°C

Internal Power Dissipation^{1, 2}

16L-Ceramic DIP 1.50 W
16L-Molded DIP 1.04 W

Supply Voltage³

7.0 V

Enable Input Voltage

5.5 V

Notes

1. T_J Max = 150°C for the Molded DIP, and 175°C for the Ceramic DIP.
2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L-Ceramic DIP at 10 mW/°C, and the 16L-Molded DIP at 8.3 mW/°C.
3. All voltages are with respect to network ground terminal.

Recommended Operating Conditions

Symbol	Characteristic	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
V_{OC}	Common Mode Output Voltage	-7.0 ¹		+12.0	V
I_{OH}	Output Current HIGH			-60	mA
I_{OL}	Output Current LOW			60	mA
T_A	Operating Temperature	0	25	70	°C

Note

1. The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.

μA96172, μA96174

Electrical Characteristics Over recommended temperature and supply voltage ranges, unless otherwise specified.

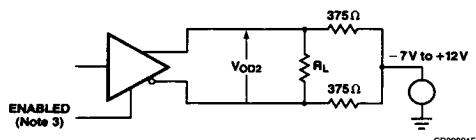
Symbol	Characteristic	Condition	Min	Typ ¹	Max	Unit
V_{IH}	Input Voltage HIGH		2.0			V
V_{IL}	Input Voltage LOW				0.8	V
V_{OH}	Output Voltage HIGH	$I_{OH} = -20\text{mA}$		3.1		V
V_{OL}	Output Voltage LOW	$I_{OL} = 20\text{mA}$		0.8		V
V_{IC}	Input Clamp Voltage	$I_I = -18\text{ mA}$			-1.5	V
$ V_{OD1} $	Differential Output Voltage	$I_O = 0\text{ mA}$			6.0	V
$ V_{OD2} $	Differential Output Voltage	$R_L = 54\text{ }\Omega$, Fig. 1a $R_L = 100\text{ }\Omega$, Fig. 1b	1.5 2.0	2.0 2.3		V V
$\Delta V_{OD} $	Change in Magnitude of Differential Output Voltage ²	$R_L = 54\text{ }\Omega$ or $100\text{ }\Omega$, Fig. 1b			± 0.2	V

μ A96172, μ A96174 (Cont.)

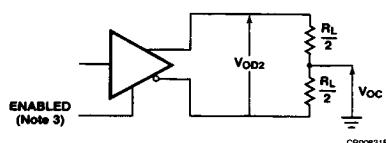
Electrical Characteristics Over recommended temperature and supply voltage ranges, unless otherwise specified.

Symbol	Characteristic	Condition	Min	Typ ¹	Max	Unit	
V_{OC}	Common Mode Output Voltage ³				3.0	V	
$\Delta V_{OC} $	Change in Magnitude of Common Mode Output Voltage ²				± 0.2	V	
I_O	Output Current with Power off	$V_{CC} = 0$ V, $V_O = -7.0$ V to 12 V			± 100	μ A	
I_{OZ}	High Impedance State Output Current	$V_O = -7.0$ V to 12 V		± 50	± 200	μ A	
I_{IH}	Input Current HIGH	$V_I = 2.7$ V			20	μ A	
I_{IL}	Input Current LOW	$V_I = 0.5$ V			-100	μ A	
I_{OS}	Short Circuit Output Current	$V_O = -7.0$ V			-250	mA	
		$V_O = 0$ V			-150		
		$V_O = V_{CC}$			150		
		$V_O = 12$ V			250		
I_{CC}	Supply Current (all drivers)	No load	Outputs Enabled		50	70	mA
			Outputs Disabled		50	60	

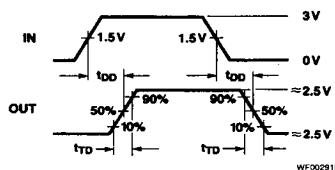
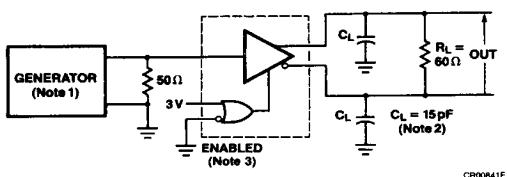
Switching Characteristics $V_{CC} = 5.0$ V, $T_A = 25^\circ$ C

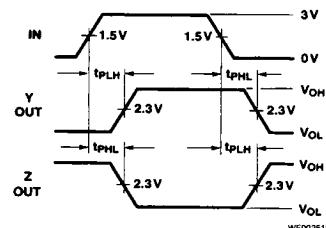
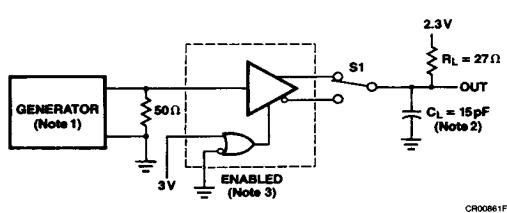

Symbol	Characteristic	Condition	Min	Typ	Max	Unit
t_{DD}	Differential Output Delay Time	$R_L = 60$ Ω , Fig. 2		15	25	ns
t_{TD}	Differential Output Transition Time			15	25	ns
t_{PLH}	Propagation Delay Time, Low-to-High Level Output	$R_L = 27$ Ω , Fig. 3		12	20	ns
t_{PHL}	Propagation Delay Time, High-to-Low Level Output			12	20	ns
t_{PZH}	Output Enable Time to High Level	$R_L = 110$ Ω , Fig. 4		30	45	ns
t_{PZL}	Output Enable Time to Low Level	$R_L = 110$ Ω , Fig. 5		30	45	ns
t_{PHZ}	Output Disable Time from High Level	$R_L = 110$ Ω , Fig. 4		25	35	ns
t_{PLZ}	Output Disable Time from Low Level	$R_L = 110$ Ω , Fig. 5		30	45	ns

Notes


1. All typical values are $V_{CC} = 5.0$ V and $T_A = 25^\circ$ C.
2. $\Delta|V_{OP}|$ and $\Delta|V_{OC}|$ are the changes in magnitude of V_{OP} and V_{OC} respectively, that occur when the input is changed from a high level to a low level.
3. In EIA Standard RS-422A and RS-485, V_{OC} , which is the average of the two output voltages with respect to ground, is called output offset voltages, V_{OS} .

Parameter Measurement Information



Figure 1a Differential Output Voltage with Varying Common Mode Voltage



Figure 1b Differential and Common Mode Output Voltage

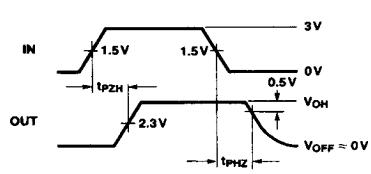
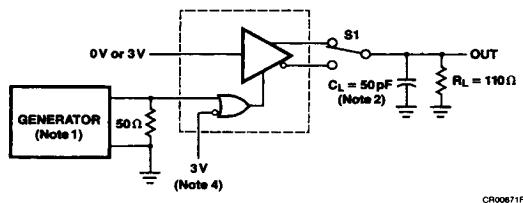
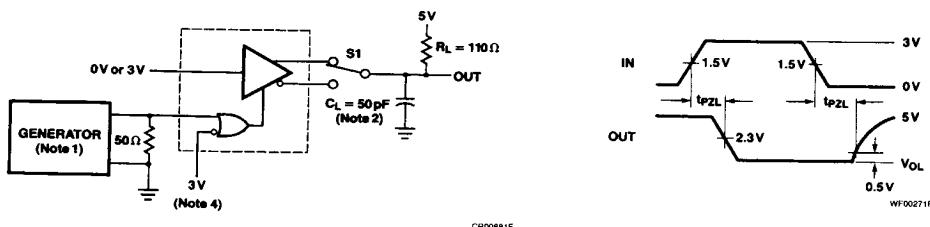
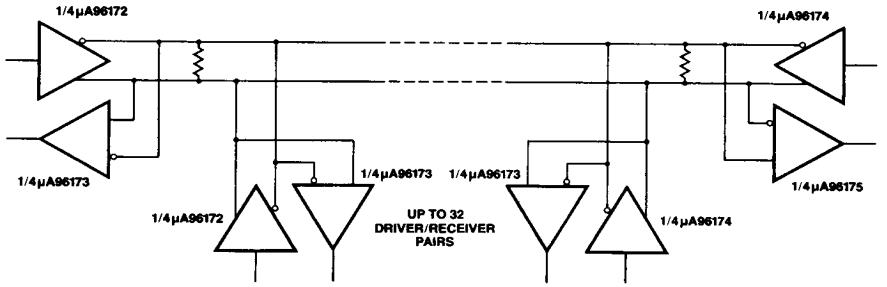


Figure 2 Differential Output Delay and Transition Times

Figure 3 Propagation Delay Times


Figure 4 t_{pZH} and t_{pHZ}

Parameter Measurement Information (Cont.)


Figure 5 t_{PZL} and t_{PLZ}

Notes

1. The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, duty cycle = 50%, $t_r \leq 5.0$ ns, $t_f \leq 5.0$ ns, $Z_O = 50 \Omega$.
2. C_L includes probe and jig capacitance.
3. μ A96172 with active high and active low Enables is shown here. μ A96174 has active high Enable only.
4. To test the active low Enable E of μ A96172, ground E and apply an inverted waveform to E . μ A96174 has active high Enable only.

Typical Application

Note

The line length should be terminated at both ends in its characteristic impedance.
Stub lengths off the main line should be kept as short as possible.