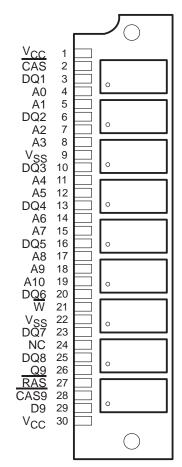
- Organization . . . 4194304 × 9
- Single 5-V Power Supply (±10% Tolerance)
- 30-Pin Single In-Line Memory Module (SIMM) for Use With Sockets
- Utilizes Nine 4-Megabit Dynamic RAMs in Plastic Small-Outline J-Lead Packages (SOJs)
- Long Refresh Period
 16 ms (1024 Cycles)
- All Inputs, Outputs, and Clocks Fully TTL Compatible
- 3-State Outputs
- Performance Ranges:

	ACCESS	ACCESS	ACCESS	READ
	TIME	TIME	TIME	OR
	(tRAC)	(tCAC)	(t _{AA})	WRITE
				CYCLE
	(MAX)	(MAX)	(MAX)	(MIN)
'4100EAD9-60	60 ns	15 ns	30 ns	110 ns
'4100EAD9-70	70 ns	18 ns	35 ns	130 ns
'4100EAD9-80	80 ns	20 ns	40 ns	150 ns

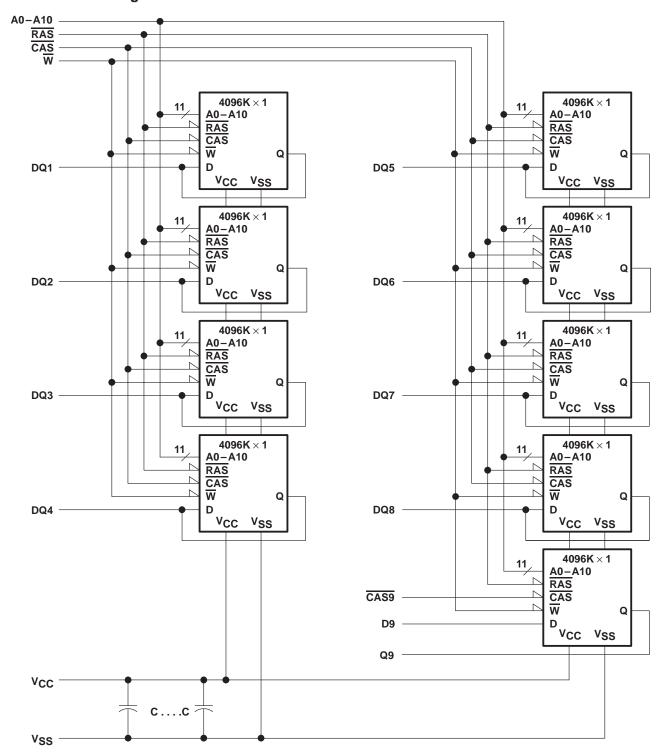
- Common CAS Control for Eight Common Data-In and Data-Out Lines
- Separate CAS Control for One Separate Pair of Data-In and Data-Out Lines
- Low Power Dissipation
- Operating Free-Air Temperature Range 0°C to 70°C


description

The TM4100EAD9 is a dynamic random-access memory module organized as 4194304×9 [bit nine (D9, Q9) is generally used for parity and is controlled by $\overline{\text{CAS9}}$] in a 30-pin leadless single in-line memory module (SIMM).

This module is composed of nine TMS44100DJ, 4194304×1-bit dynamic RAMs (DRAMs) each in a 20/26-lead plastic small-outline J-lead package (SOJ) mounted on a substrate with decoupling capacitors.

The TM4100EAD9 is characterized for operation from 0°C to 70°C and is available in the AD single-sided, leadless module for use with sockets.


SINGLE IN-LINE MODULE (TOP VIEW)

PIN NOMENCLATURE

A0-A10	Address Inputs
CAS, CAS9	Column-Address Strobe
DQ1-DQ8	Data In/Data Out
D9	Data In
NC	No Internal Connection
Q9	Data Out
RAS	Row-Address Strobe
VCC	5-V Supply
V_{SS}	Ground
W	Write Enable

functional block diagram

SMMS419C - NOVEMBER 1991 - REVISED JUNE 1995

operation

The TM4100EAD9 operates as nine TMS44100DJs connected as shown in the functional block diagram. Refer to the TMS44100 data sheet for details of its operation. The common I/O feature of the TM4100EAD9 dictates the use of early-write cycles to prevent contention on D and Q.

single in-line memory module and components

PC substrate: 1,27 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage

Bypass capacitors: Multilayer ceramic

Contact area for socketable devices: Nickel plate and solder plate over copper

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Voltage range on any pin (see Note 1)	– 1 V to 7 V
Voltage range on V _{CC} (see Note 1)	– 1 V to 7 V
Short-circuit output current	50 mA
Power dissipation	9 W
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg} – 5	5°C to 125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2.4		6.5	V
VIL	Low-level input voltage (see Note 2)	- 1		0.8	V
TA	Operating free-air temperature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	DADAMETED	TEST COMPLIANCE	'4100E	AD9-60	'4100EAD9-70		'4100EAD9-80		UNIT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNII
Vон	High-level output voltage	I _{OH} = - 5 mA	2.4		2.4		2.4		V
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4		0.4		0.4	V
lį	Input current (leakage)	V_{CC} = 5.5 V, V_I = 0 V to 6.5 V, All others = 0 V to V_{CC}		±10		±10		±10	μΑ
IO	Output current (leakage)	$\frac{V_{CC}}{CAS}$ = 5.5 V, V_{O} = 0 V to V_{CC} ,		±10		±10		±10	μΑ
I _{CC1}	Read- or write-cycle current (see Note 3)	V _{CC} = 5.5 V, Minimum cycle		945		810		720	mA
laga	Standby current	After 1 memory cycle, RAS and CAS high, VIH = 2.4 V (TTL)		18		18		18	mA
ICC2	Standby current	After 1 memory cycle, RAS and CAS high, VIH = VCC - 0.2 V (CMOS)		9		9		9	mA
I _{CC3}	Average refresh current (RAS only or CBR) (see Note 3)	V _{CC} = 5.5 V, Minimum cycle, RAS cycling, CAS high (RAS only), RAS low after CAS low (CBR)		945		810		720	mA
I _{CC4}	Average page current (see Note 4)	$\frac{\text{V}_{CC}}{\text{RAS}} = 5.5 \text{ V}, \qquad \frac{\text{t}_{PC}}{\text{CAS}} = \text{minimum},$		810		720		630	mA

NOTES: 3. Measured with a maximum of one address change while $\overline{RAS} = V_{II}$

4. Measured with a maximum of one address change while $\overline{CAS} = V_{IH}$

NOTE 1: All voltage values are with respect to VSS.

capacitance over recommended ranges of supply voltage and operating free-air temperature, f = 1 MHz (see Note 5)

	PARAMETER	MIN	MAX	UNIT
C _{i(A)}	Input capacitance, A0-A10		45	pF
C _{i(D)}	Input capacitance, data input (pin D9)		5	pF
C _{i(RC)}	Input capacitance, CAS and RAS		63	pF
C _{i(W)}	Input capacitance, $\overline{\mathbb{W}}$		63	pF
C _{o(DQ)}	Output capacitance, DQ1-Q8		12	pF
CO	Output capacitance, Q9		7	pF

NOTE 5: V_{CC} = 5 V \pm 0.5 V and the bias on pins under test is 0 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER		'4100EAD9-60		'4100EAD9-70		'4100EAD9-80	
	FARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _{AA}	Access time from column address		30		35		40	ns
tCAC	Access time from CAS low		15		18		20	ns
tCPA	Access time from column precharge		35		40		45	ns
tRAC	Access time from RAS low		60		70		80	ns
tCLZ	CAS to output in low-impedance	0		0		0		ns
tOFF	Output disable time after CAS high (see Note 6)	0	15	0	18	0	20	ns

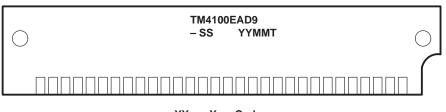
NOTE 6: toff is specified when the output is no longer driven.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

		'4100EAD9-60 '4100EAD9-70		EAD9-70	'4100EAD9-80		LINIT	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t RC	Cycle time, random read or write (see Note 7)	110		130		150		ns
tPC	Cycle time, page-mode read or write (see Note 8)	40		45		50		ns
tRASP	Pulse duration, page mode RAS low (see Note 9)	60	100 000	70	100 000	80	100 000	ns
tRAS	Pulse duration, nonpage mode, RAS low (see Note 9)	60	10 000	70	10 000	80	10 000	ns
tCAS	Pulse duration, CAS low (see Note 10)	15	10 000	18	10 000	20	10 000	ns
tCP	Pulse duration, CAS high	10		10		10		ns
t _{RP}	Pulse duration, RAS high (precharge)	40		50		60		ns
tWP	Pulse duration, write	15		15		15		ns
^t ASC	Setup time, column address before CAS low	0		0		0		ns
^t ASR	Setup time, row address before RAS low	0		0		0		ns
tDS	Setup time, data (see Note 11)	0		0		0		ns
^t RCS	Setup time, read before CAS low	0		0		0		ns
tCWL	Setup time, W low before CAS high	15		18		20		ns
^t RWL	Setup time, W low before RAS high	15		18		20		ns
twcs	Setup time, W low before CAS low (early-write operation only)	0		0		0		ns
tWSR	Setup time, W high (CBR refresh only)	10		10		10		ns
twrs	Setup time, W low (test mode only)	10		10		10		ns
^t CAH	Hold time, column address after CAS low	10		15		15		ns
^t DHR	Hold time, data after RAS low (see Note 12)	50		55		60		ns
^t DH	Hold time, data (see Note 10)	10		15		15		ns
^t AR	Hold time, column address after RAS low (see Note 12)	50		55		60		ns
^t RAH	Hold time, row address after RAS low	10		10		10		ns
^t RCH	Hold time, read after CAS high (see Note 13)	0		0		0		ns
^t RRH	Hold time, read after RAS high (see Note 13)	0		0		0		ns
^t WCH	Hold time, write after CAS low (early-write operation only)	15		15		15		ns
tWCR	Hold time, write after RAS low (see Note 12)	50		55		60		ns
^t WHR	Hold time, \overline{W} high (CBR refresh only)	10		10		10		ns
tWTH	Hold time, \overline{W} low (test mode only)	10		10		10		ns
^t CHR	Delay time, RAS low to CAS high (CBR refresh only)	15		15		20		ns
tCRP	Delay time, CAS high to RAS low	0		0		0		ns
tCSH	Delay time, RAS low to CAS high	60		70		80		ns
tCSR	Delay time, CAS low to RAS low (CBR refresh only)	10		10		10		ns

NOTES: 7. All cycle times assume $t_T = 5$ ns.

- 8. To assure $t_{\mbox{\footnotesize{PC}}}$ min, $t_{\mbox{\footnotesize{ASC}}}$ should be ≥ 5 ns.
- 9. In a read-write cycle, $t_{\mbox{\scriptsize RWD}}$ and $t_{\mbox{\scriptsize RWL}}$ must be observed.
- 10. In a read-write cycle, t_{CWD} and t_{CWL} must be observed.
 11. Referenced to the later of CAS or W in write operations
- 12. The minimum value is measured when $t_{\mbox{RCD}}$ is set to $t_{\mbox{RCD}}$ min as a reference.
- 13. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.



timing requirements over recommended ranges of supply voltage and operating free-air temperature (continued)

		'4100EAD9-60		'4100EAD9-70		'4100EAD9-80		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tRAD	Delay time, RAS low to column address (see Note 14)	15	30	15	35	15	40	ns
t _{RAL}	Delay time, column address to RAS high	30		35		40		ns
tCAL	Delay time, column address to CAS high	30		35		40		ns
tRCD	Delay time, RAS low to CAS low (see Note 14)	20	45	20	52	20	60	ns
tRPC	Delay time, RAS high to CAS low	0		0		0		ns
tRSH	Delay time, CAS low to RAS high	15		18		20		ns
t _{TAA}	Access time from address (test mode)	35		40		45		ns
^t TCPA	Access time from column precharge (test mode)	40		45		50		ns
tTRAC	Access time from RAS (test mode)	65		75		85		ns
tREF	Refresh time interval		16		16		16	ms
t _T	Transition time	2	50	2	50	2	50	ns

NOTE 14: The maximum value is specified only to assure access time.

device symbolization

YY = Year Code MM = Month Code T = Assembly Site Code

-SS = Speed

NOTE: The location of symbolization may vary.

TM4100EAD9 4194304 BY 9-BIT DYNAMIC RAM MODULE SMMS419C - NOVEMBER 1991 - REVISED JUNE 1995

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated