
- Function, Pinout, and Drive Compatible With FCT and F Logic
- Reduced V_{OH} (Typically = 3.3 V) Versions of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics
- I_{off} Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- Fully Compatible With TTL Input and Output Logic Levels
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- CY54FCT157T
 - 32-mA Output Sink Current
 - 12-mA Output Source Current
- CY74FCT157T
 - 64-mA Output Sink Current
 - 32-mA Output Source Current
- 3-State Outputs

CY74FCT157T . . . Q OR SO PACKAGE (TOP VIEW)

CY54FCT157T...L PACKAGE (TOP VIEW)

NC - No internal connection

description

The 'FCT157T devices are quad two-input multiplexers that select four bits of data from two sources under the control of a common data-select (S) input. The output-enable (\overline{E}) input is active low. When \overline{E} is high, all of the outputs (Y) are forced low, regardless of all other input conditions.

Moving data from two groups of registers to four common output buses is a common use of the 'FCT157T devices. The state of S determines the particular register from which the data comes. It also can be used as a function generator. These devices are useful for implementing highly irregular logic by generating any 4 of the 16 different functions of 2 variables, with 1 variable common.

The 'FCT157T devices are logic implementations of a four-pole, two-position switch, where the position of the switch is determined by the logic levels at S.

These devices are fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PIN DESCRIPTION

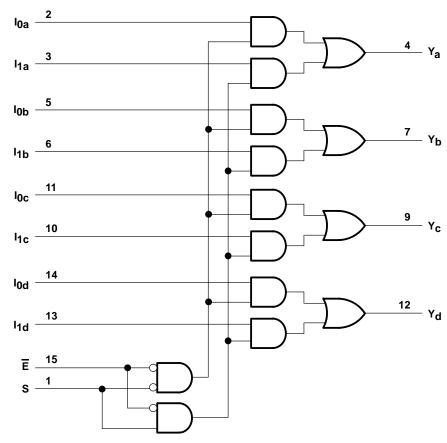
NAME	DESCRIPTION
S	Common select input
Ē	Enable inputs (active low)
I ₀	Data inputs from source 0
I ₁	Data inputs from source 1
Y	Noninverted outputs

ORDERING INFORMATION

TA	PACKAGE [†]		SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QSOP - Q	QSOP – Q Tape and reel 4.3 CY74FCT157CTC		CY74FCT157CTQCT	FT157-3
-40°C to 85°C	SOIC - SO	Tube	4.3	CY74FCT157CTSOC	FCT157C
	3010 - 30	Tape and reel	4.3	CY74FCT157CTSOCT	FC1157C
-40 C to 65 C	QSOP – Q Tape and reel		5	CY74FCT157ATQCT	FT157-1
	SOIC - SO	Tube	5	CY74FCT157ATSOC	FCT157A
	3010 - 30	Tape and reel	5	CY74FCT157ATSOCT	FCT 157A
–55°C to 125°C	LCC – L	Tube	5.8	CY54FCT157ATLMB	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE


	OUTPUT			
Ē	S	l ₀	l ₁	Y
Н	Х	Х	Х	L
L	Н	Χ	L	L
L	Н	Χ	Н	Н
L	L	L	X	L
L	L	Н	Χ	Н

H = High logic level, L = Low logic level, X = Don't care

SCCS014B - MAY 1994 - REVISED NOVEMBER 2001

logic diagram (positive logic)

Pin numbers shown are for the Q and SO packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range to ground potential	–0.5 V to 7 V
DC input voltage range	–0.5 V to 7 V
DC output voltage range	–0.5 V to 7 V
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, θ _{JA} (see Note 1): Q package	90°C/W
SO package	57°C/W
Ambient temperature range with power applied, T _A	–65°C to 135°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

CY54FCT157T, CY74FCT157T QUAD 2-INPUT MULTIPLEXERS WITH 3-STATE OUTPUTS

SCCS014B - MAY 1994 - REVISED NOVEMBER 2001

recommended operating conditions (see Note 2)

		CY54FCT157T			CY74FCT157T			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
٧ _{IL}	Low-level input voltage			8.0			0.8	V
loh	High-level output current			-12			-32	mA
l _{OL}	Low-level output current			32			64	mA
T _A	Operating free-air temperature	-55		125	-40		85	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEGT COMPITIONS	CY	54FCT15	57T	CY	UNIT				
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNII		
V.	$V_{CC} = 4.5 \text{ V}, \qquad I_{IN} = -18 \text{ mA}$		-0.7	-1.2				V		
VIK	$V_{CC} = 4.75 \text{ V}, \qquad I_{IN} = -18 \text{ mA}$					-0.7	-1.2	V		
	$V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -12 \text{ mA}$	2.4	3.3							
Voн	V _{CC} = 4.75 V				2			V		
	$I_{OH} = -15 \text{ mA}$				2.4	3.3				
VOL	$V_{CC} = 4.5 \text{ V}, \qquad I_{OL} = 32 \text{ mA}$		0.3	0.55				V		
VOL	$V_{CC} = 4.75 \text{ V}, \qquad I_{OL} = 64 \text{ mA}$					0.3	0.55	V		
V_{hys}	All inputs		0.2			0.2		V		
1,	$V_{CC} = 5.5 \text{ V}, \qquad V_{IN} = V_{CC}$			5				μΑ		
ΙΙ	$V_{CC} = 5.25 \text{ V}, V_{IN} = V_{CC}$						5	μΛ		
ΊΗ	$V_{CC} = 5.5 \text{ V}, \qquad V_{IN} = 2.7 \text{ V}$			±1				μА		
ЧH	$V_{CC} = 5.25 \text{ V}, \qquad V_{IN} = 2.7 \text{ V}$						±1	μΛ		
IIL	$V_{CC} = 5.5 \text{ V}, \qquad V_{IN} = 0.5 \text{ V}$			±1				μΑ		
'IL	$V_{CC} = 5.25 \text{ V}, \qquad V_{IN} = 0.5 \text{ V}$						±1	μπ		
IOZH	$V_{CC} = 5.5 \text{ V}, \qquad V_{OUT} = 2.7 \text{ V}$			10				μΑ		
'OZH	$V_{CC} = 5.25 \text{ V}, \qquad V_{OUT} = 2.7 \text{ V}$		_				10	μπ		
IOZL	V _{CC} = 5.5 V, V _{OUT} = 0.5 V			-10				μΑ		
-OZL	V _{CC} = 5.25 V, V _{OUT} = 0.5 V						-10	μπ		
los‡	$V_{CC} = 5.5 \text{ V}, \qquad V_{OUT} = 0 \text{ V}$	-60	-120	-225				mA		
1051	V _{CC} = 5.25 V, V _{OUT} = 0 V				-60	-120	-225	1117 (
l _{off}	$V_{CC} = 0 \text{ V}, \qquad V_{OUT} = 4.5 \text{ V}$			±1			±1	μΑ		
loo	$V_{CC} = 5.5 \text{ V}, \qquad V_{IN} \le 0.2 \text{ V}, \qquad V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.1	0.2				mA		
Icc	$V_{CC} = 5.25 \text{ V}, \qquad V_{IN} \le 0.2 \text{ V}, \qquad \qquad V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.1	0.2			
	$V_{CC} = 5.5 \text{ V}, V_{IN} = 3.4 \text{ V}$, $f_1 = 0$, Outputs open		0.5	2						
∇ICC	$V_{CC} = 5.25 \text{ V}, V_{IN} = 3.4 \text{ V}$, $f_1 = 0$, Outputs open					0.5	2	mA		

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

SCCS014B - MAY 1994 - REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

DADAMETER	RAMETER TEST CONDITIONS				54FCT15	7T	CY74FCT157T			UNIT
PARAMETER					TYP [†]	MAX	MIN	TYP [†]	MAX	UNII
loo-¶		e input switching at 50 = GND, V _{IN} ≤ 0.2 V o			0.06	0.12				mA/
^I CCD [¶]		ne input switching at 5 = GND, $V_{IN} \le 0.2 \text{ V}$ o						0.06	0.12	MHz
		One input switching at f ₁ = 10 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.7	1.4				
	V _{CC} = 5.5 V, Outputs open,	at 50% duty cycle	V _{IN} = 3.4 V or GND		1	2.4				
	E = GND	Four bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.7	1.4				
lc#		at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		1.7	5.4				mA
iC		One input switching at f ₁ = 10 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.7	1.4	IIIA
	V _{CC} = 5.25 V, Outputs open,	at 50% duty cycle	V _{IN} = 3.4 V or GND					1	2.4	
	E = GND	Four bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.7	1.4	
		at 50% duty cycle	V _{IN} = 3.4 V or GND					1.7	5.4	
C _i					5	10		5	10	pF
Co					9	12		9	12	pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Where:

I_C = Total supply current

I_{CC} = Power-supply current with CMOS input levels

 ΔI_{CC} = Power-supply current for a TTL high input ($V_{IN} = 3.4 \text{ V}$)

D_H = Duty cycle for TTL inputs high N_T = Number of TTL inputs at D_H

I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)

= Clock frequency for registered devices, otherwise zero

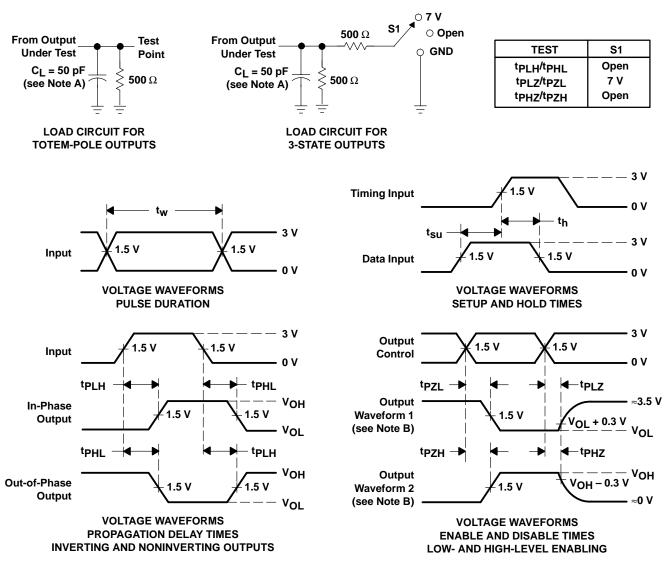
f₁ = Input signal frequency

N₁ = Number of inputs changing at f₁

All currents are in milliamperes and all frequencies are in megahertz.

|| Values for these conditions are examples of the I_{CC} formula.

switching characteristics over operating free-air temperature range (see Figure 1)


PARAMETER	FROM	FROM TO CY54FCT157AT CY74FCT157		T157AT	CY74FC1	T157CT	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tPLH		V	1.5	5.8	1.5	5	1.5	4.3	no
t _{PHL}	I	Y	1.5	5.8	1.5	5	1.5	4.3	ns
tPLH	<u> </u>	V	1.5	7.4	1.5	6	1.5	4.8	ns
t _{PHL}	_	ı	1.5	7.4	1.5	6	1.5	4.8	115
t _{PLH}	S	V	1.5	8.1	1.5	7	1.5	5.2	ns
^t PHL	3	ſ	1.5	8.1	1.5	7	1.5	5.2	115

This parameter is derived for use in total power-supply calculations.

 $^{^{\#}}$ IC = ICC + Δ ICC \times DH \times NT + ICCD ($f_0/2 + f_1 \times N_1$)

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

12-Jan-2006

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9220803M2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	N / A for Pkg Type
CY74FCT157ATD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157ATDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157ATDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157ATDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157ATQCT	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
CY74FCT157ATQCTE4	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
CY74FCT157ATSOC	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157ATSOCE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157ATSOCT	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157ATSOCTE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTQCT	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
CY74FCT157CTQCTE4	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
CY74FCT157CTSOC	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTSOCE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTSOCT	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CY74FCT157CTSOCTE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check

PACKAGE OPTION ADDENDUM

12-Jan-2006

http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated