
GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz

Typical Applications

The HMC716LP3E is ideal for:

- Fixed Wireless and LTE/WiMAX/4G
- BTS & Infrastructure
- Repeaters and Femtocells
- Public Safety Radio
- Access Points

Functional Diagram

Features

Noise Figure: 1 dB

Gain: 18 dB

Output IP3: +33 dBm

Single Supply: +3V to +5V

50 Ohm Matched Input/Output

16 Lead 3x3mm QFN Package: 9 mm²

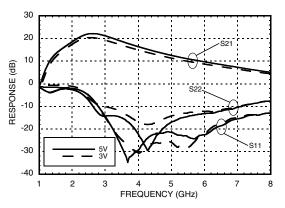
General Description

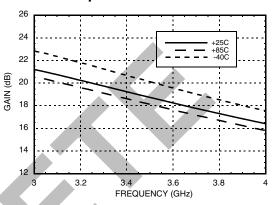
The HMC716LP3E is a GaAs pHEMT MMIC Low Noise Amplifier that is ideal for fixed wireless and LTE/WiMAX/4G basestation front-end receivers operating between 3.1 and 3.9 GHz. The amplifier has been optimized to provide 1 dB noise figure, 18 dB gain and +33 dBm output IP3 from a single supply of +5V. Input and output return losses are excellent and the LNA requires minimal external matching and bias decoupling components. The HMC716LP3E can be biased with +3V to +5V and features an externally adjustable supply current which allows the designer to tailor the linearity performance of the LNA for each application.

Electrical Specifications

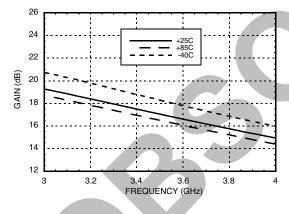
 $T_A = +25$ °C, Rbias = 820 Ω for Vdd = 5V, Rbias = 47k Ω for Vdd = 3V [1]

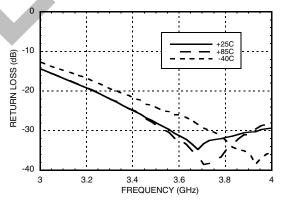
Dovometey	Vdd = +3V		Vdd = +5V				
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	3.1 - 3.9		3.1 - 3.9		MHz		
Gain	13	17		15.5	18		dB
Gain Variation Over Temperature		0.01			0.01		dB/ °C
Noise Figure		1	1.3		1	1.3	dB
Input Return Loss		25			30		dB
Output Return Loss		13			16		dB
Output Power for 1 dB Compression (P1dB)	12	15		16	19		dBm
Saturated Output Power (Psat)		16.5			20.5		dBm
Output Third Order Intercept (IP3)		26			33		dBm
Supply Current (Idd)		41	55		65	90	mA

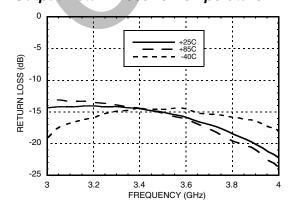

^[1] Rbias resistor sets current, see application circuit herein

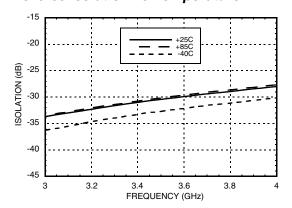


GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz


Broadband Gain & Return Loss [1] [2]

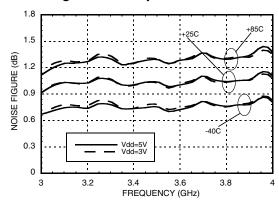

Gain vs. Temperature [1]

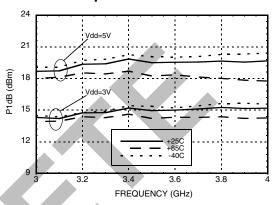

Gain vs. Temperature [2]


Input Return Loss vs. Temperature [1]

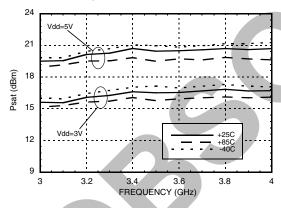
Output Return Loss vs. Temperature [1]

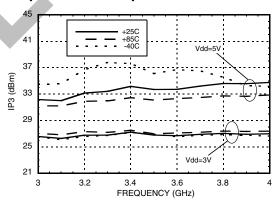
Reverse Isolation vs. Temperature [1]

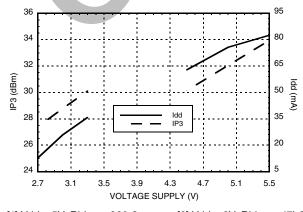

[1] Vdd = 5V, Rbias = 820 Ω [2] Vdd = 3V, Rbias = 47k Ω



GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz

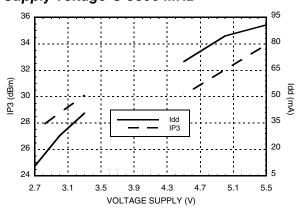

Noise Figure vs. Temperature [1] [2] [4]


P1dB vs. Temperature [1] [2]


Psat vs. Temperature [1] [2]

Output IP3 vs. Temperature [1] [2]

Output IP3 and Supply Current vs. Supply Voltage @ 3300 MHz [3]

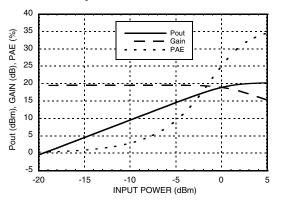

[1] Vdd = 5V, Rbias = 820 Ω

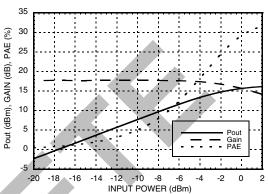
[2] Vdd = 3V, Rbias = $47k\Omega$

[3] Rbias = 820 Ω for Vdd = 5V, Rbias = 47k Ω for Vdd = 3V

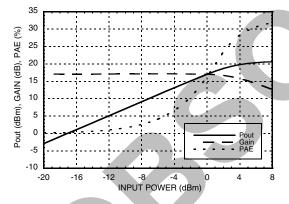
[4] Measurement reference plane shown on evaluation PCB drawing.

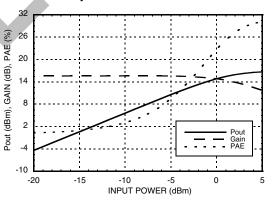
Output IP3 and Supply Current vs. Supply Voltage @ 3800 MHz [3]

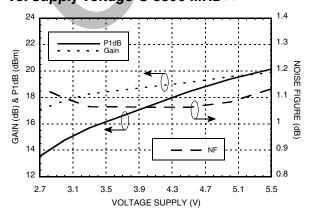


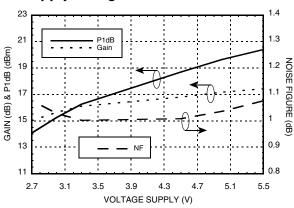


GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz


Power Compression @ 3300 MHz [1]

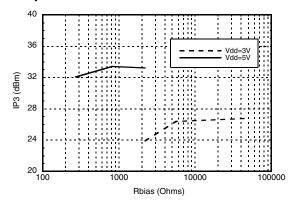

Power Compression @ 3300 MHz [2]

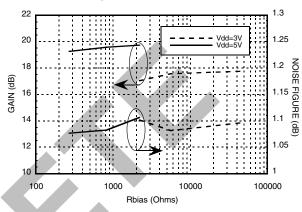

Power Compression @ 3300 MHz [1]


Power Compression @ 3800 MHz [2]

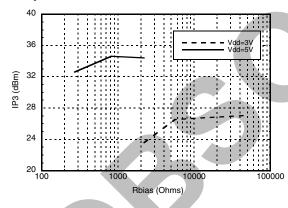
Gain, Power & Noise Figure vs. Supply Voltage @ 3300 MHz [3]

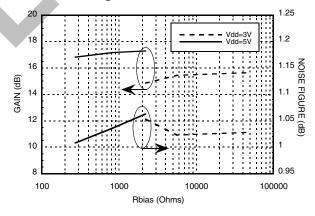
Gain, Power & Noise Figure vs. Supply Voltage @ 3800 MHz [3]


[1] Vdd = 5V, $Rbias = 820 \Omega$ [2] Vdd = 3V, $Rbias = 47k \Omega$ [3] $Rbias = 820 \Omega$ for Vdd = 5V, Rbias = 47k for Vdd 3V



GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz


Output IP3 vs. Rbias @ 3300 MHz


Gain, Noise Figure & Rbias @ 3300 MHz

Output IP3 vs. Rbias @ 3800 MHz

Gain, Noise Figure & Rbias @ 3800 MHz

GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz

Absolute Bias Resistor Range & Recommended Bias Resistor Values

7/44 00	Rbias (Ω)			Islat (see A)	
Vdd (V)		Max	Recommended	Idd (mA)	
			2.2k	20	
3V	3V 2k [1]	Open Circuit	5.6k	30	
			47k	41	
			270	48	
5V	5V 0	Open Circuit	820	65	
			2.2k	81	

^[1] With Vdd= 3V and Rbias $< 2k\Omega$ may result in the part becoming conditionally stable which is not recommended.

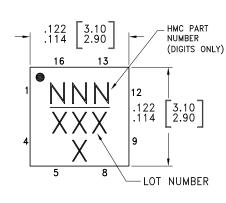
Absolute Maximum Ratings

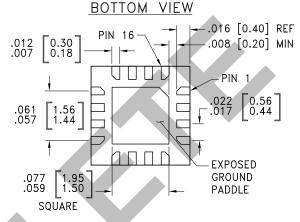
+5.5V
+10 dBm
150 °C
0.72 W
90 °C/W
-65 to +150 °C
-40 to +85 °C
Class 1A

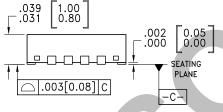
Typical Supply Current vs. Supply Voltage

(Rbias = 820 Ω for Vdd = 5V, Rbias = 47k Ω for Vdd = 3V)

Vdd (V)	Idd (mA)
2.7	31
3.0	41
3.3	51
4.5	51
5.0	65
5.5	80


Note: Amplifier will operate over full voltage ranges shown above.





GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

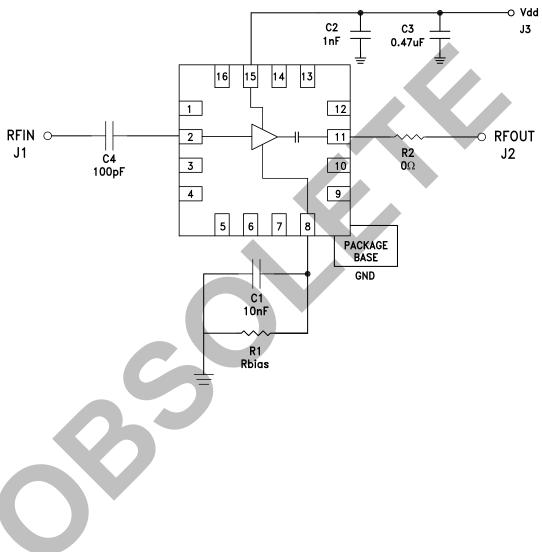
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC716LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	7 <u>16</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

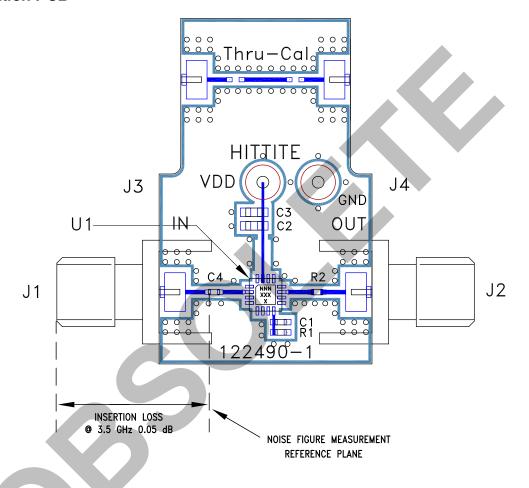
GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3 - 7, 9, 10, 12 - 14, 16	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
2	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFIN O ESD
11	RFOUT	This pin is AC coupled and matched to 50 Ohms.	RFOUT ESD =
8	RES	This pin is used to set the DC current of the amplifier by selection of external bias resistor. See application circuit.	RES
15	Vdd	Power supply voltage. Bypass capacitors are required. See application circuit.	Vdd ESD ==
	GND	Ground paddle must be connected to RF/DC ground.	GND =

GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz

Application Circuit



GAAS PHEMT MMIC LOW NOISE AMPLIFIER, 3.1 - 3.9GHz

Evaluation PCB

List of Materials for Evaluation PCB 122540 [1]

Item	Description
J1, J2	PCB Mount SMA Connector
J3, J4	DC Pin
C1	10 nF Capacitor, 0402 Pkg.
C2	1000 pF Capacitor, 0603 Pkg.
C3	0.47 μF Capacitor, 0603 Pkg.
C4	100 pF Capacitor, 0402 Pkg.
R1	820Ω Resistor, 0402 Pkg.
R2	0 Ohm Resistor, 0402 Pkg.
U1	HMC716LP3E Amplifier
PCB [2]	122490 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon 25FR