

Large Current External FET Controller Type Switching Regulators

**Single-output Step-up,High-efficiency
Switching Regulator(Controller Type)**

BD9306AFVM

**Single-output Step-up,High-efficiency
Switching Regulator(Controller Type)**

BD9305AFVM

No.09028EAT04

●Description

BD9305AFVM / BD9306AFVM are 1-channel DC/DC converter controllers. Step-down DC/DC converter can be configured by BD9305AFVM, and Step-up DC/DC converter can be configured by BD9306AFVM. In addition, the master slave function, which is that the synchronization is possible at the time of multi-connection, is mounted.

●Features

- 1) 1ch PWM Control DC/DC Converter Controller
- 2) Input Voltage Range:4.2 to 18V
- 3) Feed Back Voltage: $1.25 \pm 1.6\%$
- 4) Oscillating Frequency Variable:100 to 800kHz
- 5) Built-in Soft Start Function
- 6) Standby Current of 0 μA (Typ.)
- 7) Built-in Master / Slave Function
- 8) Protection Circuit : Under Voltage Lockout Protection Circuit
Thermal Shutdown Circuit
Short Protection Circuit of Timer Latch type
- 9) MSOP8 Package

●Applications

- TV, Power Supply for the TFT-LCD Panels used for LCD TVs, Back Lights
- DSC, DVC, Printer, DVD ,DVD Recorder, Generally Consumer Equipments etc.

●Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limit	Unit
Power supply voltage**	Vcc	20	V
Power dissipation	Pd	588*	mW
Operating temperature range	Topr	-40 to +85	°C
Storage temperature range	Tstg	-55 to +150	°C
Maximum junction temperature	Tjmax	150	°C

* Reduced by 4.7 mW/°C over 25°C, when mounted on a glass epoxy 4-layer board (70 mm × 70 mm × 1.6 mm)

** Must not exceed Pd.

●Recommended Operating Ranges (Ta=-40°C to +85°C)

Parameter	Symbol	Limit			Unit
		Min	Typ	Max	
Power supply voltage	Vcc	4.2	12	18	V
Control Voltage	V _{ENB}	—	—	Vcc	V
Timing Capacity	CT	100	—	1000	pF
Timing Resistance	RT	5	—	50	kΩ
Oscillating frequency	Fosc	100	—	800	kHz

●Electrical Characteristics (Unless otherwise specified Ta=25°C, V_{CC}=12V, CT=200pF, RT=20kΩ)

Parameter	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
【Triangular Waveform Oscillator Block】						
Oscillating frequency	FOSC	165	220	275	kHz	V _{CC} =5V
Charge Threshold Voltage	VOSC ⁺	0.80	0.85	0.90	V	
Discharge Threshold Voltage	VOSC ⁻	0.20	0.25	0.30	V	
【Under-voltage lockout protection circuit】						
Threshold Voltage	V _{UT}	3.5	—	4.2	V	
【Error amp Block】						
Feed Back Voltage	V _{FB}	1.230	1.250	1.270	V	
Input Bias Current	I _{IB}	—	0.05	1	μA	FB=1.5V
COMP Sink Current	I _{OI}	35	50	65	μA	FB=1.5V COMP=1.25V
COMP Source Current	I _{OO}	35	50	65	μA	FB=1.0V COMP=1.25V
【Gate Drive Block】						
ON Resistance	R _{ON}	—	5	—	Ω	
Gate Drive Voltage L	V _{GDL}	—	0	0.5	V	No Load
Gate Drive Voltage H	V _{GDH}	V _{CC} -0.5	V _{CC}	—	V	No Load
MAX Duty (BD9305AFVM)	M _{DT}	—	—	100	%	V _{CC} =5V
MAX Duty (BD9306AFVM)	M _{DT}	—	83	—	%	V _{CC} =5V
【Control Block】						
ON Voltage	V _{ON}	2	—	—	V	
OFF Voltage	V _{OFF}	—	—	0.3	V	
ENB Sink Current	I _{ENB}	40	60	90	μA	ENB=5V
【Soft Start Block】						
Soft Start Time	T _S	—	10	—	ms	
【Timer Latch Protection Circuit】						
Latch Detection COMP Voltage	V _L C	1.5	1.7	1.9	V	
Latch Delay OSC Count Number	C _{NT}	—	2200	—	COUNT	
Latch Delay Time	D _{LY}	—	10	—	ms	
【Overall】						
Standby Current	I _{STB}	—	0	10	μA	ENB=OFF
Average Consumption Current	I _{CC}	1.0	1.5	2.5	mA	No Switching

*This product is not designed for protection against radio active rays.

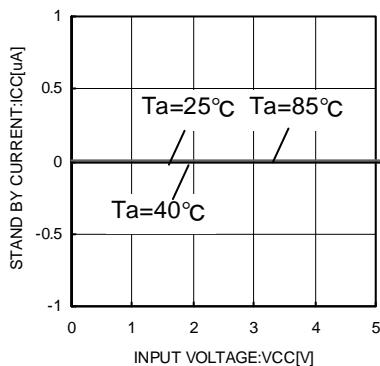

●Electrical Characteristics (Unless otherwise specified, $V_{CC}=12V$, $T_a=25^{\circ}C$)

Fig.1 Standby Circuit Current

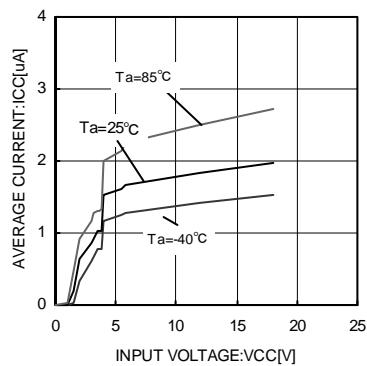


Fig.2 Average Consumption Current

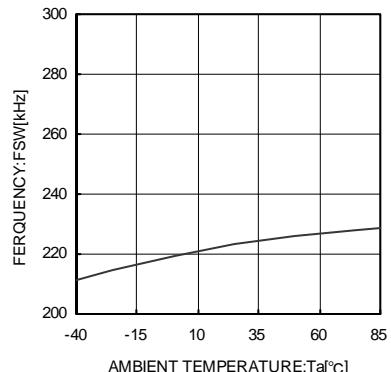


Fig.3 Frequency vs Temperature

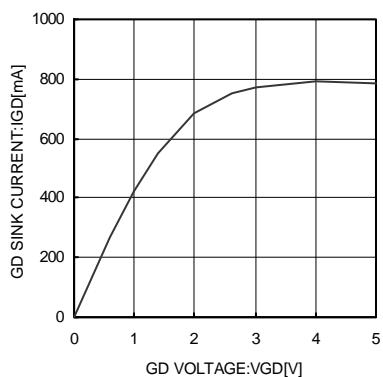


Fig.4 GD Sink Current

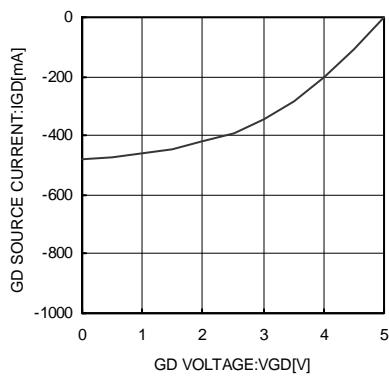


Fig.5 GD Source Current

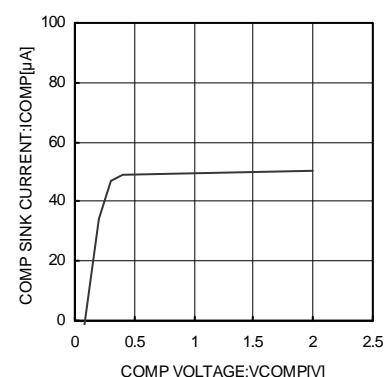


Fig.6 COMP Sink Current

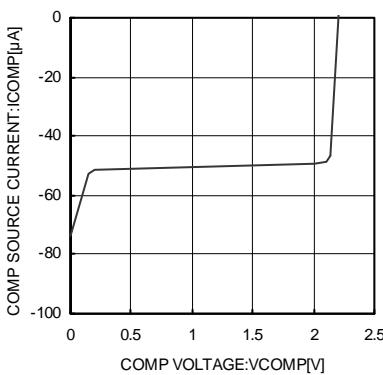


Fig.7 COMP Source Current

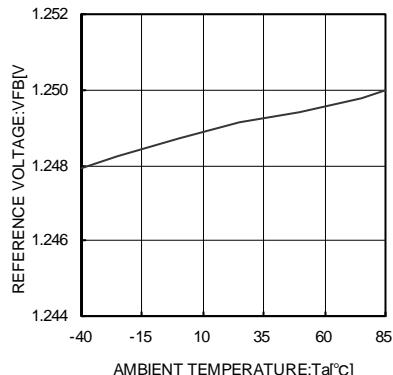


Fig.8 Feed Back vs Temperature

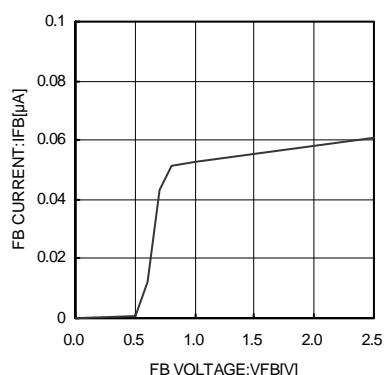


Fig.9 FB Input Bias Current

● **Electrical Characteristics** (Unless otherwise specified, $T_a=25^\circ\text{C}$)

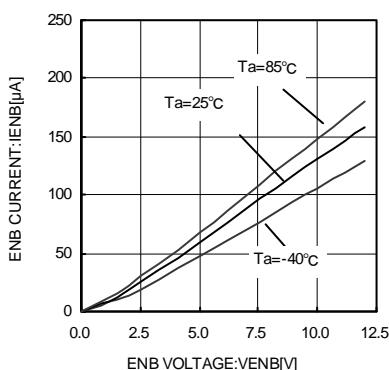
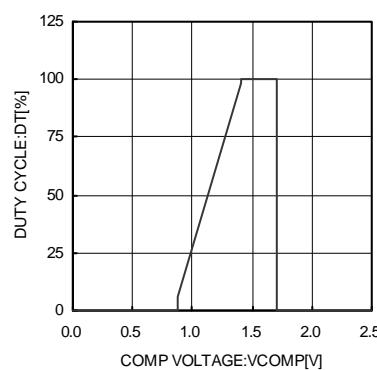
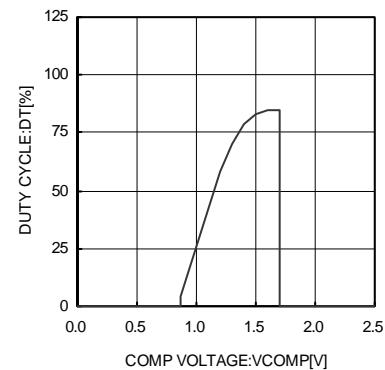
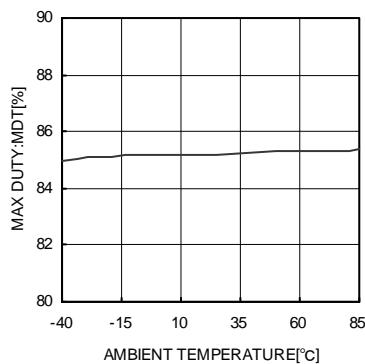
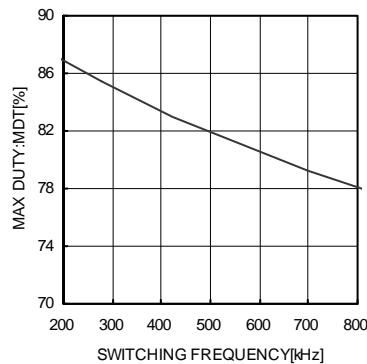
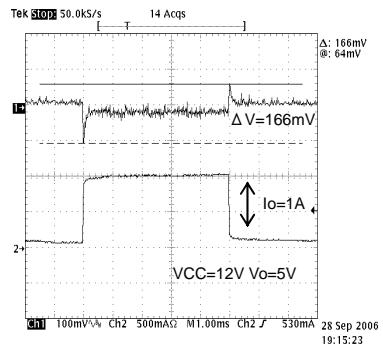
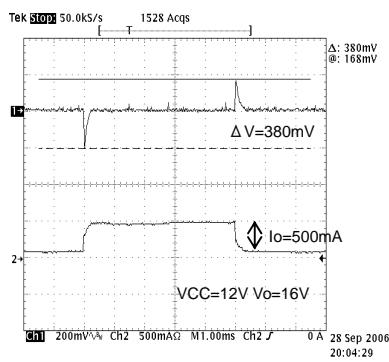
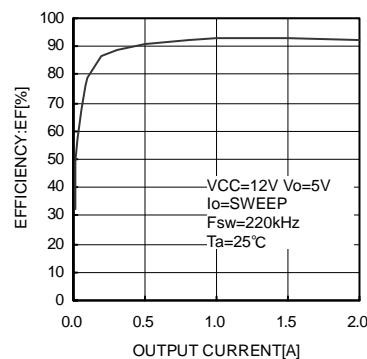
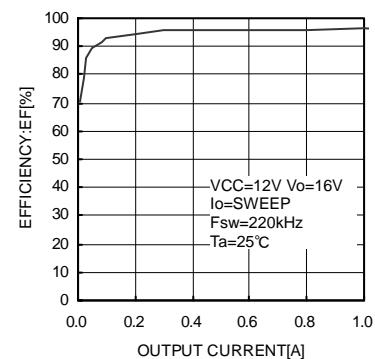










Fig.10 ENB Input Current

Fig.11 COMP vs DUTY
(BD9305AFVM)Fig.12 COMP vs DUTY
(BD9306AFVM)Fig.13 Temperature vs MAX Duty
(BD9306AFVM)Fig.14 Frequency vs MAX Duty
(BD9306AFVM)Fig.15 Load Response
(BD9305AFVM)Fig.16 Load Response
(BD9306AFVM)Fig.17 Efficiency Characteristics
(BD9305AFVM)Fig.18 Efficiency Characteristics
(BD9306AFVM)

●Block Diagram

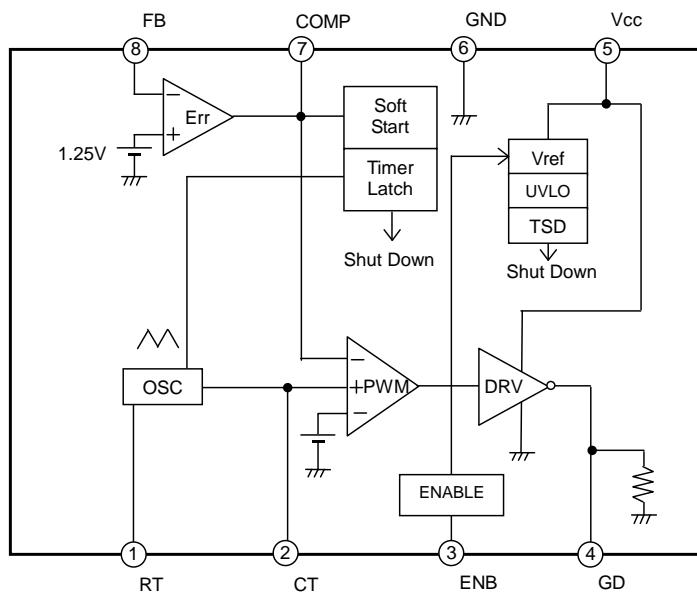
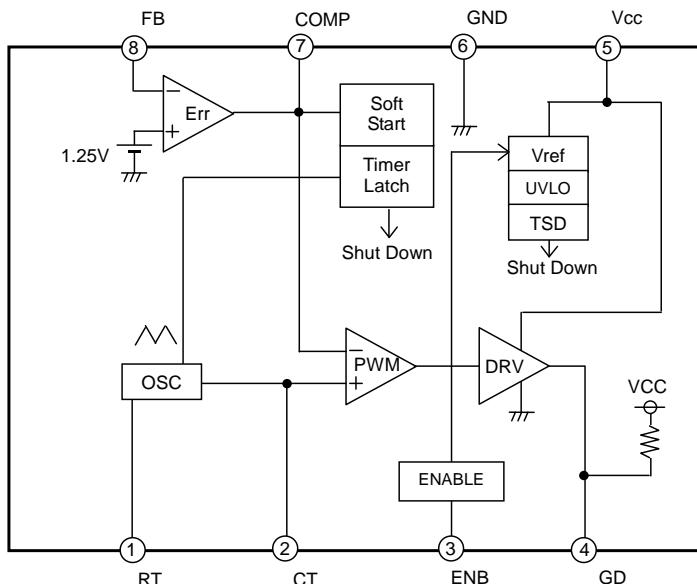
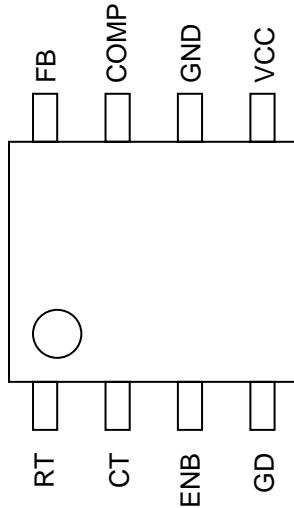




Fig19. Pin Assignment Diagram & Block Diagram (Above:BD9305AFVM / Below:BD9306AFVM)

●Pin Assignment and Pin Function

Pin No	Pin Name	Function
1	RT	Timing Resistance connection Pin
2	CT	Timing Capacity connection Pin
3	ENB	Control Pin
4	GD	Gate Drive Output Pin
5	Vcc	Power Supply Pin
6	GND	Ground pin
7	COMP	Error amp output Pin
8	FB	Error amp inversion input Pin

●Block Diagram / Application Circuit

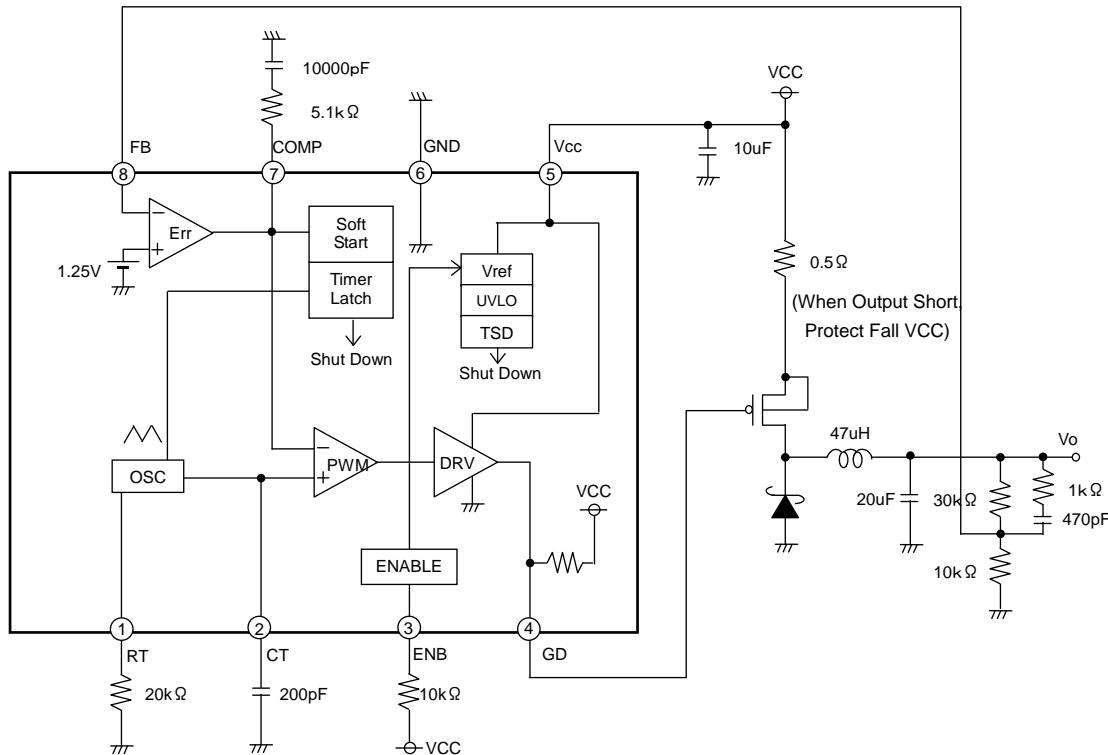


Fig.20 Block Diagram / Application Circuit (BD9305AFVM)

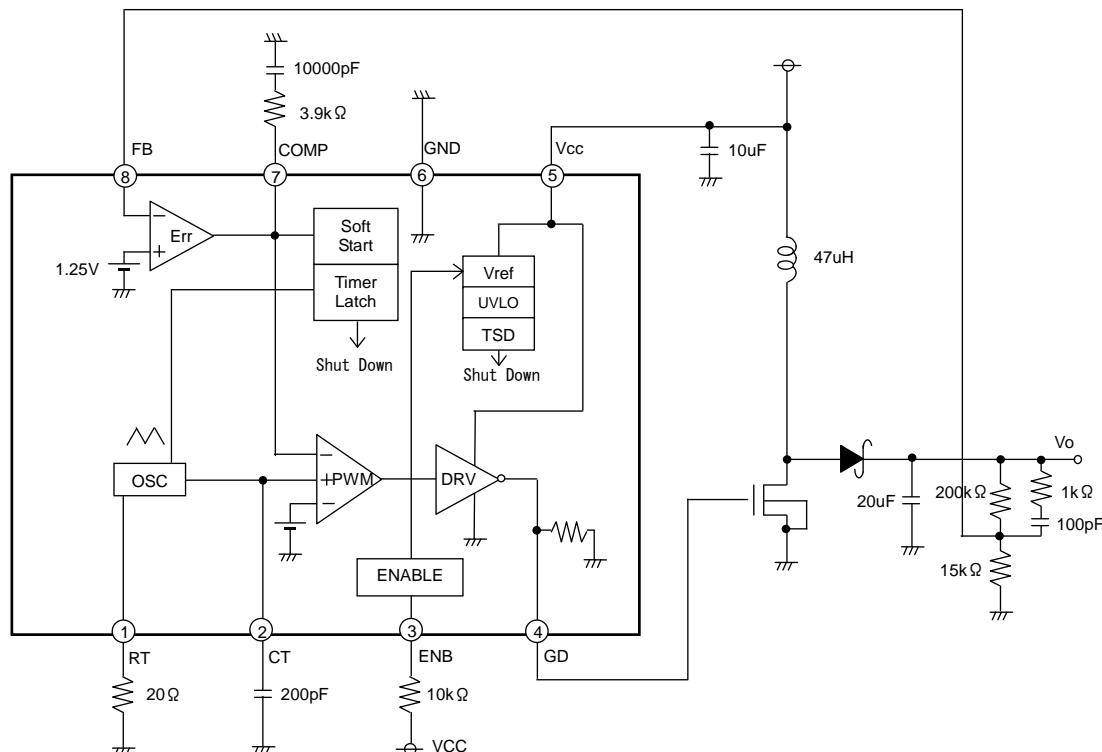


Fig.21 Block Diagram / Application Circuit (BD9306AFVM)

●Block Operation

- Error amplifier (Err)

It is a circuit that compares the standard voltage of 1.25V (TYP) and the feedback voltage of output voltage.

The switching Duty is determined by the COMP terminal voltage of this comparison result.

- Oscillator (OSC)

It is a block, in which the switching frequency is determined by RT and CT, and the triangular wave is determined by RT and CT.

- PWM

The Duty is determined by comparing the output of Error amplifier and the angular wave of Oscillator.

The switching Duty of BD9306AFVM is limited by the maximum duty ratio that is determined by the internal part, and will not be up to 100%.

- DRV

The gate of the power FET that is connected to the outside is driven by the switching Duty determined by PWM.

- VREF

It is a block that outputs the internal standard voltage of 2.5V (TYP).

The internal circuit is entirely the bearer of this standard voltage that is turned ON / OFF by the ENB terminal.

- Protection circuits (UVLO / TSD)

UVLO (low-voltage Lock Out circuit) shuts down the circuits when the voltage is below 3.5V (MIN).

Moreover, TSD (temperature protection circuit) shuts down the IC when the temperature reaches 175°C(TYP).

- Soft Start Circuit

The Soft Start Circuit limits the current at the time of startup while ramping up the output voltage slowly.

The overshoot of output voltage and the plunging current can be prevented.

- Timer Latch

It is an output short protection circuit that detects the output short if the output of error amplifier (COMP voltage) is more than 1.7V (TYP). If the COMP voltage becomes more than 1.7V, the counter begins to operate, the LATCH is locked when the counter counts to 2200, and the GD output shuts down. (* the frequency of counter is determined by RT and CT.) Once the LATCH is locked, the GD output does not operate until it is restarted by ENB or VCC. If the output short is removed while the Timer latch is counting, the counter is reset.

●Selecting Application Components

(1) Setting the output L constant (Step Down DC/DC)

The inductance L to use for output is decided by the rated current ILR and input current maximum value IOMAX of the inductance.

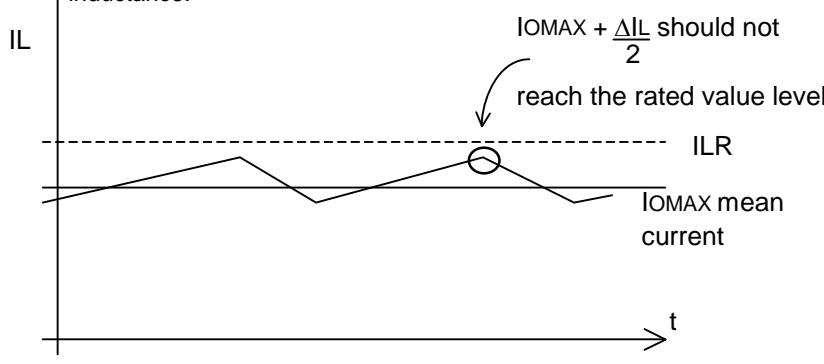


Fig.22 Coil Current Waveform (Step Down DC/DC)

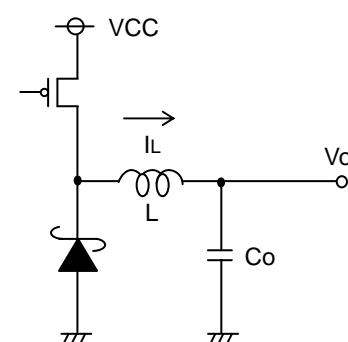


Fig.23 Output Application Circuit (Step Down DC/DC)

Adjust so that $I_{OMAX} + \Delta I_L / 2$ does not reach the rated current value I_{LR} .

At this time, ΔI_L can be obtained by the following equation.

$$\Delta I_L = \frac{1}{L} \times (V_{CC} - V_o) \times \frac{V_o}{V_{CC}} \times \frac{1}{f} \quad [A]$$

Set with sufficient margin because the inductance L value may have the dispersion of $\pm 30\%$.

If the coil current exceeds the rating current I_{LR} of the coil, it may damage the IC internal element.

(2) Setting the output L constant (Step Up DC/DC)

The inductance L to use for output is decided by the rated current ILR and input current maximum value IINMAX of the inductance.

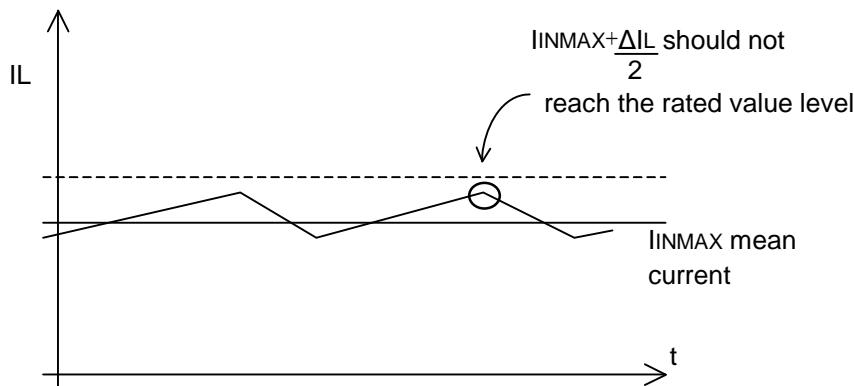


Fig.24 Coil Current Waveform (Step Up DC/DC)

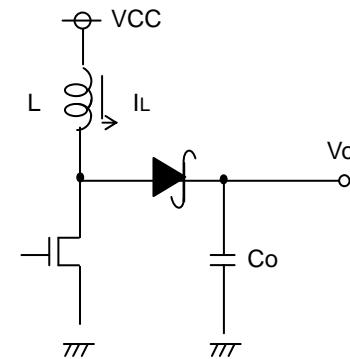


Fig.25 Output Application Circuit (Step Up DC/DC)

Adjust so that $I_{INMAX} + \Delta I_L / 2$ does not reach the rated current value I_{LR} .
At this time, ΔI_L can be obtained by the following equation.

$$\Delta I_L = \frac{1}{L} V_{CC} \times \frac{V_O - V_{CC}}{V_O} \times \frac{1}{f} \quad [A] \quad \text{Where, } f \text{ is the switching frequency}$$

Set with sufficient margin because the inductance L value may have the dispersion of $\pm 30\%$.
If the coil current exceeds the rating current I_{LR} of the coil, it may damage the IC internal element.

(3) Setting the output capacitor

For the capacitor C to use for the output, select the capacitor which has the larger value in the ripple voltage VPP allowance value and the drop voltage allowance value at the time of sudden load change.

Output ripple voltage is decided by the following equation.

$$\Delta V_{PP} = \Delta I_L \times R_{ESR} + \frac{\Delta I_L}{2C_O} \times \frac{V_O}{V_{CC}} \times \frac{1}{f} \quad [\text{V}] \quad \text{(Step Down DC/DC)}$$

$$\Delta V_{PP} = I_{LMAX} \times R_{ESR} + \frac{1}{fC_O} \times \frac{V_{CC}}{V_O} \times (I_{LMAX} - \frac{\Delta I_L}{2}) \quad [\text{V}] \quad \text{(Step Up DC/DC)}$$

Perform setting so that the voltage is within the allowable ripple voltage range.

For the drop voltage during sudden load change; V_{DR} , please perform the rough calculation by the following equation.

$$V_{DR} = \frac{\Delta I}{C_O} \times 10\mu\text{sec} \quad [\text{V}]$$

However, 10 μs is the rough calculation value of the DC/DC response speed. Please set the capacitance considering the sufficient margin so that these two values are within the standard value range.

(4) Setting of feedback resistance constant

For both BD9305AFVM (step down) and BD9306AFVM (step up), please refer to the following formula for setting of feedback resistance.

We recommend $10\text{k}\Omega \sim 330\text{k}\Omega$ as the setting range. If a resistance below $10\text{k}\Omega$ is set, a drop in voltage efficiency will be caused; if a resistance more than $330\text{k}\Omega$ is set, the offset voltage becomes large because of the internal error amplifier's input bias current of $0.05\mu\text{A}(\text{Typ})$. Please set the maximum setting voltage of BD9306AFVM (step up) in such a way that Duty : $(V_O - V_{CC}) / V_O$ is less than 70%.

$$V_O = \frac{R_1 + R_2}{R_2} \times 1.25 \quad [\text{V}]$$

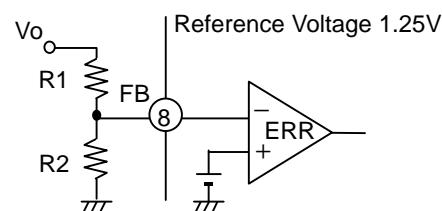


Fig.26 Feedback Resistance Setting

(5) Setting of oscillation frequency

The angular wave oscillation frequency can be set by respectively connecting resistor and condenser to RT (1 pin) and CT (2 pins). The currents to charge and discharge the condenser of CT are determined by RT. Please refer to the following drawing for setting the RT's resistor and the CT's condenser. RT:5~50kΩ, CT:100~1000pF, and the frequency range of 100kHz~800kHz are recommended. Please pay attention to that, the switching will stop if your setting is off this range.

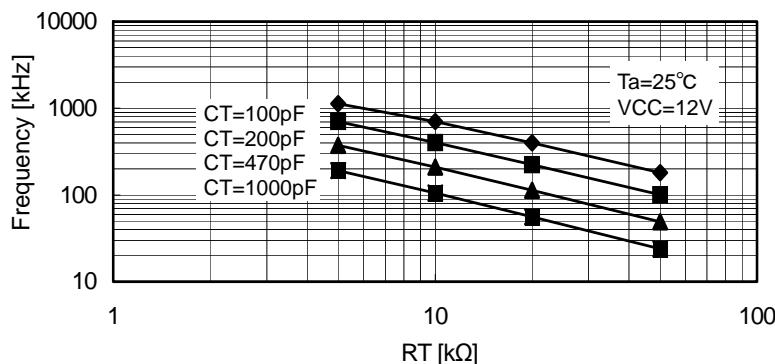


Fig.27 Frequency Setting

(6) Selection of input condenser

For DC/DC converter, the condenser at the input side is also necessary because peak current is flowing between input and output. Therefore, we recommend the low ESR condenser with over 10μF and below 100mΩ as the input condenser. If a selected condenser is off this range, excessively large ripple voltage will overlaps with the input voltage, which may cause IC malfunction. However, this condition varies with negative overcurrent, input voltage, output voltage, inductor's value, and switching frequency, so please be sure to do the margin check with actual devices.

(7) Selection of output rectifier diode

We recommend the Schottky barrier diode as the diode for rectification at the output stage of DC/DC converter. Please be careful to choose the maximum inductor current, the maximum output voltage and the power supply voltage.

<step-down DC/DC>

$$\text{Maximum inductor current } I_{OMAX} + \frac{\Delta IL}{2} < \text{Diode's rated current}$$

$$\text{Power supply voltage } VCC < \text{Diode's rated voltage}$$

<step-up DC/DC>

$$\text{Maximum inductor current } I_{INMAX} + \frac{\Delta IL}{2} < \text{Diode's rated current}$$

$$\text{Maximum output voltage } V_{OMAX} < \text{Diode's rated voltage}$$

Furthermore, each parameter has a deviation of 30%~40%, so please design in such a way that you have left a sufficient margin for deviation in your design.

(8) Setting of Power FET

If step-down DC/DC is configured by BD9305AFVM, Pch FET is necessary; if step-up DC/DC is configured by BD9306AFVM, Nch FET is necessary.

Please pay attention to the following conditions when you choose.

<step-down DC/DC>

$$\text{Maximum inductor current } I_{OMAX} + \frac{\Delta IL}{2} < \text{FET's rated current}$$

$$\text{Power supply voltage } VCC < \text{FET's rated voltage}$$

$$\text{Power supply voltage } VCC > \text{FET's gate ON voltage}$$

$$\text{Gate capacity } (\times) < 2000\text{pF}$$

<step-up DC/DC>

$$\text{Maximum inductor current } I_{INMAX} + \frac{\Delta IL}{2} < \text{FET's rated current}$$

$$\text{Maximum output voltage } V_{OMAX} < \text{FET's rated voltage}$$

$$\text{Power supply voltage } VCC > \text{FET's gate ON voltage}$$

$$\text{Gate capacity } (\times) < 2000\text{pF}$$

Furthermore, each parameter has a deviation of 30%~40%, so please design in such a way that you have left a sufficient margin for deviation in your design.

(×) If Gate capacity becomes large, the switch's switching speed gets slow, which may cause generation of heat and breakdown, so please check thoroughly with actual devices.

(9) Phase compensation

Phase Setting Method

The following conditions are required in order to ensure the stability of the negative feedback circuit.

- Phase lag should be 150° or lower during gain 1 (0 dB) (phase margin of 30° or higher).

Because DC/DC converter applications are sampled using the switching frequency, the overall GBW should be set to 1/10 the switching frequency or lower. The target application characteristics can be summarized as follows:

- Phase lag should be 150° or lower during gain 1 (0 dB) (phase margin of 30° or higher).

- The GBW at that time (i.e., the frequency of a 0-dB gain) is 1/10 of the switching frequency or below.

In other words, because the response is determined by the GBW limitation, it is necessary to use higher switching frequencies to raise response.

One way to maintain stability through phase compensation involves canceling the secondary phase lag (-180°) caused by LC resonance with a secondary phase advance (by inserting 2 phase advances).

The GBW (i.e., the frequency with the gain set to 1) is determined by the phase compensation capacitance connected to the error amp. Increase the capacitance if a GBW reduction is required.

(a) Standard integrator (low-pass filter)

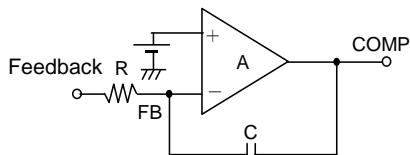
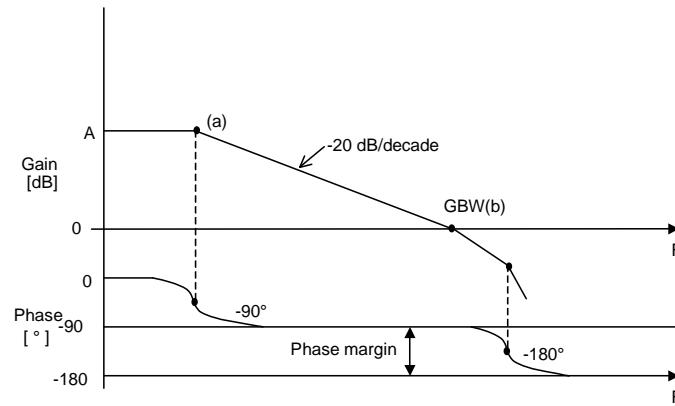
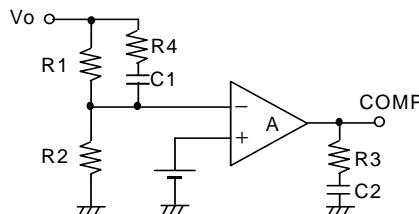


Fig. 28

$$\text{Point (a)} \quad f_a = \frac{1}{2\pi R C} \quad [\text{Hz}]$$

(b) Open loop characteristics of integrator




Fig. 29

$$\text{Point (b)} \quad f_b = \text{GBW} = \frac{1}{2\pi R C} \quad [\text{Hz}]$$

The error amp performs phase compensation of types (a) and (b), making it act as a low-pass filter.

For DC/DC converter applications, R refers to feedback resistors connected in parallel.

From the LC resonance of output, the number of phase advances to be inserted is two.

$$\text{LC resonant frequency } f_p = \frac{1}{2\pi\sqrt{LC}} \quad [\text{Hz}]$$

$$\text{Phase advance } f_{z1} = \frac{1}{2\pi C_1 R_1} \quad [\text{Hz}]$$

$$\text{Phase advance } f_{z2} = \frac{1}{2\pi C_2 R_3} \quad [\text{Hz}]$$

Fig. 30

Set a phase advancing frequency close to the LC resonant frequency for the purpose of canceling the LC resonance.

(※)If high-frequency noise is generated in the output, FB is affected through condenser C1.

Therefore, please insert the resistor $R_4=1\text{k}\Omega$ or so, which is in series with condenser C1.

● Example of application

※We recommend the application circuit examples with confidence, but hope that you will thoroughly check the characteristics over again when putting them to use.

When you change the external circuit constant and use, please make a decision to leave a sufficient margin after taking into consideration the deviation etc. of external components and ROHM IC, in terms of not only the static characteristic but also the transient characteristic.

Moreover, please understand that our company can not confirm fully with regard to the patent right.

<Master Slave Function>

The master slave function, which is that the synchronous switching is possible by using these IC of BD9305AFVM / BD9306AFVM through their multi-connection, is mounted. The following drawing shows an example of connection circuit in which BD9305AFVM is connected on the master side and BD9306AFVM is connected on the slave side.

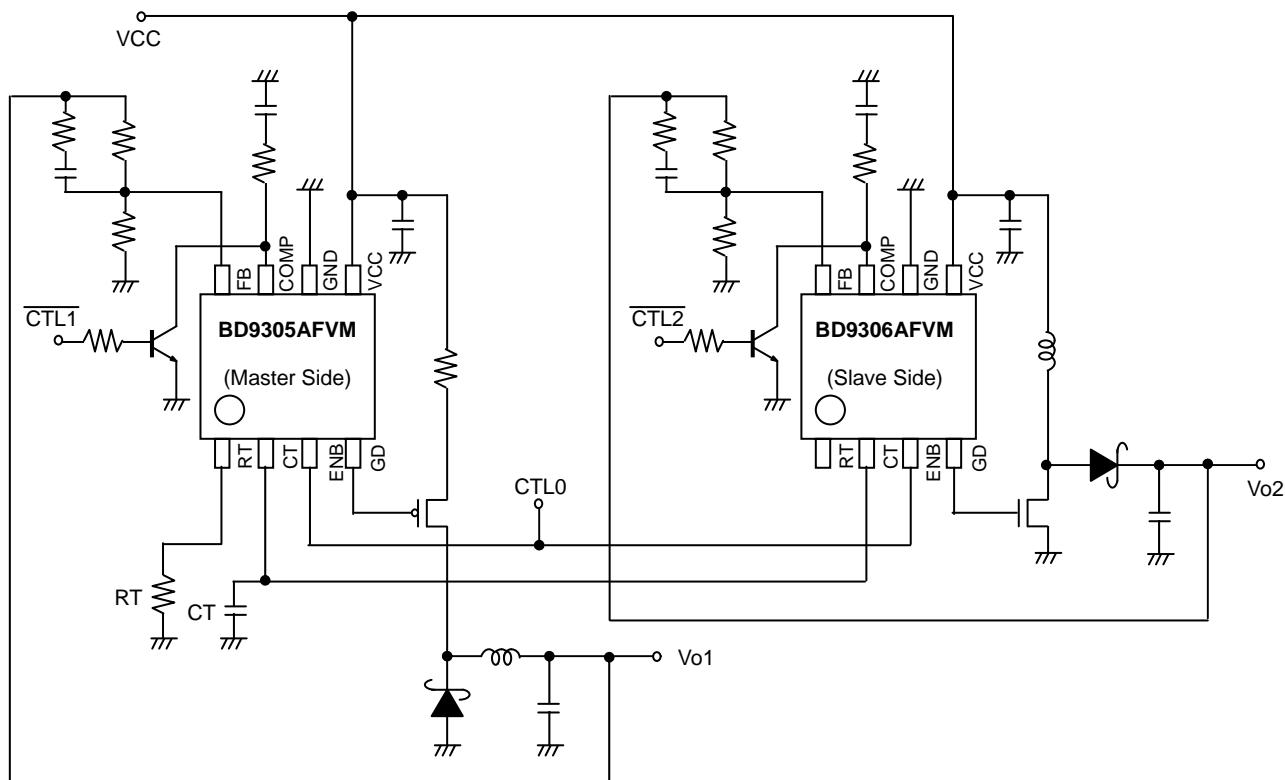


Fig.31 Master Slave Application Circuit

In the above-mentioned circuit, BD9306AFVM, which is synchronized with the switching frequency determined by RT and CT of BD9305AFVM that is the master, operates. In addition, the ON/OFF of output can be controlled by connecting the switch to the COMP terminal. (Refer to the following table)

Control signal correspondence table

Output state		Control signal		
Vo1	Vo2	CTL0	CTL1	CTL2
OFF	OFF	Low	*	*
OFF	ON	High	High	Low
ON	OFF	High	Low	High
ON	ON	High	Low	Low

* The same in either case of High / Low.

Similarly in the case of connecting three or more than three, synchronization is possible by connecting the CT terminal of Master and the CT terminal of Slave

●I/O Equivalent Circuit Diagram Fig.32

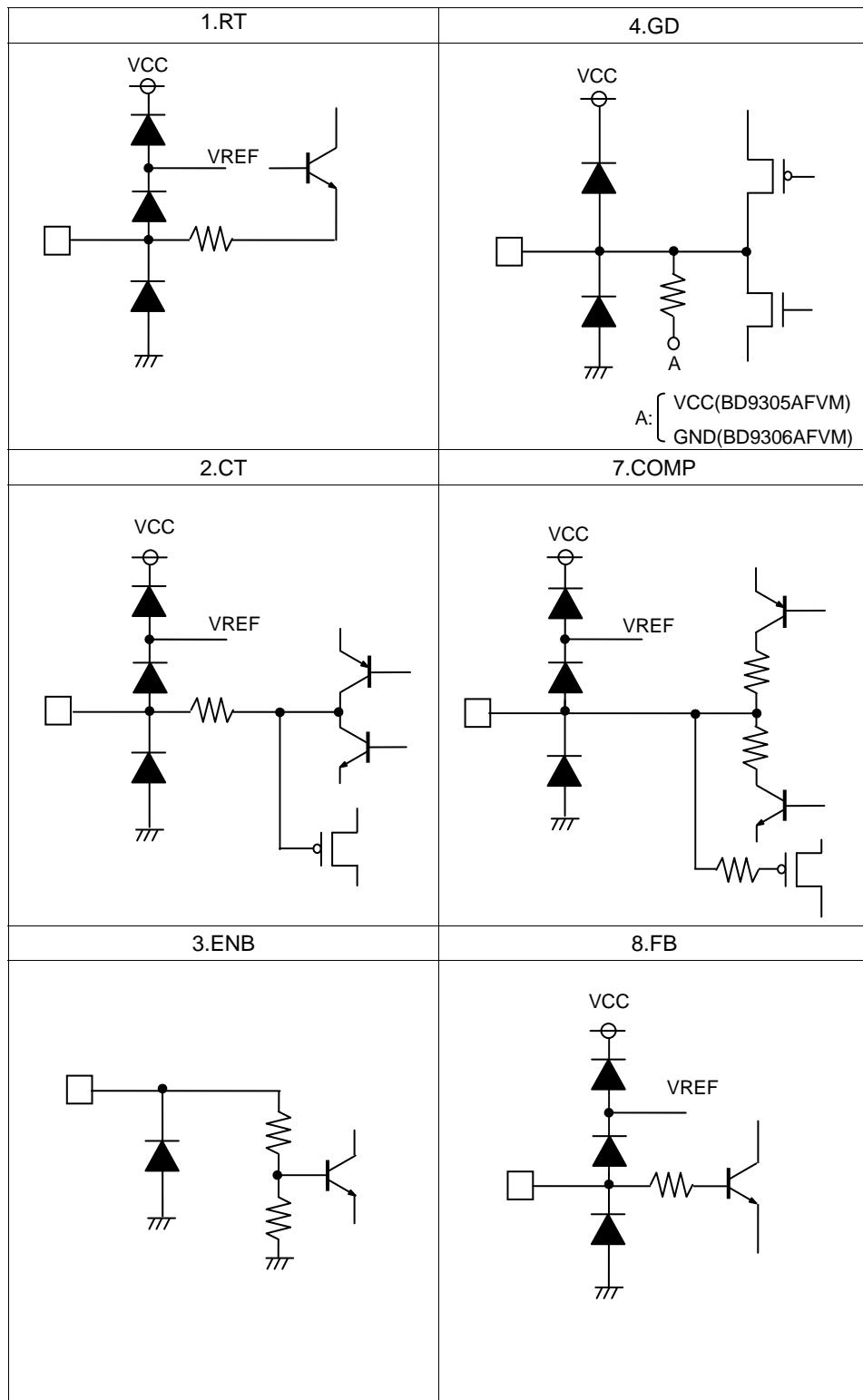


Fig. 32

●Notes for use

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

2) GND potential

Ensure a minimum GND pin potential in all operating conditions.

3) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

4) Pin short and mistake fitting

Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pins caused by the presence of a foreign object may result in damage to the IC.

5) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.

6) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.

7) Ground wiring patterns

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring patterns of any external components.

8) Regarding input pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements. For example, when the resistors and transistors are connected to the pins shown as follows, a parasitic diode or a transistor operates by inverting the pin voltage and GND voltage.

The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements such as by the application of voltages lower than the GND (P substrate) voltage to input and output pins.

Example of a SimpleMonolithic IC Architecture

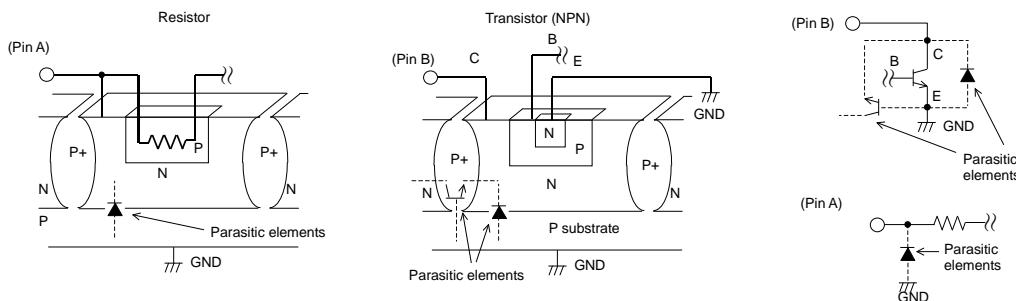
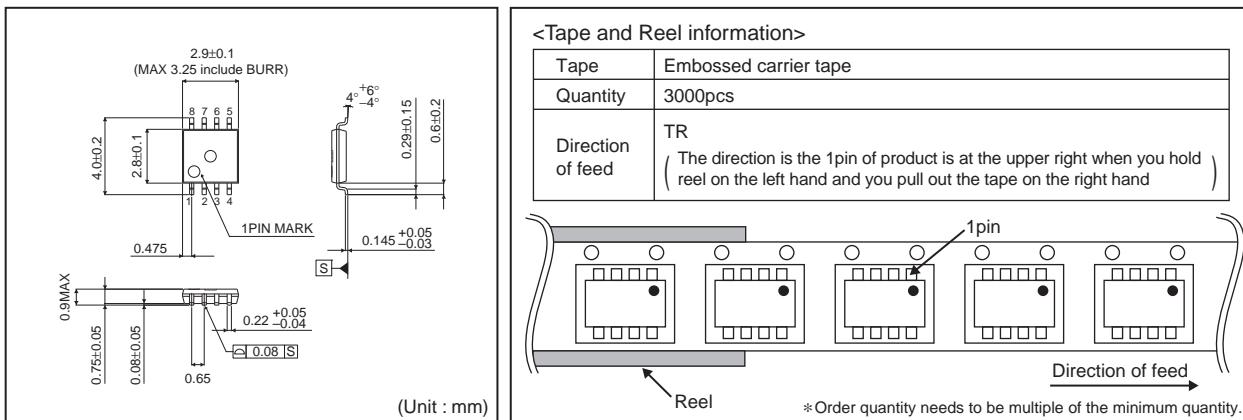


Fig. 33


9) Overcurrent protection circuits

An overcurrent protection circuit designed according to the output current is incorporated for the prevention of IC damage that may result in the event of load shorting. This protection circuit is effective in preventing damage due to sudden and unexpected accidents. However, the IC should not be used in applications characterized by the continuous operation or transitioning of the protection circuits. At the time of thermal designing, keep in mind that the current capacity has negative characteristics to temperatures.

● Ordering part number

B	D	9	3	0	6	A	F	V	M	-	T	R
Part No.			Part No.			Package			Packaging and forming specification			
9306A			FVM: MSOP8			TR: Embossed tape and reel						
9305A												

MSOP8

Notice

Precaution on using ROHM Products

- Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ^(Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASS III	CLASS III	CLASS II b	CLASS III
CLASS IV		CLASS III	

- ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - Installation of protection circuits or other protective devices to improve system safety
 - Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - Sealing or coating our Products with resin or other coating materials
 - Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - Use of the Products in places subject to dew condensation
- The Products are not subject to radiation-proof design.
- Please verify and confirm characteristics of the final or mounted products in using the Products.
- In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- De-rate Power Dissipation (P_d) depending on Ambient temperature (T_a). When used in sealed area, confirm the actual ambient temperature.
- Confirm that operation temperature is within the specified range described in the product specification.
- ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.